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Drivers’ hazardous physical and mental states (e.g., distraction, fatigue, stress, and
high workload) have a major effect on driving performance and strongly contribute to
25–50% of all traffic accidents. They are caused by numerous factors, such as cell
phone use or lack of sleep. However, while significant research has been done on
detecting hazardous states, most studies have not tried to identify the causes of the
hazardous states. Such information would be very useful, as it would allow intelligent
vehicles to better respond to a detected hazardous state. Thus, this study examined
whether the cause of a driver’s hazardous state can be automatically identified using a
combination of driver characteristics, vehicle kinematics, and physiological measures.
Twenty-one healthy participants took part in four 45-min sessions of simulated driving,
of which they were mildly sleep-deprived for two sessions. Within each session, there
were eight different scenarios with different weather (sunny or snowy), traffic density and
cell phone usage (with or without cell phone). During each scenario, four physiological
(respiration, electrocardiogram, skin conductance, and body temperature) and eight
vehicle kinematics measures were monitored. Additionally, three self-reported driver
characteristics were obtained: personality, stress level, and mood. Three feature sets
were formed based on driver characteristics, vehicle kinematics, and physiological
signals. All possible combinations of the three feature sets were used to classify
sleep deprivation (drowsy vs. alert), traffic density (low vs. high), cell phone use, and
weather conditions (foggy/snowy vs. sunny) with highest accuracies of 98.8%, 91.4%,
82.3%, and 71.5%, respectively. Vehicle kinematics were most useful for classification
of weather and traffic density while physiology and driver characteristics were useful
for classification of sleep deprivation and cell phone use. Furthermore, a second
classification scheme was tested that also incorporates information about whether or
not other causes of hazardous states are present, though this did not result in higher
classification accuracy. In the future, these classifiers could be used to identify both the
presence and cause of a driver’s hazardous state, which could serve as the basis for
more intelligent intervention systems.

Keywords: hazardous driver state, driving performance, physiological measurements, human factors, affective
computing
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INTRODUCTION

Many traffic accidents are caused, at least partially, by
the driver being in a hazardous mental or physical state.
Road accidents caused by fatigue, for example, resulted
in an estimated 800 deaths and 41,000 injuries in the
United States in 2015 (The National Highway Traffic Safety
Administration [NHTSA], 2015). As another example,
traffic accidents caused by distracted driving resulted in
1.25 million deaths worldwide in 2015, with an estimated
3,477 deaths and 391,000 injuries in the United States alone
(National Highway Traffic Safety Administration [NHTSA],
2016).

One way to reduce the number of deaths and injuries caused
by hazardous driver states (HDS) would be via automated
systems that monitor drivers’ mental and physical state and
intervene in dangerous situations. Several such systems have been
proposed (Gallahan et al., 2013; Zhang et al., 2017), but have not
yet attained sufficient accuracy for widespread implementation.
An important issue with such automated intervention systems (as
described in more detail later in this section) is that they generally
do not identify the cause of the hazardous state (e.g., drowsiness
vs. stress) and therefore cannot tailor their response to the specific
issue at hand. Thus, the goal of this study is to develop an
automated system that not only detects HDS, but can also identify
specific causes of hazardous states (e.g., sleep deprivation, cell
phone use) based on driver characteristics, vehicle kinematics,
and driver physiology.

Causes of Hazardous Driver States
Hazardous driver states can be related to either
physical/physiological (e.g., fatigue) or cognitive/affective
(e.g., anger) conditions. These conditions can be intrinsic
(e.g., sleep deprivation) or extrinsic (e.g., adverse weather).
However, most causes of HDS have both physical and mental
components and are related to both intrinsic and extrinsic
processes; furthermore, the contribution of different factors
may be further affected by driver characteristics such as driving
experience or personality. We thus present a few common causes
of HDS, which will also be the focus of our study, without delving
deeply into the underlying processes.

Distractions
Perhaps the most infamous HDS are distractions caused by
secondary tasks performed in addition to driving. Distractions
can lead to catastrophic situations since drivers often need up
to 7–12 s to regain situational awareness (Lu et al., 2017).
For example, cell phone use is recognized as a major problem
in driving (Collet et al., 2010; Yang and Parry, 2014; Haque
and Washington, 2015), and results in both visual distractions
(no longer watching the road) (Recarte and Nunes, 2003) and
cognitive distractions (no longer thinking about driving) (Hwang
et al., 2014). Similarly, other in-vehicle technologies such as radio
or navigation systems are major potential distraction sources
(Beede and Kass, 2006; Horrey et al., 2017). Thus, many studies
have focused on the ergonomic design of in-vehicle technologies
(François et al., 2017) and the development of novel technologies

to reduce distraction [e.g., auditory menu navigation (Jeon et al.,
2015)]. Distractions influence the driver’s physiology (Hirayama
et al., 2016) and vehicle kinematics (Liang and Lee, 2010) and
significantly increase the risk of crash or near-crash among all
drivers, particularly novices (Klauer et al., 2014).

Fatigue
Any driving situation becomes more difficult to handle if the
driver is fatigued or sleep-deprived, as fatigue affects both driver
physiology (Zhang et al., 2014; Chuang et al., 2018) and vehicle
kinematics (Guo et al., 2016). It has been shown to have a larger
effect on inexperienced and elderly drivers than experienced and
young ones (Li et al., 2016). Sleep deprivation is a special case
of fatigue and involves cognitive impairment or lower efficiency
due to lack of sleep (Yang et al., 2009). Proper design of vehicle
seats is effective in reducing the fatigue generated by prolonged
static posture (Sales et al., 2017), and actions such as dynamic
movement of the backrest angle can also reduce fatigue (Rhimi,
2017).

