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Abstract

In the world, in which acceptance and the identification with social communities are highly

desired, the ability to predict the evolution of groups over time appears to be a vital but very

complex research problem. Therefore, we propose a new, adaptable, generic, and multi-

stage method for Group Evolution Prediction (GEP) in complex networks, that facilitates

reasoning about the future states of the recently discovered groups. The precise GEP mod-

ularity enabled us to carry out extensive and versatile empirical studies on many real-world

complex / social networks to analyze the impact of numerous setups and parameters like

time window type and size, group detection method, evolution chain length, prediction mod-

els, etc. Additionally, many new predictive features reflecting the group state at a given time

have been identified and tested. Some other research problems like enriching learning evo-

lution chains with external data have been analyzed as well.

Introduction

Network science is a very interdisciplinary domain focusing on understanding the relational

nature of various real-world phenomena using for that purpose diverse network models. Com-

monly, networks consist of smaller, more integrated structures called groups, communities, or

clusters. In practice, both the groups and whole networks evolve and change their profiles over

time. Hence, their analysis demands advanced computational methods to understand and pre-

dict their future behavior. For that reason, group evolution prediction is an essential compo-

nent of computational network science.

One of the domains explored by network science are biological networks [1–4]. Viruses are

as old as life on earth. At the same time, they are very young, as they constantly mutate to

change their lethal attributes. Influenza, unlike other viruses which are rather stable, evolves

much more rapidly [5, 6] and kills up to one million people worldwide every year [7]. We can

try to protect ourselves using vaccines. However, the rate of mutation is too rapid to provide

an effective cure. What is more, the development of a new drug requires a huge amount of

money and lasts from a few to a dozen or so years. Despite these difficulties, new drugs are

introduced to the market every year. For example, antagonist drugs (also called blockers) are

designed to bind to specific receptors to block the disease’s ability to attach to these particular
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receptors, thereby immunizing the body to the disease. Unfortunately, diseases react to drugs

and eventually mutate, creating a variety that will bind to other receptors. Therefore, we need

methods that will be able to track the evolution of the disease, and based on the history of its

mutations, will be able to predict the most likely future mutations. To track diseases mutations,

we can focus on the group of receptors that it binds to, and observe how such group evolves.

Based on the history of changes in the lifetime of this group, we can try to predict what will

be the next change. Predicting the direction of the mutation could significantly reduce the

amount of time and money needed to study the disease. With such knowledge, we would be

able to start preparing the drug in advance and bring it to the market much faster and cheaper.

Another area that widely applies network science, especially its branch called social network

analysis (SNA), is marketing, in particular advertising [8–11]. Let us imagine that a start-up

company invented a new generation of diapers—Smart Diapers, which are extra soft, super

absorbing, and additionally, can communicate with parents’ smartphones to notify when their

change time comes. The company invested very much in their development, therefore, it has a

limited budget to advertise the product. The owners decided to introduce the product to dis-

cussion groups on the Facebook platform where parents from different countries/cities create

and join independent groups to talk about and comment on new products for babies, share

general advice about raising children, sell used clothes, etc. Convincing members (parents) of

such relevant, targeted groups to use and buy the new diaper product would be much more

effective and cheaper than advertising the broader community using expensive TV commer-

cials. Additionally, the word-of-mouth recommendation is commonly believed to be the most

powerful marketing tool [12]. However, the vital question rises here: which Facebook groups

the company should invest in its limited resources, i.e., time and money? In the newly created

relatively small groups that might be very active and are expanding fast, or in the larger groups

that might be not very active in the nearest future? Which of these groups will be still running

or growing in a few weeks/months/years and which one will disappear? That is why the knowl-

edge about the history, current state, and future evolution of groups is crucial at decision mak-

ing on where to allocate the resources.

In 2007, Palla et al. [13] have defined the problem of group evolution identification. In the

following years, dozens of solutions to this problem have been proposed. One of them was the

highly cited GED method [14]. Existing surveys describe as many as 12 [15] or even over 60

methods [16]. All of them are focused on defining possible events in the community life,

hence, tracking the historical changes. This, in turn, has led to emerging a new problem—pre-

dicting future changes that will occur in the community lifetime. Some of the first methods

concerning prediction of some aspects (e.g., determining lifespan) of the group evolution

were: (1) Goldberg et al. [17]—they focused on predicting the lifespan of evolution for a group;

(2) Qin et al. [18]—analyzed dynamic patterns to predict the future behavior of dynamic net-

works; and (3) Kairam et al. [19]—they investigated the possibility of prediction whether a

community will grow and survive in the long term.

Note that the methods for tracking group evolution can be also utilized to other similar

prediction problems, like link prediction [20], churn prediction [21], as well as to understand

evolution of software (Unix operating system networks) [22] or dynamics of social groups

forming at coffee breaks [23].

