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Chemoresistance remains as a major hindrance in the treatment of hepatocellular
carcinoma (HCC). High mobility group box protein 1 (HMGB1) enhances autophagic
flux and protects tumor cells from apoptosis, which results in acquired drug resistance.
However, the exact mechanisms underlying HMGB1-modulated autophagy in HCC
chemoresistance remain to be defined. In the present study, we found that
administration of doxorubicin (DOX) significantly promoted HMGB1 expression and
induced HMGB1 cytoplasmic translocation in human HCC cell lines BEL7402 and
SMMC7721, which enhanced autophagy that contributes to protecting HCC cells from
apoptosis and increasing drug resistance. Moreover, we observed HMGB1 translocation
and elevation of autophagy in DOX-resistant BEL7402 and SMMC7721 cells. Additionally,
inhibition of HMGB1 and autophagy increased the sensitivities of BEL-7402 and SMMC-
7721 cells to DOX and re-sensitized their DOX-resistant cells. Subsequently, we
confirmed with HMGB1 regulated autophagy by activating the 5ʹ adenosine
monophosphate-activated protein kinase (AMPK)/mTOR pathway. In summary, our
results indicate that HMGB1 promotes acquired DOX resistance in DOX-treated
BEL7402 and SMMC7721 cells by enhancing autophagy through the AMPK/mTOR
signaling pathway. These findings provide the proof-of-concept that HMGB1 inhibitors
might be an important targeted treatment strategy for HCC.
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INTRODUCTION

Liver cancer is considered to be the sixth most common cancer
(1). The incidence and mortality of it rank the fourth and second
among malignant tumors, respectively, which show a continuous
upward trend in China (2, 3). Hepatocellular carcinoma (HCC)
is the most common type of live cancer, accounting for
approximately 75%–85% of cases (1, 4). Chemotherapy
remains an indispensable comprehensive treatment for patients
with postoperative or unresectable HCC at present (5, 6).
Doxorubicin (DOX), a traditional chemotherapeutic agent for
a wide variety of tumors, is a standard component for the
treatment of advanced HCC. It demonstrates higher efficacy
than other agents such as 5-fluorouracil, epirubicin, cisplatin,
and etoposide (7, 8). However, the tendency to acquired
resistance to DOX severely limits its clinical application in
HCC therapy. DOX resistance involves multiple mechanisms,
mainly related to drug accumulation (9), decreased DNA damage
(10), and apoptosis signaling (11). Recently, the role of
autophagy in DOX resistance has attracted a great deal of
attention. Some studies have demonstrated that reversing DOX
resistance via modulation of autophagy is a promising
therapeutic strategy (12–14).

Autophagy is an essential cellular process that involves self-
degradation of cellular proteins, damaged organelles, and lipid
droplets via the lysosome, maintaining the energy balance and
intracellular homeostasis (15). Recently, it was reported that
autophagy is a significant contributor to chemoresistance in
osteosarcoma cells and inhibition of autophagy enhances drug
sensitivity of osteosarcoma cells (16). Autophagy has also been
implicated in modulating sensitivity to oxaliplatin in human
colorectal cancer cell lines (17). Some studies have shown that
upregulation of autophagy promotes tumor cell survival and
probably contributes to chemoresistance in liver cancer therapy
(18, 19). These findings suggest that autophagy participates in
the development of chemoresistance. However, little is still
known about the underlying molecular mechanism of
autophagy in regulating the development of chemotherapy
resistance in HCC.