Demanding Driving Conditions
Even if a driver is rested and fully focused on driving, difficult
driving conditions such as blizzards introduce a high level of
mental demand. During such conditions, drivers may devote all
their mental resources and still not be able to drive effectively
(Recarte and Nunes, 2003; Shakouri et al., 2018). High workload
level can also lead to stress, which affects the driver’s behavior and
physiology (Healey and Picard, 2005; Stuiver and Mulder, 2014).
For example, eye movements are faster and heart rate (HR) is
higher in stressful conditions (Healey and Picard, 2005). Even if
the driver is not stressed, the increased workload can increase the
probability of other HDS such as distraction (Hwang et al., 2014;
Kandemir et al., 2016). Thus, many studies have used workload as
an indirect indicator of driver impairment (Čegovnik et al., 2018;
Rusnock and Borghetti, 2018).

Mood, Personality, and Other Intrinsic Factors
Finally, the probability of HDS depends on the driver’s general
mood as well as intrinsic factors such as personality. For
example, negative moods increase the frequency of risky
behaviors as well as drivers’ perception of risk (Hu et al., 2013).
As another example, distracted driving is more common in
conscientious teens and extraverted older adults (Parr et al.,
2016). Furthermore, older drivers may find it more difficult to
complete certain tasks due to longer reaction time (Pierce and
Andersen, 2014), but are also likely to have more experience that
makes driving easier in general (Williams, 2003).

Assessment of Hazardous Driver States
Regardless of their causes, HDS can be assessed using
three methods: self-reported driver characteristics, physiological
measurements, or vehicle kinematics measurements.

Driver Characteristics
Driver characteristics are frequently used to report psychological
states. For instance, the State Affect Questionnaire (STAQ)
(Larsen and Diener, 1992), Perceived Stress Scale (PSS-10)
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(Cohen et al., 1983), and NASA Task Load Index (NASA-TLX)
(Hart and Staveland, 1988) are used to assess mood, stress, and
workload, respectively. However, they generally cannot be used
during driving, as they would serve as a distraction.

Physiological Measures
Physiological measures can unobtrusively quantify psychological
states by measuring the physiological responses to such states.
They include the electrocardiogram (ECG) (Jung et al., 2014),
which records HR (Collet et al., 2009), galvanic skin response
(GSR), which records the activity level of the skin’s sweat
glands (Bongiorno et al., 2017; Rodriguez-Guerrero et al., 2017),
respiration rate (RR) (Healey and Picard, 2005), skin temperature
(ST) (Kajiwara, 2014), eye gaze (Fletcher and Zelinsky, 2009),
blink frequency (He et al., 2017), electroencephalography
(EEG) (Mühl et al., 2014; Mu et al., 2017), and others.
They are quantitative and can be recorded in a real-time
manner without the user’s active involvement, but are often
affected by noise and difficult to interpret (Healey and Picard,
2005).

Vehicle Kinematics Measurements
Vehicle kinematics measurements include measures such as
reaction time (Guo et al., 2016; Choudhary and Velaga, 2017),
the force applied to the gas pedal, longitudinal speed (Jun et al.,
2011), rotation of the steering wheel (Zheng and Hansen, 2017),
and the lateral lane position (distance from center of lane) (Beede
and Kass, 2006; Sun et al., 2015). All of these can be used to
detect or predict different HDS [e.g., distraction (Liang and Lee,
2010)].

Automated Classification of Hazardous
Driver States
The major scientific challenge in HDS analysis is how to convert
multiple potentially unreliable measurements into an estimate
of the type of HDS and/or the cause of a hazardous state.
This can be achieved using automated classification algorithms.
The most common basis for such automated classification
algorithms have been measures of vehicle kinematics such as
steering wheel rotation (Zheng and Hansen, 2017) and global
positioning system data (Singh et al., 2016), which are used
to detect distraction and lane changes, respectively. Perhaps
the first major study in using physiological signals for driver
monitoring was done by Healey and Picard (2005), who used
ECG, RR, GSR, and EEG to classify stress levels. Since then,
a number of studies have used physiological signals to detect
workload levels (Fan et al., 2017) or distracted driving (Hirayama
et al., 2016; Liu et al., 2016). A small number of studies have
also taken driver characteristics into account (Guo and Fang,
2013; Rahemi et al., 2017). While these studies have achieved
promising results, it has been shown that the combination
of vehicle kinematics, physiological measurements, and driver
characteristics is the most effective way to detect HDS such as
inattention (Dong et al., 2011) and drowsiness (Sahayadhas et al.,
2012).

Although many studies were able to detect the presence
of HDS, most of them only used a single way of inducing a

hazardous state – e.g., cell phone use (Beede and Kass, 2006),
high speeds (Kidd and Buonarosa, 2017) or driving in dense
traffic (Fastenmeier and Gstalter, 2007). While a few studies
do use multiple ways to induce hazardous states in drivers
(e.g., Liang and Lee, 2010), they do not attempt to identify
the cause of the hazardous state. Furthermore, many real-
world and simulated driving studies that involve physiological
measurements focus on a single session (Healey and Picard, 2005;
Kidd and Buonarosa, 2017). This may not capture within-subject
variability (e.g., the same driver may have different reactions at
different times of day), so studies should ideally involve multiple
sessions (as done, e.g., with three drivers by Healey and Picard,
2005).

Study Contribution
The contribution of the present study is as follows: Unlike
most previous studies, we exposed drivers to four different
causes of HDS (mild sleep deprivation, adverse weather,
cell phone use, and high traffic density), and collected
three different types of information: vehicle kinematics,
physiological measurements (RR, ST, GSR, and ECG), and
driver characteristics (personality, mood, and stress level).
We then created different classifiers to automatically identify
the presence or absence of each of these four causes of HDS
based on different types of information. The research questions
were:

– RQ1: Can the obtained features be used to automatically
classify different specific causes of HDS? Previous studies have
mainly focused on a single way of inducing a hazardous state,
but this is not necessarily optimal; for example, intelligent
cars should intervene differently if the driver is sleep-deprived
than if the driver is texting on their smartphone, necessitating
the classification of specific causes of HDS. We hypothesized
that some causes of HDS will be easier to classify than others,
with the highest classification accuracy achieved for sleep
deprivation.