In 2012, we proposed a new concept, in which the historical group changes were utilized to

classify the next event in the group’s lifetime [24]. In this first trial, we have used only event

type and size of the group to describe its state at a given time. Over the next year, we have

investigated the concept and adopted it to two methods for tracking group evolution—the

GED [25] method and the SGCI method [26]. This resulted in the first method for group evo-

lution prediction [27]. It was the predecessor of the GEP (Group Evolution Prediction)
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method described in this paper. Since then, a few more methods have been proposed. At the

end of 2013, İlhan et al. presented their research with several new measures describing the

state of the community and a new method for tracking group evolution [28]. In 2014, Takafolli

et al. applied the binary approach to classifying the next change that group will undergo [29].

They used 33 measures to describe the state of the community. We have presented new results

in 2015, where, apart from new measures, the influence of the length of the history used in the

classification was examined [30]. Later the same year, Diakidis et al. adapted the GED method

to conduct their research with 10 measures as predictive features [31]. In 2016, İlhan et al. pre-

sented new results and proposed a method to select measures, which should be the most useful

as predictive features for a given data set [32]. More recently, Pavlopoulou et al. used 19 mea-

sures already validated in other works and studied whether employing the temporal features

on top of the structural ones improves prediction, as well as what is the impact of using a dif-

ferent number of historical community states on the prediction quality [33].

Unfortunately, all of the methods proposed to this day have some drawbacks (see the Com-

parison with other methods section) and have been designed to solve a particular problem,

hence, their application area is rather narrow. Therefore, in this paper, a new generic and com-

prehensive method to predict the future behavior of the groups, based on their historical struc-

tural changes as well as experienced events, is proposed, evaluated and discussed.

Some of the contributions of this work are: decomposing the group evolution prediction

problem, proposing and extensively evaluating the modular method that can be applied to any

dynamic network data, proposing new predictive features, performing the features’ ranking,

proposing a new concept of data set enriching, initial evaluation of the transfer learning tech-

nique, an example and discussion on the concept drift problem in group evolution prediction,

reviewing all proposed methods in the field.

Methods

Decomposition of the group evolution prediction problem

The crucial matter in developing the modular method predicting group evolution, called GEP,

was the identification and separation of the components of the entire group evolution predic-

tion problem. The appropriate problem decomposition and information flow between particu-

lar components (dependencies) are depicted in Eq 1 and Fig 1.

IS � � !TWT

S1

TW � � !NT

S2

TSN � � !CDM

S3

G � � !CETM

S4

EC � � !FE

S5

PF� � � � � � � � � �!
classificationðCHÞ

S6

Q ð1Þ

The data from the input stream IS is divided into time windows TW using the time window

type definition TWT. For each time window TW, a complex/social network is created using

the network type definition NT, resulting in the temporal complex/social network TSN.

Within each time window TW in TSN, some groups G are identified using a community detec-

tion method CDM. Next, similar and consecutive groups are matched using a community evo-

lution tracking method CETM, as well as the transition is labeled with an event type out of the

set of possible changes CH. The matched groups are combined into evolution chains EC that

may consist of many successive changes. For each community state in EC, the feature extrac-

tion process FE is applied in order to obtain a set of predictive features PF describing the com-

munity state at a given time. Using features PF in the form of a vector representing each

evolution chain EC, classification of possible changes CH is performed. The classification task

(stage S6) is to learn and finally label the next change(s) in community lifetime. The output of

the classification process is a set of classification quality (performance) measures Q, for
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example, F-measure, accuracy, precision, or recall. The identified components were converted

into six stages S1-S6 of the GEP method, Fig 1.

GEP method

The GEP framework consists of six main stages (Fig 1): (1) time window definition, (2) com-

plex network extraction for the defined periods, (3) community detection in periods, (4)

group evolution tracking, (5) evolution chain identification for communities together with fea-

ture extraction and computation for each chain and (6) classification, containing classification

model learning and testing. Each of them can be implemented by means of different methods

and approaches depending on research need and prerequisites, e.g., complexity level. The for-

mal definition of the GEP method is as follows:

Definition 1 The GEP method is defined as an octuple
< IS, S1, S2, S3, S4, S5, S6, Q>, where:
IS is an input stream of activities, e.g., phone calls, linking two actors (network nodes) x, y at

time ti;
S1 is a set of considered time windows of the given type TWT;
S2 is a set of considered approaches to temporal complex / social network TSN creation from

IS using time window definitions from S1;

S3 is a set of considered approaches to community detection methods CDM for each time win-
dow in TSN from S2;