High mobility group box protein 1 (HMGB1), a well-known
regulator of autophagy, is a highly conserved non-histone
nuclear protein that has various biological functions in the
nucleus such as DNA replication, recombination, transcription,
and repair (20). In addition to its nuclear functions, HMGB1 in
the cytoplasm acts as an extracellular signaling molecule that is
closely associated with inflammation, cell proliferation and
differentiation, and tumor progression (20, 21). Upregulation
of HMGB1 expression has been unequivocally observed in
various cancers such as HCC and lung cancer (22–24).
Cytosolic translocation of HMGB1 and secretion of HMGB1
by tumor cells in response to chemotherapy are major factors in
the disordered tumor microenvironment (25, 26). Many reports
have demonstrated that subcellular localization and secretion of
HMGB1 plays a major role as a positive regulator of autophagy
in chemotherapy resistance in various cancers (26–29). However,
the exact mechanism of HMGB1-mediated autophagy in the
DOX resistance of HCC has not been clearly defined.
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In this study, we investigated whether DOX augmented
HMGB1 expression and induced HMGB1 translocation,
whether the autophagy induced by DOX was regulated by
HMGB1, and whether the changes in autophagy and HMGB1
protect HCC cells against DOX and facilitate the development of
acquired DOX resistance. BEL7402 and SMMC7721 cells and
DOX-resistant BEL7402 and SMMC7721 cells (BEL7402/DOX
and SMMC7721/DOX cells, respectively) were used as the cell
model. We found that HMGB1 expression and the associated
autophagic flux were increased in response to DOX treatment in
HCC cells, and autophagy modulated by HMGB1 protected
HCC cells from DOX-induced apoptosis. Additionally,
BEL7402/DOX and SMMC7721/DOX cells exhibited more
autophagy and HMGB1 expression, and inhibition of
autophagy and HMGB1 enhanced apoptosis sensitivity of
DOX-resistant HCC cells to DOX. Moreover, we found that
the 5ʹ adenosine monophosphate-activated protein kinase
(AMPK)/mTOR signaling pathway was involved in these
processes. Our data support HMGB1 as a potential molecular
therapeutic target to enhance the efficacy of DOX in HCC.
MATERIALS AND METHODS

Cell Culture and Establishment of
Drug-Resistant Cell Lines
Human HCC cell lines BEL-7402 and SMMC-7721 were
purchased from the Cell Bank of the Chinese Academy of
Science (Shanghai, China). Cells were cultured in RPMI-1640
medium (Gibco, Invitrogen, CA, USA) supplemented with 10%
fetal bovine serum (Thermo Fisher Scientific Inc., Shanghai,
China) at 37°C in a humidified atmosphere with 5% CO2.
DOX-resistant BEL-7402 and SMMC-7721 cell lines, BEL-
7402/DOX and SMMC-7721/DOX, were established in our
laboratory by selecting cells for resistance to increasing
stepwise concentrations of DOX (Shanghai Shenggong
Biological Engineering Co., Ltd., Shanghai, China) over 10
months until the cells survived in 1 µg/mL DOX as described
previously (30). The half maximal inhibitory concentration
(IC50) value was calculated with GraphPad Prism version 7.0
software, and the resistance index (RI) was calculated according
to the following formulae: RI = (IC50 of drug-resistant cells)/
(IC50 of parental cells), which was used as the relative indicator to
evaluate drug resistance.

Drug Sensitivity Measured by the
MTT Assay
The sensitivity of HCC cells to DOX, expressed as the
proliferation inhibition rate, was measured using the MTT
assay. The cells were seeded at a density of 1 × 105 cells per
well in 96-well plates in 200 ml RPMI (Gibco, Invitrogen, CA,
USA) and incubated at 37°C in a humidified atmosphere with 5%
CO2 for 24 h. Then, the cells were treated with DOX at increasing
concentrations of 0.1, 0.2, 0.4, 0.8, 1.6, and 3.2 µg/mL (five
replicates for each concentration). After 48 h of culture at 37°C
for adherence, the supernatants were removed and 20 µL per well
October 2021 | Volume 11 | Article 739145
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MTT (Thermo Fisher Scientific, Shanghai, China) was added to
the medium, followed by incubation for 2 h. Then, 150 µL per
well of DMSO (Sigma-Aldrich, St. Louis, MO, USA) was added
to dissolve the purple crystals. Subsequently, absorbance was
determined at 490 nm and IC50 values were calculated by
Graphpad Prism 7.0 software. The inhibition rate of cells was
calculated by the following formula: (1-experimental blank
absorbance value/control-blank absorbance value) × 100%. All
experiments were repeated three times and the results are
expressed as mean values.