– RQ2: Are certain types of information better at classifying
certain causes of HDS, and can different types of information
(kinematics, physiology, and driver characteristics) be
combined for more accurate classification? Many recent
studies (e.g., Mu et al., 2017; Zheng and Hansen, 2017) focus
on a single measurement (e.g., EEG or vehicle kinematics),
but this is not optimal. For example, even if, e.g., respiration
can be used to detect a specific HDS, it is possible that the
same HDS could be identified more easily and cheaply by,
e.g., measuring vehicle drift using sensors that are already
built into the car and would not inconvenience the driver.
As another example, while physiology or vehicle kinematics
may be inaccurate when detecting a specific HDS on their
own, combining both types of information may lead to much
more accurate classification. We hypothesized that, for all
four causes of HDS, combining the three different types of
information will lead to higher classification accuracy than
using only a single type of information.

– RQ3: When multiple causes of HDS may be present, does
providing information about some causes allow more accurate
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classification of other causes? For example, if trying to detect
the use of a cell phone, will a classifier be more accurate if
it already knows whether the driver is sleep-deprived and/or
driving in poor weather conditions? This would pave the
way for, e.g., two-stage classification where an intelligent
system first identifies the driving environment and only then
classifies the driver’s mental state. We hypothesized that, for
classifying each cause of HDS, the accuracy will be higher if
information about the other three causes of HDS is provided
as an additional input.

These research questions were investigated over multiple
sessions, going beyond the single-session studies that are
common in this field (e.g., Healey and Picard, 2005; Zheng and
Hansen, 2017).

MATERIALS AND METHODS

This section is divided into seven subsections that describe
the hardware and study setup, the study protocol, the driver’s
characteristics, the vehicle kinematics measures, the physiological
measures, the classification methods, and the statistical validation
methods.

Study Setup
The simulated driving scenarios were implemented in the
University of Wyoming driving simulator lab (WYOSIM).
WYOSIM is based on an open-cab 2004 Ford Fusion simulator
developed by Realtime Technologies Inc (Figure 1). The
simulator is mounted on a three-degree-of-freedom D-Box
motion base (roll, pitch, and heave) with four electromechanical
linear actuators. Additionally, three 55-inch high-definition
screens provide a 150-degree forward and side field of view.

Two different driving environments were simulated for the
study: a city and a rural highway (Figure 2). The city includes
multiple junctions with traffic lights as well as denser traffic than
the highway. Furthermore, the highway has a posted speed limit

FIGURE 1 | The study setup: WYOSIM simulator and physiological sensors.
Written informed consent from the subject has been obtained for publication
of the photograph.

FIGURE 2 | Town scenario (Top) and highway scenario (Bottom).

of 80 miles per hour (mph) while the city has a posted speed limit
of 35 mph.

Since environmental light levels can have a significant effect on
the driver, both the city and highway scenarios can be set either
in daylight or at night. This was done by setting the simulated
time to 10 pm for night sessions and 10 am for day sessions,
resulting in a darker environment and activated headlights
in night sessions. Furthermore, as driving performance is
affected by weather (e.g., snowy weather reduces visibility and
causes slippery roads), the scenarios can have different weather
conditions: clear and sunny or foggy and snowy. In snow,
visibility is significantly reduced, and friction between the tire
and road is reduced to 60% of the clear-weather value. The
friction level in snowy weather was selected empirically in pilot
tests.

The Protocol of the Study
The study was approved by the University of Wyoming
Institutional Review Board (protocol #2016062201232). Twenty-
five people were recruited at the beginning of the study. Four
chose to discontinue participation after the first session, resulting
in 21 valid healthy participants (25.1 ± 8.7 years old, six females).
All subjects gave written informed consent in accordance with
the Declaration of Helsinki. They were enrolled in a four-session
study protocol. Of the four sessions, two were meant to mimic
drowsy (mildly sleep-deprived) driving and were held in the
early morning while it was still dark outside, with the participant
instructed to have less than 6 h of sleep the preceding night. In
these sessions, only night scenarios were used in WYOSIM. The
other two sessions were meant to mimic alert driving and were
held between 10 am and 5 pm, with the participant instructed
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FIGURE 3 | An example session protocol. BL, baseline; T, town; H, highway;
C, clear weather; S, snowy weather; P, using cell phone; without P, no cell
phone. The eight scenarios after the baseline were presented in random order,
and the presented example is only one of the possible orders.

to have at least 7 h of sleep the preceding night. In these
sessions, only day scenarios were used in the WYOSIM. The
alert (day) and drowsy (night) sessions were held in random
order.

The first session began with a 10-min practice scenario where
participants familiarized themselves with the driving simulator.
Then, participants were asked to relax while physiological
measures were taken for a 4-min ‘baseline’ period. This baseline
period was followed by eight scenarios that represent all
possible combinations of traffic density (high/low), weather
(sunny/snowy), and cell phone use (phone/no phone), in random
order. In this paper, adverse weather and dense traffic are
considered to be ‘environmental’ causes of HDS. In the ‘cell
phone’ scenarios, participants were asked to use their phone
to send messages, browse websites, or watch videos (but not
make phone calls). The cell phone was considered the final,
fourth cause of HDS. Each scenario was presented for 4 min,
and participants were asked not to talk during the scenarios.
A brief break (2 min) was given after each scenario for two
purposes: to fill out the NASA-TLX questionnaire (se section
“Driver Characteristics”) and to allow the effect of the scenario
to be “washed out.” Participants were allowed to take a longer
break in case of dizziness, headache or discomfort. An example
session protocol is shown in Figure 3, though readers should note
that this was only one possible order of scenario presentation
and that scenarios were presented in random order within a
session.

For sessions 2–4, the study protocol was identical to the
one in the first session, except without the practice scenario.
The protocol thus includes four different causes of HDS: sleep
deprivation, poor weather, high traffic density, and the use of
cellphones. Sleep deprivation was present in two entire sessions
and absent in the other two sessions; each of the other causes
of HDS was present in half the scenarios within each session
and absent in the other half of the scenarios. Each participant
therefore experienced 32 different scenarios (eight per session),
with each scenario including between zero and four causes of
HDS.