Fig 1. The concept of the GEP method. Stage 1: Data set is divided into time windows. Stage 2: A complex network

for each time window is created. Stage 3: Groups are extracted within each time window using any community

detection method. Stage 4: The evolution of communities is tracked with any group evolution tracking method, and

the evolution chains are created. Stage 5: Features describing the previous group profile such as size, density, cohesion,

etc. are calculated to capture community state at a given time. Stage 6: Supervised machine learning approach is

applied to learn and predict the forthcoming event in the group’s lifetime.

https://doi.org/10.1371/journal.pone.0224194.g001
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S4 is a set of considered approaches to tracking community evolution methods CETM for com-
munities from S3;

S5 is a set of considered approaches to feature extraction for evolution chains from S4;

S6 is a set of considered approaches to classification, including learning, training, validating,
undersampling, oversampling, and feature selection techniques;

Q is a set of considered classification quality measures, for example, F-measure, accuracy, pre-
cision, recall, estimated based on the classification results from S6.

The methods enumerated especially in S1, S3, S4, S6 also include the space / set of their

parameters.

The output of one stage Si is the input for the next stage Si+1, e.g., communities detected in

S3 are used to discover their evolution in S4. All these stages, together with parameters of the

methods used, are more in-depth described in S1 File. They also require an appropriate defini-

tion of data structures to facilitate hassle-free implementation.

CPM method

The Clique Percolation Method (CPM) proposed by Palla et al. [34] is the most widely used

algorithm for extracting overlapping communities. The CPM method works locally, and its

primary idea assumes that the internal edges of a group have a tendency to form cliques as a

result of high density between them. Oppositely, the edges connecting different communities

are unlikely to form cliques. A complete graph with k members is called k-clique. Two k-cli-

ques are treated as adjoining if a number of shared members is k–1. Lastly, a k-clique commu-

nity is the graph achieved by the union of all adjoining k-cliques. Such an assumption is made

to represent the fact that it is a crucial feature of a group that its nodes can be attained through

densely joint subsets of nodes.

Infomap method

The Infomap method proposed by Rosvall and Bergstrom [35] uses the information-theoretic

approach to cluster nodes within a network. It focuses on information diffusion across the

graph and compression of the information flow description obtained from a random walker,

which is chosen as a mean of information diffusion. Infomap changes the problem of finding

the best cluster structure into finding the partition with the minimum description length of an

infinite random walk. It follows the intuitive idea that if the community structure is present,

the random walker will spend more time inside the community because of its higher edges

density. It means that the transition to another cluster will be less likely.

GED method

The Group Evolution Discovery (GED) method [25] is one of the best methods for tracking

community evolution [36]. It uses inclusion measure to match similar communities from

neighboring time windows. This measure takes into account both the quantity and quality of

the group members. The quantity is reflected by the first part of the inclusion measure, i.e.,

what portion of the members from group G1 also belongs to group G2. The quality is expressed

by the second part of the inclusion measure, namely, what contribution of important members

from group G1 is in G2. It provides a balance between the groups that contain many of the less

important members and groups with only few but key members. The inclusion measure and

the group size determine the type of community change. The authors defined seven possible

event types: forming, dissolving, continuing, growing, shrinking, merging, and splitting. The

method can work with any community detection method and with any group similarity mea-

sure, thus, providing great flexibility.
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İlhan et al. method

The İlhan et al. method [32] works with the disjoint type of communities and utilizes the func-

tion by Hopcroft et al. [37] to calculate the similarity between two communities. The event

types that can occur in the community lifetime and also the classes being classified are: survive,

growth, shrink, merge, split, and dissolve. The measures used as predictive features are divided

into two categories: structural and temporal community measures. In total, nine features per

timeframe are used, i.e., number of nodes and edges, intra and inter measure of community

edges, betweenness, degree, conductance, aging, and activeness. If one calculates four network

measures beforehand (average path length, betweenness, clustering coefficient, embedded-

ness), the method can also identify features that should be the most prominent for a given net-

work profile.

Results

Suitable decomposing the problem of group evolution prediction (see the Methods section

and Fig 1) was crucial in solving the problem. It allowed to analyze distinct phases of the pro-

cess and to propose multiple solutions for each phase. The GEP method was extensively ana-

lyzed on fifteen real-world data sets (see S1 File for their profiles), for which more than 1,000

different temporal networks were created, and in total, more than 5,000,000 individual classifi-

cation tasks were performed. However, to keep the article clear and concise, only selected

results are presented for each stage.

Stage 1: Time windows creation

At first, the data is divided into time windows. Three main approaches can be considered in

this context: (1) equal length periods—the events and relations are segmented based on their

timestamp; (2) the same number of relations in each time window; (3) the arbitrary division,

based on the data context. Additionally, the type and size of time windows have to be decided,

which may be a challenging task. There are three most common types of time windows: dis-

joint, overlapping, and increasing.