Construction of Vectors, siRNA, and
Transfection Into Cells
BEL-7402 and SMMC7721 cells were seeded at 1 × 105 cells per
well in six-well plates and cultured to 80%–90% confluence.
HMGB1-overexpressing vector pcDNA3.1-HMGB1 was obtained
from Genechem Company (Shanghai, China) and transfected into
HCC cells using Lipofectamine™ 2000 (Invitrogen, Carlsbad, CA,
USA). Knockdown of HMGB1 was accomplished by specific small
interfering RNA (siRNA). HMGB1-siRNA or negative control
(NC) siRNA (GenePharma Company, Shanghai, China) were
transfected into cell, using Lipofectamine™ 2000 in accordance
with the manufacturers’ instructions. The siRNA sequences were as
follows (31, 32): siHMGB1, sense strand 5ʹ-ccuguccauuggug
auguutt-3ʹ and anti-sense strand 5ʹ-aacaucaccaauggacaggtt-3ʹ;
siNC, sense strand 5ʹ-uucuccgaacgugucacgutt-3ʹ and anti-sense
strand 5ʹ-acgugacacguucggagaatt-3ʹ. The working concentration
of siRNA was 40 nmol/L. At 48 h after transfection, the culture
medium was replaced and the cells were treated with the indicated
concentrations of drugs for various periods.
Western Blot Analysis
Cell lysates were prepared using RIPA lysis buffer containing 1
mM phenylmethylsulfonyl fluoride and 1% phosphatase
inhibitor cocktail. The protein concentration was measured
with a BCA assay (Beyotime Biotechnology, Shanghai, China).
All samples were adjusted to equal protein content before
analysis. Samples (20 µg total protein) from each group were
separated by 12% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and subsequently transferred onto PVDF
membranes (Millipore, Billerica, MA, USA) under a constant
current. Then, the membranes were blocked with 5% dry non-fat
milk in TBST buffer for 2 hour at room temperature. The
membrane was then incubated overnight at 4°C with a primary
antibody diluted in TBST. The primary antibodies were as
follows: polyclonal rabbit anti-human HMGB1, Beclin 1, LC3B,
p62, AMPK, phosphorylated AMPK (p-AMPK), mTOR,
phosphorylated mTOR (p-mTOR), and cleaved PARP (Affinity
Biosciences, OH, USA), and antibodies against GAPDH (Cell
Signaling Technology, Inc., MA, USA) and Lamin B (Boster
Biological Technology Co. Ltd., Wuhan, China). After washing
three times with TBST for 10 min each wash, the membrane was
incubated with corresponding peroxidase-conjugated goat IgG
(1:2,000 dilution, Boster Biological Technology Co. Ltd., Wuhan,
China) as the secondary antibody for 1 h at room temperature.
Enhanced chemiluminescent reagent (Applygen Technologies
Frontiers in Oncology | www.frontiersin.org 3
Inc., Beijing, China) was used for development. Protein bands
were quantified and analyzed using the BandScan5.0 system.
Each experiment was repeated three times and the results
were averaged.

Flow Cytometric Analysis of Apoptosis
Apoptosis was detected by annexin V-FITC and PI staining
using an Apoptosis Detection kit (KeyGEN Bio TECH Co. Ltd.,
Nanjing, China) in accordance with the manufacturer’s
instructions. Drug-treated cells were washed, collected,
resuspended in PBS, and transferred to a flow cytometer tube
after incubation with 500 ml Binding Buffer. Then, 5 µl annexin
V-FITC and 5 µl PI were added, followed by incubation in the
dark for 15 min at room temperature. Stained cells were analyzed
by a CytoFLEX flow cytometer (Beckman Coulter, USA).

Statistical Analysis
Statistical analyses were performed using SPSS22.0 software
(IBM Corp., Armonk, NY, USA). Data are expressed as the
mean ± standard deviation. Student’s t test was used for
continuous variable comparison between two groups, and one-
way ANOVA was adopted for multi-group comparison
(Dunnett-t test or LSD-t test were used for multiple
comparison). P < 0.05 was considered statistically significant.
RESULTS

BEL7402/DOX and SMMC7721/DOX Cells
Exhibit Stable Drug Resistance
To evaluate drug resistance of BEL7402/DOX and SMMC7721/
DOX cells, the DOX IC50 of cells was determined by the MTT
assay and RI indexes were calculated. The IC50 values of
BEL7402 and BEL7402/DOX cells were 0.226 ± 0.004 and
4.776 ± 0.128 µg/mL, respectively, and those of SMMC7721
and SMMC7721/DOX cells were 0.175 ± 0.007 and 2.556 ± 0.002
µg/mL, respectively. As shown in Figure 1A, the RIs of BEL7402/
DOX and SMMC7721/DOX cells were 21.1 and 14.6,
respectively, suggesting that BEL7402/DOX and SMMC7721/
DOX cells had exhibited stable DOX chemoresistance (33).