Driver Characteristics
Five types of driver characteristics were collected using
questionnaires:

(1) The participant’s basic information was collected using an
initial questionnaire that asks about age, gender, dominant
hand, driving experience (in years), height, and weight.

(2) Personality was assessed with the International Personality
Item Pool (IPIP) (Goldberg et al., 2006), which covers five

traits: extraversion, neuroticism, agreeableness, openness, and
conscientiousness. It was filled out at the start of the first
session, as the result is not expected to change over time.

(3) Stress level over the last month was assessed using the PSS-
10 (Cohen et al., 1983) at the start of the first session. Since
all sessions took place within approximately a week, the result
was again not expected to change from session to session.

(4) The participant’s mood over the last 24 h was assessed
using the STAQ (Larsen and Diener, 1992), which covers
four psychological aspects: negative affect, positive affect,
activated, and inactivated. It was filled out at the start of each
session.

(5) Workload was assessed using the NASA-TLX (Hart and
Staveland, 1988), which covers six workload aspects: mental
demand, physical demand, temporal demand, performance,
effort, and frustration. It was applied after each driving
scenario.

The NASA-TLX was used as a validation measure to check
whether the different scenarios were able to induce different
workload levels. Data from the other questionnaires (basic
information, personality, stress, and mood) are collectively
referred to as ‘driver characteristics’ and were used as inputs
to classify the presence or absence of different causes of HDS.
Since they were collected only once per participant or once per
session, we did not expect them to be able to differentiate between
different scenarios on their own; however, they may be able
to enhance classification of vehicle kinematics or physiological
measures by providing a way to individualize the classifier to a
particular participant or session.

Vehicle Kinematics
The WYOSIM records numerous signals related to vehicle
kinematics with a frequency of 60 Hz. We selected eight signals
that contain information about vehicle kinematics but do not
reveal any information about the simulated environment (e.g.,
weather). Table 1 presents these signals. From the raw signals,
we extracted multiple features that were calculated over each 4-
min scenario interval. For each raw measure, we calculated its
mean, standard deviation, and the mean absolute value of the first
derivative (also referred to as ‘fluctuation’). This resulted in a total
of 24 vehicle kinematics features for each scenario.

TABLE 1 | Selected driving behavior signals.

Measure Definition

1 Throttle force Force applied to gas pedal

2 Lane number Right or left (binary)

3 Lateral lane position Distance between middle line of the
car and middle line of the lane

4 Road offset Distance between middle line of the
car and middle line of the road

5 Longitudinal velocity Velocity in forward direction

6 Vertical velocity Up-down velocity

7 Slip level of front tires Level of slip in range of 0–1

8 Slip level of rear tires Level of slip in range of 0–1
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FIGURE 4 | Placement of GSR sensors on the palm of the hand (Left).
Respiration sensor placement below the nose (Top Right). Skin temperature
sensor is taped to the distal phalanx of the little finger (Bottom Right).
Written informed consent from the subject has been obtained for publication
of the photograph.

Physiological Measures
Four physiological signals were recorded from the participants
using a g.USBamp signal amplifier and associated sensors (g.tec
Medical Engineering GmbH, Austria), as shown in Figure 4. ECG
was recorded using four electrodes on the body (two on the chest,
one on the shoulder, and one on the abdomen) as recommended
by the manufacturer of the g.USBamp. Respiration was recorded
using a thermistor-based sensor in front of the nose and mouth.
ST was recorded using a small sensor attached to the distal
phalanx of the little finger of the non-dominant hand using
tape. GSR was recorded via two electrodes (g.GSRsensor2,
g.tec) attached to the palm of the non-dominant hand using
a fingerless glove. While GSR electrodes are usually placed on
the index and middle fingers, this would prevent participants
from driving, and the palm approach was used instead based
on recommendations from the literature (Boucsein, 2012).
The two electrodes monitor skin conductance, which rapidly
increases and smoothly decreases due to activity of the sweat
glands.

The sampling frequency for all signals was 512 Hz. For RR,
GSR, and ST, a band-pass filter (0–30 Hz) was used to reduce
high-frequency noise. For ECG, a high-pass filter (cutoff at 5 Hz)
was used to eliminate low-frequency noise, and a 60-Hz notch
filter was used to remove electrical interference.

For each 4-min scenario, a total of 17 features were extracted
from the four physiological signals as follows:

RR: The mean RR (number of complete breathing cycles per
minute), the standard deviation of RR, and the root-mean-square
of successive differences of respiration periods were calculated.

ST: Mean ST and the difference in ST between the first and last
second of the scenario were calculated.

GSR: The GSR can be divided into two components: the tonic
(low-frequency) and phasic (high-frequency) component. For
the tonic component, the mean GSR and the difference in GSR
between the first and last second of the scenario were calculated.
The phasic component consists of discrete skin conductance

responses, and we calculated the number of responses, the mean
response amplitude, and the standard deviation of response
amplitude (Boucsein, 2012).

ECG: Four time-domain features were calculated: mean HR,
standard deviation of inter-beat intervals, and the median and
absolute value of the gradient of the ECG signal. Furthermore,
three frequency-domain features were calculated: power of low
frequencies (LF), power of high frequencies (HF) and the power
ratio of low to high frequencies (LF/HF). The LF range is 0.04–
0.15 Hz while the HF range is 0.15–0.4 Hz (Task Force of the
European Society of Cardiology and the North American Society
of Pacing, and Electrophysiology, 1996).

Classification and Validation
Two types of classification were performed in the study:
simultaneous classification of all four causes of HDS and
classification of each cause of HDS given information about the
other three. In simultaneous classification, separate classifiers
were used to classify the presence vs. absence of each cause
of HDS without any information about the other three (which
could also be present or absent in any given 4-min scenario).
In the other classification scheme, separate classifiers were also
used to classify the presence vs. absence of each cause of HDS;
however, the classifier for each cause of HDS was provided with
three additional binary features that indicated the presence (1) or
absence (0) of each of the other three causes of HDS.

Aside from this difference, both types of classification were
performed using the same normalization, feature selection,
classification and validation methods.