A proper choice of the time window type and size has a direct impact on the following GEP

stages, especially on the number of evolution chains discovered by the tracking method (Stage

4). If relations between individuals in a data set have a tendency to change rapidly, then dis-

joint time windows would be a poor choice since there may not be too many relations lasting

between two consecutive time windows. As a result, the tracking method will not provide any

events (Stage 4), so there will be no input to a classifier resulting in no event to predict (Stage

6). The too large size of the time window, in turn, might lose some information about commu-

nity changes that occurred in the meantime.

So far, there is no formula which determines the right type and size of the time window, but

a few guidelines can be provided based on our extensive experiments:

• If the network is sparse or changes rapidly, the overlapping time window should be used.

Usually, the offset equal to 30% of the time window size is enough to obtain a reasonable

number of events between the consecutive time windows;

• The time window type and size should be adjusted to the context of the given data set, e.g.,

the co-authorship network, referring to researchers who often publish only once a year,

should evolve smoothly with the 1-year disjoint time windows;

• If the persistent groups are the goal of analyses, the increasing time window should be uti-

lized, as it provides mostly the continuing and growing events;

Group evolution prediction in complex networks
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• If relations between individual nodes are recurrent and the network is rather dense, one may

try using disjoint time windows to lower the computational cost;

• It is acceptable and even preferable to repeat the selection of the time window type and size

several times to see which approach yields the best results.

The most common choice in our studies was the overlapping time windows with the offset

between 30%–50% of their size.

Stage 2: Formation of networks

The parameters that can be adjusted at the creation of networks for each time window is the

set of edge attributes, in particular, their weights and direction. The weighted/unweighted, as

well as directed/undirected profile of the network, did not yield a significant impact on

computational complexity nor classification accuracy. Some community detection methods,

however, may be incompatible with the networks of particular characteristics or may ignore

some attributes, e.g., weights. The CPM [34] and Infomap [35] methods, used in the experi-

mental studies, are capable of handling the most important network attributes.

Stage 3: Community detection

Some community detection methods can produce both disjoint and overlapping communities,

but there are only a few methods for tracking the evolution (Stage 4) that can deal with the

overlapping groups. Overall, the methods extracting disjoint communities perform faster than

the ones providing overlapping groups. In some extreme cases, when the network is very large,

the CPM method is unable to extract groups due to its enormous memory requirements. It is

hard to compare two types of the grouping methods in terms of their impact on the classifica-

tion accuracy, as each type of clustering delivers a different set of communities resulting in a

different distribution of evolution events. Besides, the profile of the groups may be diverse,

e.g., networks grouped with the CPM method tend to have a single giant component with

many small overlapping groups alongside. This method also inclines to leave out nodes that do

not belong to any clique, thus, excluding them from further consideration. If the network is

sparse, a major fraction of the network may be omitted. In the most extreme case, the CPM

method neglected even as many as 97% of network nodes, what resulted in a deficient number

of communities and evolutions (Fig 2A), and eventually in very low classification accuracy, Fig

2B. At the same time, the Infomap method performed very well, identifying a large number of

communities. Furthermore, the overlapping groups are likely to generate more merging and

splitting events in Stage 4, since there are plenty of similar and overlapping communities in

the consecutive time windows. On the other hand, the Infomap method tends to produce

many communities having only 2 or 3 nodes. In general, while considering which type of

grouping method to use the data context should be a crucial factor.

Stage 4: Stepwise evolution tracking and chain identification

Regardless of the method, tracking the evolution of community is a computationally demand-

ing task. The method has to iterate over all time windows and compare all the communities in

order to detect similar ones. Although the methods for tracking group evolution can be very

distinct, especially while defining the possible event types, our earlier study showed that the

selection of the method has no significant impact on classification accuracy [30]. In this evalu-

ation, we use the GED method [25] since, in the last evaluation of existing community evolu-

tion tracking method, it was selected as the one giving the most satisfying results [36].
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The parameters of the selected method might influence the classification results, e.g., the

alpha and beta parameters of the GED method have a direct impact on the number of evolu-

tion events discovered—the lower the threshold, the more events obtained (see S1 File for

details). In the experimental studies, the most common value for the alpha and beta parameters

was 50%. If the network is dense and relations are recurrent, the alpha and beta might be even

increased to 70%. On the other hand, when the method provides a small number of the evolu-

tion events, the alpha and beta should be reduced to, e.g., 30%. Apart from the selection of the

evolution tracking method, the length of the evolution chain has to be decided. The longer the

evolution chain, the more predictive features for the classifier in Stage 6, hence, the higher

computational complexity. Nevertheless, the results presented in Fig 2C revealed that it is