DOX Treatment Promotes HMGB1
Expression and Induces HMGB1
Translocation in HCC Cell Lines
To determine whether HMGB1 expression was related to
chemotherapy of HCC cells, we treated BEL-7402 and SMMC-
7721 cells, which are commonly used in drug resistance
experiments, with the chemotherapeutic drug DOX. DOX
exerts anti-cancer effects by intercalating nucleotide bases,
which depends on topoisomerase II enzyme, and inducing
programmed cell death (34, 35). Here, BEL-7402 and SMMC-
7721 cells were exposed to increasing concentrations of DOX or
a fixed concentration (3.2 µg/mL, which determined by
preliminary experiment) for 0, 12, 24, and 48 h. As shown in
Figure 1B, western blot analysis revealed that DOX treatment
October 2021 | Volume 11 | Article 739145
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led to a dose- and time-dependent increase in the total level of
HMGB1 in both BEL-7402 and SMMC-7721 cells. Moreover, the
cytosolic levels of HMGB1 were up-regulated, whereas HMGB1
expression in the nucleus was obviously reduced when the cells
treated with DOX. Additionally, BEL-7402/DOX and SMMC-
Frontiers in Oncology | www.frontiersin.org 4
7721/DOX cells, the DOX-resistant sublines, showed relatively
higher total and cytosolic levels of HMGB1 compared with
parental cells (Figure 1C). These results suggested that DOX
treatment induced expression and translocation of HMGB1 and
that HMGB1 might be associated with drug resistance.
A

B

C

FIGURE 1 | Chemotherapeutic treatment promotes HMGB1 expression and induces HMGB1 translocation. (A) Effect of DOX on the proliferation of BEL7402,
BEL7402/DOX, SMMC7721, and SMMC7721/DOX cells, and DOX IC50 in these cells. The IC50 values of BEL7402/DOX and SMMC7721/DOX cells were higher
than those of the parental cells, **P < 0.01. (B) Treatment with DOX increased the expression of HMGB1 and promoted HMGB1 translocation in a dose- and time-
dependent manner. (C) Lysates of parental and DOX-resistant HCC cells were prepared to detect HMGB1. Total and cytoplasmic expression of HMGB1 were higher
in DOX-resistant HCC cells.
October 2021 | Volume 11 | Article 739145
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Suppression of HMGB1 Increases the
Sensitivity to DOX in HCC Cells
To investigate the effect of HMGB1 induced by DOX on HCC
cells, we analyzed the responses of BEL-7402 and SMMC-7721
cells and their DOX-resistant cells to DOX treatment after
inhibition of HMGB1 expression and translocation. The cells
were transfected with HMGB1 siRNA (Si-HMGB1) or negative
control siRNA (Si-NC). HMGB1 expression was significantly
lower in Si-HMGB1 cells than in Si-NC cells (Figure 2A). The
cells were incubated with various concentrations DOX for 48 h
after transfection with HMGB1 siRNA or pretreated with ethyl
pyruvate (EP), a pharmacological inhibitor of HMGB1
Frontiers in Oncology | www.frontiersin.org 5
cytoplasmic translocation (26). The IC50 values of cells
transfected with HMGB1 siRNA or pretreated with EP were
significantly lower than those of NC siRNA-transfected cells
(Figure 2B), which indicated that the DOX sensitivities of BEL-
7402 and SMMC-7721 cells were significantly increased by
inhibi t ion of HMGB1 express ion and cytoplasmic
translocation. Simultaneously, the apoptosis of cells, which
were transfected with siRNA-HMGB1/siRNA-NC or pretreated
with EP(10mM) 2h and then exposed to doxorubicin(3.2mg/mL)
for 48h, was increased significantly after HMGB1 knockdown
(Figure 2C), which suggested that suppression of HMGB1
enhanced apoptosis sensitivity in BEL-7402 and SMMC-7721
A

B

C

FIGURE 2 | Inhibition of HMGB1 expression and cytoplasmic translocation increases sensitivity to DOX in HCC cells. (A) Compared with Si-NC cells, the level of
HMGB1 was significantly decreased in Si-HMGB1 cells. (B) Suppression of HMGB1 expression and cytoplasmic translocation in HCC cells decreased the IC50 value
of DOX. **P < 0.01 compared with Si-NC cells. (C) Inhibition of HMGB1 expression and cytoplasmic translocation enhanced apoptosis sensitivity of HCC cells to
DOX. Apoptosis was analyzed by flow cytometric analysis of annexin-V/PI staining. **P < 0.01 compared with Si-NC cells.
October 2021 | Volume 11 | Article 739145
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cells. Similar to the results in parental cells, transfection of BEL-
7402/DOX and SMMC-7721/DOX cells with HMGB1 siRNA
and pretreatment with EP rendered them largely more sensitive
to DOX as indicated by decreases in IC50 values and increased
apoptosis (Figures 2B, C).