Normalization
As the measured features may vary between participants and
sessions (e.g., some participants have a higher baseline HR than
others), they should be normalized to ensure a similar range
for all measurements. This is a standard step in automated
classification of physiological measurements, and has a major
effect on classification accuracy (Novak et al., 2012). In this
study, the physiological and vehicle kinematics features were
normalized for each session. For physiological features, the
obtained baseline value of a feature in each session was first
subtracted from each scenario value of that feature for that
session. Then, the maximum and minimum of each feature
during a session were used to normalize the feature by
subtracting the minimum value and dividing the result by the
difference between the maximum and minimum values. The
same procedure was used for vehicle kinematics features, but
without subtracting the baseline value (which does not exist for
vehicle kinematics).

Feature Selection
Since over 60 features were extracted from the different data
sources, using all of them in classification would likely lead to
overfitting, and only the most relevant ones should be selected
(Novak et al., 2012). Prior to training a classifier on a particular
dataset, we thus used stepwise forward feature selection with a
threshold significance level of 0.05 (Webb and Copsey, 2011) to
reduce the dimensionality of the data. In cases where no feature
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met the 0.05 criterion for inclusion (which occurred only for
vehicle kinematics features and alert-drowsy classification), the
threshold was raised to 0.1.

Classification
In total, the three different data sets provide us with 61 possible
input features (17 physiological, 20 driver characteristics, and
24 vehicle kinematics) for classification. The classification inputs
must be converted into four binary outputs that represent the
presence or absence of each source of HDS. A total of 672 samples
(21 participants × 4 sessions × 8 scenarios) are available to train
the classifiers.

Three classifiers were tested: support vector machines (SVMs)
(Press et al., 2007), logistic regression (LR) (Hosmer et al., 2013),
and decision trees (DTs) (Kamiński et al., 2017).

Support vector machine maps labeled training data to higher
dimensions and uses a hyperplane to classify them. The mapping
method is defined by a kernel (Press et al., 2007), and we tested
three different kernels: linear, quadratic and medium Gaussian.
Whenever SVM results are presented in this paper, the kernel
used is also given.

Logistic regression uses labeled training data to create a LR
model with a possible output range of 0–1. An input data point is
then classified as one class for model outputs below 0.5 and as the
other class for model outputs above 0.5 (Hosmer et al., 2013).

Decision tree is a flowchart-like structure with several nodes
and branches. Each node performs a threshold test on a single
feature, and the two resulting branches indicate whether the
feature was above or below the threshold. If a node has no
branches connected to it, it is called an end node. Based on the
number of nodes and branches, a tree can be simple, medium or
complex (Kamiński et al., 2017). In this study, DT with different
complexity levels were used for classification.

Validation
The method of leave-one-out cross-validation was used to
validate the designed classifiers (Webb and Copsey, 2011). In
cross-validation, the data is partitioned into k subsets. Classifiers
are trained using data from k − 1 subsets, then validated on
the remaining subset. The validation is repeated k times, with
each subset acting as the validation subset once. The mean
accuracy for classification over all k subsets is reported as the final
result.

As a secondary result of the validation, the significance level
of each selected feature is given. The significance levels are the
result of an F-test that the stepwise algorithm uses to find the best
features.

Statistical Validation of Causes of HDS
Finally, repeated-measures analysis of variance (RM-ANOVA)
was used to find the effect of the four causes of HDS on the six
aspects of driver workload measured by the NASA-TLX. This
was done by using the presence/absence of the four causes of
HDS as within-subject factors, and serves as a validation that
different workload levels were actually induced by the different
scenarios.

RESULTS

We first analyzed the NASA-TLX results to verify that different
workload levels were successfully induced with our driving
environments, as described in Section “Effect of Causes of HDS
on NASA-TLX Scores.” Section “Independent Classification of
Each Cause of HDS” then uses all combinations of three features
sets (driver characteristics, vehicle kinematics, and physiology)
to independently classify the presence or absence of four causes
of HDS (cell phone use, sleep deprivation, low vs. high traffic
density, clear vs. snowy weather). It also presents the most
relevant features for classification, as selected by stepwise feature
selection. Section “Classification of Each Cause of HDS Given
Information About the Other Three Causes” then presents the
results of classifiers that already know the presence or absence
of three causes of HDS and attempt to classify the presence or
absence of the fourth cause of HDS given this information.

Effect of Causes of HDS on NASA-TLX
Scores
Table 2 shows the significance levels for within-subject effects
of cell phone use, sleep deprivation, traffic density, and weather
on different aspects of the NASA-TLX. As Table 2 demonstrates,
using a cell phone while driving significantly affects all aspects
of workload. Sleep deprivation, on the other hand, increases
frustration and results in worse perceived performance.

TABLE 2 | Significance levels for the effect of each cause of hazardous driver
state on the different aspects of the NASA-TLX questionnaire.

Cell
phone

Alert
vs. drowsy

Highway
vs. town

Snowy
vs. clear

Mental demand 0.001∗ 0.269 0.344 0.007∗

Physical demand 0.001∗ 0.667 0.606 0.063

Temporal demand 0.001∗ 0.316 0.099 0.078

Performance 0.001∗ 0.080 0.126 0.064

Effort 0.001∗ 0.146 0.139 0.068

Frustration 0.001∗ 0.070 0.682 0.170

Overall score 0.000∗ 0.321 0.302 0.018

Bolded values indicate p < 0.1 while asterisks indicate p < 0.01.

TABLE 3 | Independent classification of the four causes of hazardous driver
states: accuracies for different combinations of features.

Cell
phone

Alert
vs. drowsy

Highway
vs. town

Snowy
vs. clear

Physiology 81.8% 55.2% 86.8% 56.8%

Characteristics – 98.8% – –

Vehicle kinematics 64.3% 53.1% 83.3% 71.2%

Physiology,
characteristics

81.8% 98.8% 86.8% 56.5%

Physiology, vehicle
kinematics

82.3% 55.2% 91.4% 71.5%

Characteristics, vehicle
kinematics

64.6% 98.7% 83.3% 71.5%

All 82.3% 98.8% 91.4% 71.5%
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TABLE 4 | Independent classification of the four causes of hazardous driver states: accuracies and best features when all three feature sets (physiology, vehicle
kinematics, driver characteristics) are used as input features.