Fig 2. (A) CPM vs. Infomap. The number of events tracked with the GED method for groups obtained with two different community detection

methods applied to the Digg data set. The CPM method leaves out even 97% of nodes that do not belong to any clique, hence the small number of

groups and events. (B) CPM vs. Infomap. The F-measure values achieved for the events presented in Fig 2A. The results reflect the distribution of

events. (C) Chain length. The F-measure values for different lengths of the evolution chains for the Facebook data set. For most of the events, the F-

measure value was increasing with the increase of the chain length up to 6 or even 7 states (the continuing and growing events). Beyond that point, the

number of evolution chains of the particular types dropped below 50 which was insufficient to train the classifier properly; (D) GEP vs. Ilhan et al. The

F-measure values for the 9-state evolution chains obtained from the Slashdot data set with the different set of predictive features: only from the GEP

method (GEP)—see S1 File, from the İlhan et al. method, combined from both GEP and İlhan et al. methods (All features), and from the GEP method,

but only for the last 3 states out of all 9 states (GEP�). The GEP� and “All features” scenarios achieved slightly better overall scores.

https://doi.org/10.1371/journal.pone.0224194.g002
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worth dedicating some more time and resources to extract longer chains since it can boost

classification accuracy. The overall score achieved with the evolution chains containing six

community states was 32% higher than the results achieved with shorter 2-state chains. In case

of limited time or resources, the chains with the length of 2-3 states should be reasonably

good.

Stage 5: Feature extraction

In order to predict the future evolution of the group, we need to describe its recent and histori-

cal states by means of predictive features. Based on these features and previous evolutionary

changes used to learn the model, we are able to forecast the next changes. The crucial features

that are at our disposal are structural network measures computed for the previous group

states. Calculation of all measures may be a very demanding task since they need to be evalu-

ated for every community state in the evolution chain. Additionally, some measures, e.g.,

betweenness centrality, require finding all shortest paths for each pair of nodes in the commu-

nity or network. The experiments revealed, Figs 2D and 3 that the set of predictive features has

a significant impact on classification accuracy, as they are used to build the classification

model, see also S1 File, Feature Selection section. Therefore, it is highly recommended to com-

pute as many predictive features as possible to deliver to the classifier a wide variety of descrip-

tions to choose from.

To significantly enhance the already existing approaches, many new predictive features are

proposed in this paper (see S1 File, Predictive Features section). We have clustered structural

features into three general types: (1) microscopic—calculated for individual nodes, e.g., node

degree, (2) mesoscopic—quantifying single groups, e.g., group size—no. of nodes, and (3) mac-
roscopic—describing the whole network, e.g., network density. Mesoscopic features also

include normalized group measures like the group size divided by the network size. Besides,

node-based (microscopic) measures can be aggregated (usually averaged) at either local
(group) or global (network) level resulting in microscopic local or microscopic global features,

respectively.

All computed features were thoroughly evaluated in terms of usefulness for the classifier

and rankings of the most prominent features were built, see S1 File, Feature Selection section,

especially Table E-I. For the evolution chains of a variable length, different rankings were

obtained. For the shortest 1-state evolution chains, only macroscopic (network) features were

helpful, which may result from the fact that communities with a short history are considered

unstable and vulnerable to the environment they are a part of. For the evolution chains with

the increasing time windows, the features describing the local structure, especially the central-

ity- and distance-based measures, were more informative for the classifier, as the changes

between the consecutive increasing time windows were delicate and occurred at the micro-

scopic rather than macroscopic level. The neighborhood-based features were among the most

valuable features for the longest 8- and 9-state chains, which lead to believe that for the long-

lasting communities, the relations with their surroundings are a better predictor of the forth-

coming change than, e.g., the macroscopic features. In general, the variations of the eigenvec-

tor-, eccentricity-, and closeness-based features were present in most of the selective rankings,

which suggests that centrality- and distance-based measures obtained on the node level are the

most prominent ones. Hence, in case of limited computational capacity, these features should

be respected before any other. However, out of all features considered by the classifiers, the

Backward Feature Elimination selected only up to 34% of them as prominent, i.e., used by the

classifier to make a decision, Fig 3A.
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Additionally, it turned out that usually over 90% of the selected prominent features were

obtained from the last three community states, Fig 3A1. For example, when the evolution

chain length was 8, and the next change was classified, all the prominent features were from

the 8th, 7th, and 6th group profiles. It means that the most recent history of the community

has the most significant impact on its next change. This is an extremely useful conclusion if

one has limited computational capabilities and cannot calculate community profiles for all

states or does not possess data about older history. The number of features has a direct impact

on the duration of the entire learning process, Fig 3C.