DOX Induces Autophagy That Protects
HCC Cells From Apoptosis
To explore the effect of DOX on autophagy and the role of
autophagy in chemotherapeutic drug resistance of HCC cells, we
first detected the autophagy-related proteins Beclin 1, LC3-II,
and p62, which are reliable markers of autophagy (36), in BEL-
7402 and SMMC-7721 cells treated with various concentrations
DOX for the indicated periods. As shown in Figure 3A, DOX
markedly enhanced the levels of Beclin 1 and LC3-II, and
reduced p62 expression in a time- and dose-dependent manner
in BEL-7402 and SMMC-7721 cells.

These data indicated that treatment with chemotherapeutic
drugs induced and increased autophagy in HCC cells.

Next, to determine whether DOX-induced autophagy was
involved in drug resistance of HCC cells, we analyzed autophagy
activity in two DOX-resistant cell lines: BEL-7402/DOX and
SMMC-7721/DOX. Western blot analysis showed that the levels
of LC3-II and Beclin 1 were higher and levels of p62 were lower
in DOX-resistant cells than in parental cells (Figure 3A), which
suggested that DOX-resistant HCC cells had an increased
capacity for autophagy. Next, the parental and DOX-resistant
HCC cells were pretreated with 3-MA (25mM) before incubating
with doxorubicin(3.2mg/mL) for 48h. Cell proliferation
inhibition rates were performed by MTT assay and IC50 was
calculated. We found that the cytotoxicity and apoptosis were
increased significantly when autophagy was inhibited by 3-MA
in these kinds of cells as indicated by a decrease of IC50 and
increase of apoptosis (Figures 3B, C). Furthermore, the
sensitivity of BEL-7402/DOX and SMMC-7721/DOX cells to
DOX was enhanced markedly, which indicated that the drug
resistance of these cells was reversed by treatment with 3-MA
(Figure 3B). Both parental and DOX-resistant cell lines showed
potentiation of apoptosis after suppression of autophagy (Figure 3C).

These findings suggested that treatment with chemotherapeutic
drug DOX induced autophagy in HCC cells, which protected HCC
cells from DOX-induced apoptosis and contributed to the survival
of HCC cells treated with DOX.

HMGB1 Regulates DOX-Induced
Autophagy in HCC Cells
Both HMGB1 and autophagy were induced by chemotherapy,
which decreased sensitivity to the drug in HCC cells. Next, we
investigated the relationship between them and examined
whether HMGB1 is a direct regulator of autophagy. Previous
studies have shown that starvation or other stresses facilitate
translocation of HMGB1 to the cytoplasm and enhance autophagic
flux (20, 37). In this study, BEL7402 and SMMC7721 cells were
transfected with pcDNA3.1-control or pcDNA3.1-HMGB1 and then
pretreated with or without 3-MA(25mM) for 12h before additional
48h incubated with doxorubicin(3.2mg/mL). HMGB1, Lc3 and P62
Frontiers in Oncology | www.frontiersin.org 6
levels were assayed by western blot. We found that pcDNA3.1-
HMGB1 vector significantly increased HMGB1 protein in the cells
(Figure 4A). Moreover, western blot analysis showed that
overexpression of HMGB1 increased the conversion levels of LC3-I
to LC3-II and promoted the degradation of p62 compared with the
pcDNA3.1-control group when cells were exposed to DOX.
However, the LC3-II elevation and p62 degradation were
abrogated by suppression of autophagy with 3-MA (Figure 4A).
To further verify effect of HMGB1 on autophagy, the cells, BEL7402
and SMMC7721, were transfected with HMGB1 siRNA or negative
control and then were treated with 3-MA and doxorubicin. And
western blot results showed that inhibition of HMGB1 by
transfecting with HMGB1 siRNA could significantly reduce
autophagy in cells, which was more obvious when cells pretreated
with 3-MA (Figure 4B). Furthermore, we observed changes of LC3-
II and p62 expression in cells when cytosolic translocation of
HMGB1 was inhibited by EP. BEL7402 and SMMC7721 cells were
pretreated with or without EP(10mM) for 12h, and then incubated
with doxorubicin (3.2mg/mL) for 48h. Nuclear and cytoplasmic
HMGB1 and autophagy-related proteins were detected by western
blotting. The results demonstrated that pretreatment with EP
decreased the levels of LC3-II, but increased the level of p62 in
cells before incubation with DOX (Figure 4C). Therefore, HMGB1
played an important role in the regulation of autophagy inHCC cells.