Accuracy Best classifier Three best features P-Value

Phone vs. no phone 82.3% LR Abs [gradient (ECG)] P < 0.001

Mean of respiration rate P < 0.001

Mean of lateral lane position P < 0.001

Alert vs. drowsy 98.8% Ensemble boosted DT Negative affect P < 0.001

Positive affect P < 0.001

Difference of tonic GSR P = 0.02

Low vs. high traffic density 91.4% LR Std lane number P < 0.001

Low-frequency power of heart rate P < 0.001

Std amplitude of GSR P < 0.001

Snowy vs. clear 71.5% SVM linear kernel Std of rear tire slip P < 0.001

Std of throttle P < 0.001

Mean of tonic GSR P = 0.018

Abs, absolute value; ECG, electrocardiogram; Std, standard deviation; GSR, galvanic skin response.

FIGURE 5 | Box plots of the best selected features for independent classification of (A) cell phone vs. no cell phone, (B) drowsy vs. alert (C) low vs. high traffic
density, (D) sunny vs. snowy weather. The baseline value of physiological data is subtracted and all data is normalized within a session by [data – minimum
(session)]/[maximum (session) – minimum (session)]. Abs, absolute value; ECG, electrocardiogram; RR, respiration rate; LF, low-frequency; HR, heart rate;
GSR, galvanic skin response; Std, standard deviation.

Independent Classification of Each
Cause of HDS
Table 3 presents the classification accuracies for independent
classification of each cause of HDS using different combinations
of input feature sets (driver characteristics, vehicle kinematics,
and physiology). Driver characteristics can differentiate between
alert and drowsy sessions since the mood questionnaire was
filled out at the start of each session, but cannot identify other
causes of HDS (which change within a single session, unlike
driver characteristics). On the other hand, either physiology and
vehicle kinematics can effectively discriminate between high and

low traffic density (with accuracies over 80% for both feature
sets), and vehicle kinematics can discriminate between snowy
vs. clear weather (though only with an accuracy of 71.2%).
The combination of all three feature sets results in the highest
classification accuracies, though they are sometimes not much
higher than using only a single feature set; for example, when
classifying snowy vs. clear weather, the accuracy is 71.5% using
all three feature types and 71.2% using vehicle kinematics alone.

Table 4 presents more detailed results of classification using
all three feature sets. Specifically, it presents the best classifier and
the best three features for each cause of HDS. The significance
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TABLE 5 | Classification of each cause of hazardous driver state given information
about the presence or absence of the other three causes: accuracies for different
combinations of features.

Cell
phone

Alert
vs. drowsy

Highway
vs. town

Snowy
vs. clear

Physiology 81.8% 55.3% 86.8% 56.8%

Characteristics – 100% – –

Vehicle kinematics 64.8% 53.3% 83.3% 70.1%

Physiology,
characteristics

81.8% 99.6% 86.8% 56.5%

Physiology, vehicle
kinematics

82.8% 55.3% 91.3% 70.1%

Characteristics, vehicle
kinematics

64.5% 100% 83.3% 70.2%

All 82.9% 100% 91.9% 70.8%

level of each feature, as calculated by stepwise selection, is also
given. Furthermore, Figure 5 presents box plots of each selected
feature in the presence and absence of each cause of HDS (cell
phone use, sleep deprivation, weather, and traffic density). Note
that these box plots represent all scenarios when a specific cause
of HDS was present, and the other causes may be either present or
absent. More detailed examples of a few representative classifiers
are provided in the Supplementary Material.

Classification of Each Cause of HDS
Given Information About the Other Three
Causes
Table 5 presents the classification accuracies for classification of
each cause of HDS using different combinations of input feature
sets (driver characteristics, vehicle kinematics, and physiology)
as well as information about the presence or absence of the
other three causes of HDS. Most accuracies are similar to those
observed in the previous section where the presence/absence of
the other three causes was not known (Table 3). Some accuracies
are even slightly lower than in Table 3, which is likely due to the
increased dimensionality of the problem – the three additional
features (presence of other causes of HDS) are not informative
enough to offset the increased number of features.

DISCUSSION

A positive overall result of our study is that the presence
or absence of different causes of HDS can be classified with
accuracies ranging from 70% (snowy vs. clear weather) to nearly
100% (sleep deprivation), regardless of whether other causes
of HDS are present or not. However, as discussed in the next
sections, not all feature types are equally informative, and the
choice of classifier also affects accuracy.

Identifying Different Causes of HDS
As seen in Tables 3, 4, not all causes of HDS can be classified using
the same features – some features are more effective at identifying
certain causes.

Cell Phone Use
Cell phone use was most visible in the gradient of the ECG signal,
the mean RR, and the mean lateral lane position. The effect on
lateral lane position is not surprising, as using a cell phone makes
it more difficult to focus on the road and should result in the
driver not following the road as effectively (Papadakaki et al.,
2016). The effect on RR, on the other hand, is an indicator of
increased workload and may also be promising for automated
identification of causes of HDS. Increased RR may allow HDS
due to cell phone use to be detected before the driver begins
dangerously drifting toward the edge of the lane. Finally, the
gradient of ECG presents an interesting result: as this is the
actual ECG signal (rather than the HR signal), these changes were
likely caused by skeletal muscle artifacts created by arm gestures.
While such artifacts are commonly filtered out in physiological
data analysis, removing the ECG gradient decreased the accuracy
from 82.3 to 74.3%. In this case, the artifacts thus serve a useful
function in classification by providing information about body
gestures without the need for camera monitoring.