Stage 6: Prediction

In the last stage, the machine learning techniques, such as oversampling, undersampling, fea-

ture selection, and first of all, model training and adjustment are applied to achieve the highest

possible prediction quality. The common problem with the training data is an imbalanced dis-

tribution of output classes, Fig 2A. In extreme cases, when one class greatly dominates over the

other ones, a trained model tends to assign the dominant class to most observations. Then, the

solution is to apply additional preprocessing techniques like oversampling and undersampling

to generate additional observations or to filter out predominant ones, thus providing a distri-

bution closer to flat. Another common problem is overfitting the classifier by providing too

many features or observations. In order to prevent from such case, feature elimination

Fig 3. (A) Feature selection. Important features selection obtained by the Backward Feature Elimination for the DBLP data set. The total number of

features increases with every state by 91, e.g., the 3-state evolution chain has 91�3 = 273 features in total, out of which 34% were selected as prominent.

(A1) Features selected only from those related to the last 3 time windows. (B) Feature ranking. The most frequently selected features for the 1-state

evolution chains. All kinds of information are important to achieve a satisfactory prediction; microscopic features are focused on nodes, mesoscopic on

groups, and macroscopic on entire network parameters. The ranking obtained by analyzing eight data sets and repeating feature selection 1000 times.

(C) Computational efficiency. The time required to train a single Random Forest classifier in relation to the number of descriptive features used as the

input data. The results obtained for the IrvineMessages data set.

https://doi.org/10.1371/journal.pone.0224194.g003
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technique may be applied, which unfortunately is very expensive in terms of computational

complexity.

Additionally, the proper classifier should be selected, and its parameters need to be accord-

ingly adjusted. In the experimental study, fifteen different classifiers were compared in terms

of the classification accuracy, Fig 4. The tree-based classifiers and meta-classifiers (equipped

with decision trees) performed best. Many classifiers could not efficiently handle imbalanced

data, so the undersampling and oversampling techniques were applied, resulting in notably

better prediction quality, Fig 4B. On the balanced data set, a classifier focuses on the predictive

features computed for the community states instead of focusing on the event distribution.

The Friedman statistical test [38] with the Shaffer post-hoc multiple comparisons [39] was

performed to obtain rankings of classifiers on the imbalanced and balanced data sets (cf. S1

File, Table J). In both cases, the Bagging classifier (with the REPTree classifier) was the winner,

and the Random Forest classifier was ranked second. What is essential, the p-values confirmed

that the results were statistically significant.

Furthermore, classifiers often have their parameters to tune them accordingly, which can

substantially affect the classification accuracy, cf. S1 File for detailed discussion. For example,

the logarithmic correlations were observed between the number of bagging iterations for the

Bagging classifier and the average F-measure value, as well as between F-measure and the

number of generated trees by the Random Forest classifier. The results prove that the process

of adjusting the classifier parameters should always be performed, as long as the computational

time and resources are available.

Comparison with other methods

The GEP method was compared to other approaches. The existing methods for group evolu-

tion prediction were additionally analyzed, and many of their drawbacks have been identified.

The most severe were: a narrow application area, methodological issues (e.g., inappropriate

Fig 4. The rankings of classifiers. The heat-maps of the F-measure results for the 1-state evolution chains obtained from the Twitter data set.

Classifiers are ordered by the overall score. The Bagging classifier and the SimpleCart classifier achieved the highest overall scores but failed to predict

the growing and the merging events. Therefore, the tree-based classifiers are the best choice as all the events are successfully classified and the overall

score is insignificantly lower.

https://doi.org/10.1371/journal.pone.0224194.g004
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computation of the conditional probability), insufficient validation of the methods (e.g., a sin-

gle sampling into two folds instead of the 10-fold cross-validation), superficial descriptions of

the methods and conducted experiments (often insufficient to repeat and validate the experi-

ments), and lack or unreliable comparisons with other methods.

Despite GEP is so flexible and has so many options, it is competitive with other approaches,

designed to deal with a specific problem or data set. For example, a special version of the GEP

method, in which only features from the last three states (out of all 8 or 9 states) were used as

an input for the classifier, performed noticeably better than the method by İlhan et al. [32],

Fig 2D.

After all, it needs to be emphasized that none of the existing methods is as adjustable and

versatile as the GEP method.

Discussion

Across its six stages, the GEP method utilizes various approaches, methods, and techniques,

which can be adjusted with respect to a given data set and a particular study purpose. These

approaches, methods, and techniques are considered as the GEP method parameters. To pro-

vide a concise summary of their impact on overall computational complexity, and first of all

on the final classification accuracy, the crucial parameters were listed in Table 1 and discussed

throughout the article.

Many different classifiers were evaluated on various data sets. The tree-based classifiers and

meta-classifiers (equipped with decision trees) performed best. Many classifiers could not han-

dle imbalanced data sets, so the undersampling and oversampling techniques were applied.