HMGB1-Mediated Autophagy and
Downregulated Apoptosis Induced by
DOX Involve the AMPK/mTOR Pathway in
HCC Cells
AMPK is a highly conserved serine/threonine kinase that is widely
distributed in eukaryotic cells, which is typically activated by a high
AMP/ATP ratio to maintain energy homeostasis (38). Moreover,
AMPK coordinates with many upstream and downstream
molecules, such as LKBI, mTOR, 70 kDa ribosomal protein S6
kinase (p70S6K), Akt, and ULKI, and regulates apoptosis and
autophagy (39–41). Mammalian rapamycin target protein mTOR
—an atypical serine/threonine kinase—is an important
downstream protein of AMPK and plays a “gating” role in
regulation of autophagy by phosphorylation of p70S6K. Activated
AMPK inactivates mTOR and the AMPK/mTOR pathway has
been linked to actuation of autophagy (42–44). Thus, to determine
whether the AMPK/mTOR pathway was involved in regulation of
HMGB1-mediated autophagy in HCC cells, we measured AMPK
and mTOR phosphorylation, markers of autophagy, p62, and
apoptosis-related protein cleaved PARP in DOX-induced cells
with or without AMPK inhibitor Compound C (10 mM) and
mTOR inhibitor rapamycin (10 nM) treatments after transfection
with the HMGB1 cDNA plasmid or HMGB1 siRNA. As shown in
Figure 5A, compared with vector control cells, overexpression of
HMGB1 significantly increased AMPK phosphorylation and
obviously decreased the levels of p-mTOR, p62, and cleaved
PARP in both BEL7402 and SMMC7721 cells. However, these
effects were abolished by suppression of AMPK with Compound C.
These results suggested that AMPK participated in promotion of
autophagy by HMGB1, which downregulated apoptosis in
HCC cells.
October 2021 | Volume 11 | Article 739145
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We also observed the role of mTOR in the abovementioned
regulation process. Compared with the siRNA-NC group,
depletion of HMGB1 by siRNA notably decreased p-AMPK and
increased p-mTOR. Moreover, p62 degradation was weakened and
cleaved PARP expression was enhanced in the siRNA-HMGB1
group, which further supported the role of AMPK in HMGB1-
mediated autophagy and apoptosis of HCC cells. Additionally,
when combined with mTOR inhibitor rapamycin in cells
transfected with HMGB1 siRNA, the p-mTOR level was
decreased obviously, p62 degradation was enhanced, and
Frontiers in Oncology | www.frontiersin.org 7
apoptosis was reduced significantly (Figure 5B). These results
indicated that downregulation of p-AMPK after knockdown of
HMGB1 did not promote p-mTOR expression, inhibit autophagy,
or promote apoptosis when mTOR was blocked by rapamycin,
which suggesting that mTOR was a downstream molecule of
AMPK. Therefore, HMGB1 may regulate DOX-induced
autophagy and reduce apoptosis through the AMPK/mTOR
pathway in HCC cells. Similar to the results in parental cells,
transfection of BEL7402/DOX and SMMC7721/DOX cells with
HMGB1 cDNA plasmid improved activation of AMPK/mTOR
A

B

C

FIGURE 3 | DOX induces autophagy that protects HCC cells from apoptosis and reduces the sensitivity of HCC cells to DOX. (A) Treatment with DOX promoted
autophagy in a dose- and time-dependent manner in BEL7402 and SMMC7721 cells. Autophagy was also upregulated in DOX-resistant HCC cells. (B) Inhibition of
autophagy promoted apoptosis and sensitivity of HCC cells to DOX. The DOX IC50 of parental and DOX-resistant HCC cells was significantly decreased by
pretreatment with 3-MA. (C) Apoptosis rates of cells in the 3-MA group were remarkably higher than those of control cells both in parental and DOX-resistant HCC
cells. **P < 0.01 compared with control cells.
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pathway and autophagy (Figure 5C), and decreased the propensity
for apoptosis. And the changes trend of these indexes were just
opposite in HMGB1-knockdown DOX-resistant cells (Figure 5D).
Together with data of the studies, we proposed a model in which
doxorubicin induced the cytosolic translocation of HMGB1, which
regulated autophagy that decreased apoptosis and increased drug
resistance by activating the AMPK/mTOR pathway(Figure 5E).
DISCUSSION

In the present study, we demonstrated that DOX treatment
markedly induced cytosolic HMGB1 translocation, HMGB1
expression, and autophagy in HCC cell lines. HMGB1-regulated
autophagy contributed to the acquirement of DOX resistance by
protecting HCC cells from apoptosis, and inhibition of HMGB1 or
suppression of HMGB1 cytosolic translocation attenuated this
autophagic protection in response to DOX. Additionally, we
showed that activation of the AMPK/mTOR signaling pathway
was involved in the process of HMGB1-mediated autophagy.