Sleep Deprivation
The alert and drowsy sessions can easily be distinguished using
driver characteristics – specifically, mood (negative and positive
affect). The more negative mood in drowsy sessions likely also
influenced physiological responses. This suggests that it would be
worth including estimates of the driver’s overall mood as an input
to our classifiers, which supports our hypothesis that combining
different types of information will lead to higher classification
accuracy. While it would likely not be practical to capture
mood using questionnaires, it could potentially be done with
physiological measurements – longer-term measurements (over
periods of up to a few hours) have been used to identify overall
mood and stress levels (Valenza et al., 2016) and could serve as
a useful complement to the shorter-term measurements used in
our study. Other than tonic GSR, physiological measurements,
and vehicle kinematics did not make a useful contribution to
classification.

Driving Environment
The standard deviation of the lane number is almost four
times higher in dense traffic scenarios compared to light
traffic, indicating that drivers changed their lane much more
frequently. This does not necessarily indicate increased workload
or decreased focus, and is likely only related to the need to, e.g.,
make left turns more often. However, features derived from HR
and GSR likely indicate increased workload due to more cars on
the road and other environmental features of a town like more
intersections and more traffic lights.

Weather
Driving in snowy/foggy weather was primarily indicated by
increased tire slip due to decreased friction, as well as by different
participant behavior with regard to pushing the gas pedal.
Weather was the most difficult to classify, likely because of large
interpersonal differences in reactions: some participants slowed
down in response to poor weather and had an unproblematic
experience while others drove at the same speed as in sunny
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weather and consequently experienced high tire slip or even
crashes.

Though different data types are more effective for different
causes of HDS, we can nonetheless ask whether a single data type
would be sufficient for multiple causes of HDS. Based on Table 3,
it is our opinion that neither vehicle kinematics nor physiology
are sufficient on their own: while vehicle kinematics can classify
environmental causes of HDS (e.g., weather), physiology is
more effective at identifying, e.g., cellphone use. Even driver
characteristics (primarily mood, which could be estimated from
physiology as described above) contribute to classification of
sleep deprivation, and should be included if possible. Our results
thus emphasize the importance of using multiple data types to
classify causes of HDS, as the combination of all three data types
always provided the highest classification accuracy. Furthermore,
our results also imply that studies that use only a single cause
of HDS (or do not differentiate between different causes of
HDS) are not optimal, as different causes of HDS evoke different
physiological and behavioral reactions in drivers.

Classification Approaches
We tested two classification approaches: classifying all four causes
of HDS independently (see section “Independent Classification
of Each Cause of HDS”) and classifying each cause of HDS with
full information about whether the other three causes of HDS
are present. We expected that the latter approach would be more
accurate, as it would allow classifiers to better account for the
effects of other causes of HDS. However, this was not the case –
the results of the two approaches were essentially the same, as
evidenced by Tables 3, 5. This implies that multi-stage classifiers
(which, e.g., first identify environmental conditions and use
this as a basis for inference of driver cognitive/affective states)
would not be more effective than parallel single-stage classifiers.
Still, we acknowledge that our approach (presence/absence of
other causes of HDS used as binary inputs to classifier) was
somewhat rudimentary, and that more advanced multi-stage
classification schemes may achieve better results. For example,
a three-stage classifier could first divide drivers into “good”
and “bad” ones based on driver characteristics, then infer the
environmental conditions (e.g., traffic density, weather) based
on vehicle kinematics, and finally infer the driver’s internal state
based on physiology.

Next Steps
The ultimate goal of identifying the causes of HDS is to use
this as a basis for responding to hazardous states in real
vehicles. Our study indicates that it is possible not only to
automatically detect the presence of HDS, but also to classify
the internal or environmental cause of this hazardous state.
Additionally, the use of physiological sensors greatly increases
the classification accuracy. While the demanding environments
could be detected by other means (for example, high traffic
density could be detected via external traffic monitoring
networks), physiological measurements provide an estimate of
the driver’s actual mental state, providing a better estimate
of whether the driver is distracted than would be achieved
with only external measurements. Furthermore, while our study

used laboratory-grade physiological sensors, we believe that
similar accuracies could be achieved with recently developed
physiological sensors built into the car, such as HR sensors
built into the steering wheel (Jung et al., 2014) or respiration
sensors built into the driver seat (Dziuda et al., 2012). Thus, the
approaches used in our study could be transferred both to other
simulated driving environments and to real cars.

We believe that, as the next step, our algorithms should
be combined with intelligent decision-making systems. Since
our classification algorithms allow the specific cause of HDS to
be identified, an intelligent vehicle could use this information
to decide how to react to the drivers’ hazardous states. For
example, if the system detects that the driver is using a cell
phone, it could provide increasing warnings to the driver (Yan
et al., 2015) or even require both hands to be placed on the
steering wheel. Conversely, if it detects sleep deprivation, it
could instruct the driver to pull over and rest before continuing.
To support such intelligent decision-making, we have already
modified our classification algorithms to function in real-time,
and preliminary tests indicate that a classification decision is
available less than a second after the 4-min data collection
interval has ended.

However, further research into decision-making algorithms is
likely necessary to take full advantage of our strategy to identify
the causes of HDS. Most state-of-the-art safety monitoring
systems for intelligent cars have relatively simple responses to
detected HDS [e.g., warning sound in case of driver inattention
(Yan et al., 2015)], and new decision-making methods would
have to be developed to carry out different actions for different
detected causes of hazardous states. Since the accuracy of
classification is never perfect, these new methods will need to
decide what feedback to provide to drivers based on uncertain
estimates of the cause of a driver’s HDS. In this case, it
may be more efficient to utilize probabilistic classifiers (e.g.,
Bayesian networks) that output not only the cause of the HDS,
but also the ‘confidence’ of the classifier. A decision-making
method based on artificial intelligence techniques could then
balance the potential reward of a correct action (increased
driver safety) with potential negative outcomes due to incorrect
action (e.g., the driver is further stressed out by an alarm,
or the driver turns off the system due to frequent errors). In
the end, the decision-making system could even take multiple
actions if a HDS is likely due to multiple causes, or could
take no action if it is not confident in the HDS classification
result.