Balancing data sets notably improved the results confirming the usefulness of the undersam-

pling and oversampling methods. The experimental studies showed that adjusting the classifier

parameters can significantly improve classification accuracy. The logarithmic correlations

were observed between the number of bagging iterations in Bagging classifier and the average

F-measure value, as well as between the number of generated trees by the RandomForest clas-

sifier and the average F-measure value. The confidence factor parameter of the J48 classifier

was found also correlated with the average F-measure value. The maximum improvement in

Table 1. The GEP method parameters and their impact on computational complexity and classification accuracy.

Parameter

group

Parameter Parameter value Impact on computational

complexity

Impact on classification

accuracy

time window window division timestamp / relations count / arbitrary none low

window size time unit or number of relations medium low

window type disjoint / overlapping / increasing medium medium

network type edge attributes directed / undirected, weighted /

unweighted

low low

methods group type disjoint / overlapping medium low

grouping method a method high medium

tracking method a method medium low

GED alpha and beta (10%, 100%] none low

GED social position

measure

a measure medium low

classification classifier used a classifier medium medium

machine learning

techniques

undersampling, oversampling, feature

selection

high high

other evolution chain length number of community states medium medium

predictive features a set of features high high

https://doi.org/10.1371/journal.pone.0224194.t001

Group evolution prediction in complex networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0224194 October 29, 2019 12 / 18

https://doi.org/10.1371/journal.pone.0224194.t001
https://doi.org/10.1371/journal.pone.0224194


average F-measure value achieved by adjusting the classifier parameter was 17%, and it was

obtained by increasing the number of generated trees by the RandomForest classifier. The

results prove that the process of adjusting the classifier parameters should always be per-

formed, as long as the computational time and resources are not limited.

The GEP method enables us to consider different new scenarios, which are hardly available

without this generative framework like transfer learning, class balancing by adding external

data, or decreasing the concept drift effect.

The transfer learning technique was adapted to the problem of group evolution prediction

for the first time in this field. Its main idea is to learn the classification model on one data set

and test it on another one. Such an attempt was quite successful, and the preliminary results

were satisfactory. The key to success is finding a data set with a likewise profile. Moreover, in

some cases, learning the transferred model on the balanced data set can boost the classification

quality for the data set to which the model is adapted. The initial experiments also suggest that

the underlying similarity of two data sets (e.g., the same habits of actors or ideally the same set

of actors) can help to create a model that if transferred can outperform the primary model

built for a given data set.

Very promising results, although at an early stage, were achieved at enriching the learning

phase of the classification model with additional evolution chains from a different data set. By

partially balancing the original training set with extra evolution chains from another external

data set, it was possible to improve the model and thus produce better results for minority clas-

ses, without affecting the outcome for the dominating classes, Fig 5A. This phenomenon is

especially important because the existing techniques of balancing a data set always affect the

classification results of the dominating classes.

Another way to enhance the classification model, initially considered, is an appropriate

selection of the observation time span to reduce the effect of non-stationarity of data—a.k.a

concept drift. Our preliminary research shows that for a network spanning over a long period

Fig 5. Application of the GEP method. (A) Enriching the classification model by partially balancing the original training set (Twitter) with extra

evolution chains taken from another full external data set (MIT) or with chains from only selected event types, i.e. growing, merging and splitting

(MIT�); chains with these classes were the worst classified events for the original Twitter data—they had the lowest F-measure values. The results for

these selectively enriched event types were significantly improved without worsening classification for other classes (green vs. blue bars). Data enriching

was performed only for learning, not for testing. (B) Concept drift. Classification quality for the Facebook data from one longer period T1 − T50 (the

red bar); alternatively, the data was split into five smaller periods and separate classification models were built to catch concept drift phenomena

between periods (blue bars). Independent models learned for smaller periods are better adapted to the changing environments.

https://doi.org/10.1371/journal.pone.0224194.g005
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or changing rapidly, updating the classification model every once in a while might improve the

results, as the model reflects the current characteristics of the network in the better and more

up to date way, Fig 5B. Nevertheless, in order to rebuild the model every now and then, the

number of observations (evolution chains) extracted from such shorter time span must be

high enough.

The GEP framework can be applied to any dynamic network data, i.e., to any complex net-

work changing over time. In this paper, we have explored popular social network data, see

Table B in S1 File. However, the entire GEP method, its stages and component solutions may

be used for diverse complex networks [40, 41] like evolving clusters of web pages [42], co-cita-

tion and bibliographic coupling networks extracted from citations between scientific papers

[43, 44], biological and medical networks [45, 46], linguistic networks linking word meanings

—WordNets [47], multimedia networks [48] and many more.

Conclusion

The main subject studied in this paper is group evolution prediction in social/complex net-

works. Its primary goal is to foresee a change like shrinking, growing, splitting, merging, or

dissolving that the recently existing community will experience in the nearest future. To be

able to perform any prediction, the most common approach is to process a temporal complex

network TSN extracted from the stream of user activity traces. Communities and their changes

are identified and predicted within such TSN. However, the existing methods are often limited

to operate on a particular data set or to solve a specific problem, which makes them useful only

in a particular and narrow domain.