Acquired resistance is a major hindrance for the application of
chemotherapeutic drugs to tumors. Numerous investigations have
described that the mechanisms of DOX resistance include
upregulation of multidrug resistance efflux pumps, topoisomerase,
altered drug targets, and alterations in apoptosis signaling (45–48).
However, the molecular mechanism of DOX resistance in HCC has
not been fully elucidated. Currently, autophagy is considered as a
novel clinical target to reverse DOX resistance. Studies have implied
that autophagy is involved in several steps of HCC initiation and
progression as well as therapeutic resistance (18, 19). Here, we
found that BEL-7402 and SMMC-7721 cells underwent autophagy
in a time- and dose-dependent manner when treated with DOX
and drug-resistant sublines BEL-7402/DOX and SMMC-7721/
DOX had an increased capacity for autophagy. Inhibition of
autophagy by 3-MA potentiated the inhibitory effect of DOX on
the proliferation of these cells, which was accompanied by
significantly increased apoptosis. Additionally, autophagy
Frontiers in Oncology | www.frontiersin.org 8
inhibitor 3-MA partially reversed DOX resistance of BEL-7402/
DOX and SMMC-7721/DOX cells by inhibiting autophagy. Our
results suggested that DOX-induced autophagy protected HCC
cells from apoptosis and was highly related to DOX resistance in
these cells. Therefore, revealing the detailed mechanism of
autophagy regulation may provide novel therapeutic options to
improve chemotherapy efficacy.

HMGB1—a chromatin-associated nuclear protein—is a critical
regulator of cell death and survival. Overexpression of HMGB1 is
associated with the hallmarks of cancer, which included an
unlimited replicative potential, angiogenesis, evasion of apoptosis,
insensitivity to inhibitors of growth, inflammation, tissue invasion,
and metastasis (20, 21). The activities of HMGB1 are related to its
cellular localization. In the nucleus, HMGB1 binds to DNA and
regulates nuclear events such as DNA replication, recombination,
and repair. It is also actively secreted or passively released under
various stimuli, such as injury, necrosis, hypoxia, and endotoxin, in
different cell types (16, 20). Both endogenous and exogenous
HMGB1 have been suggested to be important regulators of
autophagy in tumor cells (49, 50). It was reported that anticancer
agents doxorubicin induced HMGB1 upregulation in human
osteosarcoma cells, and knockdown of HMGB1 restored the
chemosensitivity of osteosarcoma cells in vivo and in vitro by
inducing autophagy, an intracellular self-defense mechanism
known to confer drug resistance (51). Pan et al. (26) found that
HMGB1 is a crucial regulator of autophagy, which significantly
contributes to docetaxel resistance in LAD cells. Wang et al. (50)
showed that HMGB1 facilitates autophagic progression and reduces
oxidative stress induced by DOX, which is a critical factor for the
development of chemoresistance and tumorigenesis. This
prompted us to investigate the relationship between HMGB1 and
autophagy in chemotherapy resistance of HCC.

Here, we focused on the interaction between intracellular
HMGB1 and autophagy in chemotherapy resistance to DOX. We
observed that DOX treatment promoted HMGB1 expression and
induced HMGB1 translocation in HCC cells and overexpression of
HMGB1 by transfection with pcDNA3.1-HMGB1 increased the
A B C

FIGURE 4 | HMGB1 regulates autophagy in HCC cells. (A) Western blot analysis of HMGB1, LC3, and p62 levels in BEL7402 and SMMC7721 cells. (B) Western
blot results showed inhibition of HMGB1 could significantly reduce autophagy in cells, which was more obvious when cells pretreated with 3-MA. (C) Nuclear and
cytoplasmic HMGB1 and autophagy-related proteins were detected by western blotting.
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level of autophagy when HCC cells treated with DOX. However,
this upregulation of autophagy was abolished by suppression of
autophagy with 3-MA. Interestingly, we found that inhibition of
autophagy by 3-MA was unable to increase the level of intracellular
HMGB1, although autophagy is also regulated by the release of
HMGB1 (52). Moreover, we observed that ethyl pyruvate (EP), an
inhibitor of HMGB1 cytoplasmic translocation, attenuated DOX-
induced autophagy. Our results showed that both HMGB1
upregulation and cytoplasmic translocation of HMGB1 enhanced
the level of autophagy, which contributed to resistance against
DOX when HCC cells were exposed to DOX. Furthermore,
knockdown of HMGB1 or inhibition of HMGB1 cytoplasmic
translocation increased sensitivity to DOX in BEL-7402 and
SMMC-7721 cells and re-sensitized DOX-resistant BEL-7402/
DOX and SMMC7721/DOX cells. Our findings obviously
Frontiers in Oncology | www.frontiersin.org 9
demonstrate that HMGB1 is a positive regulator of autophagy in
HCC and mediates DOX resistance.