Once classification methods have been successfully combined
with intelligent-decision making algorithms, their ability to
reduce the frequency and severity of crashes should be
tested over longer simulated driving sessions to determine the
methods’ potential benefits before using them in real-world
cars. At that point, additional cost-benefit analyses should be
done to determine which sensors could be easily removed
without decreasing the effectiveness of the system. Once testing
in simulated driving environments has been completed, the
developed methods could finally be used to increase safety in real-
world driving, potentially reducing the high number of deaths
and injuries that are caused by distracted driving.
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Study Limitations
Three limitations of the study should be acknowledged. First, we
did not use some measurements that are common in analyzing
driver states, such as eye tracking, EEG and body gesture
monitoring, all of which have the potential to provide significant
insight into HDS. While we believe that the current study
nonetheless provides very useful insights into potential benefits
of combining driving behavior and physiological measurements,
future studies should also include other measurements in order
to determine whether, for example, the HR and respiration
measures used in our study could be omitted in favor of eye
tracking.

Second, we performed classification over 4-min intervals in
order to allow comparison to other studies on physiology-based
detection of cognitive and affective states, which tend to use
intervals of 2–5 min (Healey and Picard, 2005; Novak et al.,
2012). However, it is possible that this interval is either too
short or too long. In real-world settings, even a second of HDS
(e.g., distraction) can lead to catastrophic results, suggesting that
shorter intervals should be used. On the other hand, some causes
of HDS (bad weather, high traffic density) may only induce stress
and workload in the user if experienced for a longer period
of time, and 4-min intervals may thus be too brief to induce
measurable physiological changes in the user. In future studies,
we will investigate the effect of different time periods on the
accuracy of identifying the cause of the HDS.

Finally, some of the scenarios experienced by participants
were relatively uncontrolled and led to differences in participant
behavior that were not always quantifiable. For example, in the
cell phone scenarios, some participants used their phone to
simply read the news while others used it to actively type and send
messages. This may have led to different physiological responses
between participants, but further analysis is not possible since
participants’ specific cell phone behavior was not captured.
Future studies could consider using more controlled tasks (e.g.,
requiring all participants to write the same message) or capturing
participants’ behavior in more detail to allow better analysis. At
the same time, it should be acknowledged that real-world driver
monitoring systems will need to deal with uncontrolled situations
and incomplete information about the user’s behavior, and that
controlled laboratory tasks may not provide realistic results.

CONCLUSION

Our study used three different data sources (driver
characteristics, vehicle kinematics, and physiological
measurements) to classify the presence or absence of different
causes of HDS. The combination of all three data sources was
the most accurate, and was able to classify alert vs. drowsy
driving with an accuracy of 98.8%, the use of a cell phone with
82.3%, driving in dense vs. light traffic with 91.4%, and driving
in clear vs. snowy weather with 71.5%. These accuracies were
achieved in an experiment protocol where other causes of HDS
may be present or absent, which represents a greater challenge
for classification. Thus, our first conclusion is that combining
multiple data sources allows us to not only identify the presence

of HDS, but also to identify the specific cause(s) of HDS. This
could be used by, e.g., intelligent in-car systems to determine
how to intervene in order to lead the driver out of the hazardous
state.

Not all data sources were equally effective for different
causes of HDS: traffic density and weather were most effectively
classified with vehicle kinematics while driver characteristics and
physiology were effective for drowsiness and cellphone use. Thus,
our second conclusion is that neither vehicle kinematics nor
physiology alone can provide robust detection of HDS, and that
studies that involve only a single cause of HDS are not necessarily
representative of real-world situations.

We also attempted to classify the presence or absence of
specific causes of HDS based on binary information about
what other causes of HDS are present. However, adding this
information did not increase the accuracy of classification. Thus,
our third conclusion is that multi-stage classifiers (e.g., first
identify the driving environment using vehicle kinematics, then
identify the driver’s internal state using physiology) are not
necessarily more effective than simple single-stage classifiers.
However, this should be examined in more detail, as our methods
were admittedly somewhat rudimentary.

As the next step, our algorithms for identification of the cause
of HDS should be combined with intelligent decision-making
systems that could tailor their response to the specific cause of
negative driver. Such a combined HDS cause identification and
intervention system could then be tested in simulated driving
to determine the degree to which it reduces the frequency and
severity of accidents.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this manuscript are
included as a Supplementary File. The raw data file contains
the different features (vehicle kinematics, physiology, and driver
characteristics) for all participants, sessions, and scenarios within
each session. To protect participant anonymity, potentially
identifiable information (age, gender, height, dominant hand, use
of glasses, etc.) have been omitted.

AUTHOR CONTRIBUTIONS

AD led the data collection, data analysis, and wrote the majority
of the manuscript. SG and MA assisted with the study design, data
collection, and data analysis. DN supervised the entire study, led
the study design, and contributed to data analysis and manuscript
writing. All authors read and approved the final manuscript.

FUNDING

This work was supported by the National Science Foundation
under grant no. 1717705 as well as by two grants from the
National Institute of General Medical Sciences (P20GM103432
and 5U54GM104944) of the National Institutes of Health.

Frontiers in Neuroscience | www.frontiersin.org 11 August 2018 | Volume 12 | Article 568

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00568 August 11, 2018 Time: 17:24 # 12

Darzi et al. Identifying Causes of Drivers’ Hazardous States

ACKNOWLEDGMENTS

The authors would like to thank Anik Das for his help in
conducting the study sessions as well as Nilanjan Sarkar of
Vanderbilt University for his valuable advice.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2018.00568/full#supplementary-material

REFERENCES
Beede, K. E., and Kass, S. J. (2006). Engrossed in conversation: the impact of

cell phones on simulated driving performance. Accid. Anal. Prev. 38, 415–421.
doi: 10.1016/j.aap.2005.10.015

Bongiorno, N., Bosurgi, G., Pellegrino, O., and Sollazzo, G. (2017). How is the
Driver’s workload influenced by the road environment? Procedia Eng. 187, 5–13.
doi: 10.1016/j.proeng.2017.04.343

Boucsein, W. (ed.). (2012). “Methods of electrodermal recording,” in Electrodermal
Activity (Boston, MA: Springer), 87–259. doi: 10.1007/978-1-4614-1126-0
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