Therefore, a new generic method called Group Evolution Prediction (GEP) has been pro-

posed in this paper. The GEP method has a modular structure, which makes it very flexible

and allows us to successfully apply it to any data set and under any specific requirements. The

method consists of several stages; each of them involves a suitable selection of methods, algo-

rithms, and attributes—the GEP method parameters. The evaluation process of the GEP

method included: (1) analysis of numerous parameters (time window type and size, commu-

nity detection method, evolution chain length, classifier used, set of features, and more),

(2) comparative analysis against other existing methods, (3) adaptation of the transfer learning

concept to group evolution prediction, (4) enriching the classification model with evolution

chains from a different data set, and (5) enhancing the classification model with a more appro-

priate training set.

Regarding the time window types and sizes, the main finding is that for rapidly changing or

sparse social networks a shorter overlapping time windows (in relation to the context of the

data) are a better choice than longer or disjoint periods. On the contrary, if relations between

individuals are recurrent and the network is rather dense, one may try disjoint time windows

to obtain more concise results and to lower the computational cost. If long-lasting, persistent

communities are the goal, then the increasing type of time window is the best choice as it gen-

erates a high number of the continuing, growing, and shrinking events.

Two most commonly used community detection approaches were analyzed: the CPM

method detecting the overlapping communities, and the Infomap method identifying the dis-

joint communities. It turned out that the CPM method was not a proper choice for sparse net-

works, as it left out nodes that did not belong to any clique. However, if a network is not so

sparse, then generating overlapping communities may be a better choice, especially if the con-

text of the data suggests overlapping communities. For example, when the nodes tend to

belong to more than one community at a given time. The Infomap method, however, performs

better if computational complexity is an essential factor, and computational time is limited.
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The results yield that evolution chains with more community states (longer chains) provide

better classification results. However, there seems to be a threshold of the number of states,

which make the evolution chains too short, resulting in a lack of possibility of improving the

accuracy level.

Even over 70% of the most prominent features were obtained from the last three commu-

nity states. It means that the most recent history of the community has the highest impact on

its next change. This is an extremely useful conclusion if one has limited computational capa-

bilities and cannot calculate community profiles for all states. Additionally, many new predic-

tive features are proposed in this paper. In particular, some aggregations of node measures

were used to compute the local and global microscopic features. Network structural measures

were adopted as macroscopic features, and ratios of community measures to network mea-

sures were utilized as mesoscopic features. In general, the variations of the eigenvector-, eccen-

tricity-, and closeness-based features were present in most of the selective rankings, which

suggests that centrality- and distance-based measures obtained on the node level are the most

valuable features.

The GEP method flexibility enabled us to investigate some other interesting scenarios, i.e.,

(1) adapting the transfer learning technique to the group evolution prediction problem,

(2) enriching the classification model with evolution chains from a different data set, (3) appro-

priate selection of the observation time span to reduce the concept drift effect. All of them

appeared to be quite successful.

Even though the GEP method is a flexible, generic framework, it is competitive with other

approaches often dedicated to a specific problem or data set.
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42. Dezsö Z, Almaas E, Lukács A, Rácz B, Szakadát I, Barabási AL. Dynamics of information access on

the web. Phys Rev E. 2006; 73:066132. https://doi.org/10.1103/PhysRevE.73.066132

Group evolution prediction in complex networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0224194 October 29, 2019 17 / 18

https://doi.org/10.1016/j.physa.2016.09.021
https://doi.org/10.1007/s13278-012-0058-8
https://doi.org/10.1007/s13278-012-0058-8
http://doi.acm.org/10.1145/2492517.2500231
https://doi.org/10.3390/e17053053
https://doi.org/10.1016/j.engappai.2016.06.003
https://doi.org/10.1016/j.engappai.2016.06.003
https://doi.org/10.1038/nature03607
http://www.ncbi.nlm.nih.gov/pubmed/15944704
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1073/pnas.0307750100
https://doi.org/10.1073/pnas.0307750100
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1080/01621459.1986.10478341
https://doi.org/10.1038/nphys2741
https://doi.org/10.1038/nphys2741
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1103/PhysRevE.73.066132
https://doi.org/10.1371/journal.pone.0224194


43. Kessler MM. Bibliographic coupling between scientific papers. American Documentation. 1963;

14(1):10–25. https://doi.org/10.1002/asi.5090140103

44. Small H. Co-citation in the scientific literature: A new measure of the relationship between two docu-

ments. Journal of the American Society for Information Science. 1973; 24(4):265–269. https://doi.org/

10.1002/asi.4630240406
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