We further explored the molecular mechanism by which
intracellular HMGB1 regulates autophagy. Previous studies have
demonstrated the role of AMPK in viability, migration, invasiveness,
and apoptosis of HCC cells (43, 53). Moreover, the AMPK/mTOR
signaling pathway is involved in autophagy and AMPK negatively
regulates mTOR and triggers autophagy flux. Thus, mTOR is
suggested to be the predominate regulator of autophagy (42–44).
Studies have showed that HMGB1 induced cardiomyocyte
autophagy following acute myocardial infarction through
activation of AMPK and inhibition of mTORC1 (54). Targeting
autophagy enhances heat stress-induced apoptosis via the ATP-
AMPK-mTOR axis in hepatocellular carcinoma (55). In the present
study, we found that transfection with an HMGB1 cDNA plasmid
A

B D

E

C

FIGURE 5 | HMGB1-mediated autophagy that downregulates apoptosis in HCC cells involves the AMPK/mTOR pathway. (A) Western blot analysis of p-AMPK,
p-mTOR, p62, and apoptosis-related protein cleaved PARP in BEL7402 and SMMC7721 cells transfected with pcDNA3.1-control or pcDNA3.1-HMGB1 and then
pretreated with or without AMPK inhibitor Compound C (10mM). (B) Western blot analysis of p-AMPK, p-mTOR, p62, and cleaved PARP in BEL7402 and
SMMC7721 cells transfected with siRNA-HMGB1 or siRNA-NC and then treated with or without mTOR inhibitor rapamycin(10 nM). (C) Western blot analysis of
p-AMPK, p-mTOR, p62, and apoptosis-related protein cleaved PARP in DOX-resistant BEL7402 and SMMC7721 cells transfected with pcDNA3.1-control or
pcDNA3.1-HMGB1 and then pretreated with or without AMPK inhibitor Compound C. (D) Western blot analysis of p-AMPK, p-mTOR, p62, and cleaved PARP in
BEL7402/DOX and SMMC7721/DOX cells transfected with siRNA-HMGB1 or siRNA-NC and then treated with or without mTOR inhibitor rapamycin. (E) Model
depicting the mechanism by which HMGB1 modulates doxorubicin resistance by inducing autophagy. Doxorubicin induces the cytosolic translocation of HMGB1,
which promotes autophagy that decreases apoptosis and increases doxorubicin resistance by activating the AMPK/mTOR pathway.
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promoted AMPK phosphorylation and reduced the level of mTOR
phosphorylation, which were accompanied by increased autophagy
and lower apoptosis. Suppression of AMPK with Compound C
facilitated mTOR phosphorylation, inhibited autophagy, and
enhanced apoptosis, even in HMGB1-overexpressing cells. These
data suggested that AMPK participated in HMGB1-mediated
promotion of autophagy, which downregulated apoptosis in HCC
cells. Additionally, we observed that downregulation of p-AMPK by
depletion of HMGB1 did not enhance p-mTOR expression, inhibit
autophagy, or promote apoptosis of HCC cells when mTOR was
blocked by rapamycin, which implied that mTORwas a downstream
molecule of AMPK in the abovementioned regulation process.
Taken together, these results suggest that HMGB1 regulates
autophagy by activating the AMPK/mTOR pathway.

In summary, our study showed that bothHMGB1 expression and
cytoplasmic translocation of HMGB1 are enhanced by chemotherapy
with DOX in HCC cell lines, which promotes autophagy that
decreases apoptosis and increases drug resistance. HMGB1
facilitates autophagy by activating the AMPK/mTOR pathway.
These results demonstrate that HMGB1 could be a potential target
for HCC therapy. Further experiments are needed to clarify whether
other downstream genes participate in the regulation process and to
confirm our hypothesis in animal models in vivo.
Frontiers in Oncology | www.frontiersin.org 10
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