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In evolutionary genomics, researchers have taken an interest in identifying

substitutions that subtend convergent phenotypic adaptations. This is a

difficult question that requires distinguishing foreground convergent substi-

tutions that are involved in the convergent phenotype from background
convergent substitutions. Those may be linked to other adaptations, may

be neutral or may be the consequence of mutational biases. Furthermore,

there is no generally accepted definition of convergent substitutions. Various

methods that use different definitions have been proposed in the literature,

resulting in different sets of candidate foreground convergent substitutions.

In this article, we first describe the processes that can generate foreground

convergent substitutions in coding sequences, separating adaptive from

non-adaptive processes. Second, we review methods that have been pro-

posed to detect foreground convergent substitutions in coding sequences

and expose the assumptions that underlie them. Finally, we examine their

power on simulations of convergent changes—including in the presence of

a change in the efficacy of selection—and on empirical alignments.

This article is part of the theme issue ‘Convergent evolution in the

genomics era: new insights and directions’.
1. Introduction
It is difficult to replicate experiments when we study evolutionary biology.

However, one can benefit from natural replicates that have arisen through

time and across taxa. Indeed, lineages that have adapted independently to a

given environmental constraint can be seen as having been subjected indepen-

dently to the same ‘experimental’ conditions. When lineages subjected to the

same conditions evolve similar phenotypes, they are said to have converged in

their phenotypes. In the rest of the article, we call ‘convergent lineages’ lineages

that have undergone such convergent phenotypic evolution. In evolutionary

genomics, researchers have taken an interest in identifying substitutions that

subtend those convergent phenotypes.

We call these causative substitutions ‘foreground convergent substitutions’.

We distinguish them from ‘background convergent substitutions’ that include

substitutions that may be confused with ‘foreground convergent substitutions’

but that have no phenotypic consequences on the studied convergent

phenotype.

Foreground convergent substitutions may be adaptive, i.e. they fixed

through positive selection, or non-adaptive, i.e. they fixed through a relaxation

of selection (electronic supplementary material, figure S1). The latter may, for

instance, occur in cases of regressive evolution, where a gene is no longer

needed in a particular environment. Being able to distinguish these two types

of convergent substitutions provides information about the underlying

evolutionary process.
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To identify foreground convergent substitutions, many

methods search for substitutions that are correlated with

the phenotype. These are substitutions that have occurred

repeatedly in convergent lineages, towards the same derived

state, or towards similar derived states (e.g. towards amino

acids with similar biochemical profiles). Methods vary in

how they quantify the similarity between substitutions,

resulting in different sets of candidate substitutions [1–3].

Finding foreground convergent (causative) substitutions

among many substitutions in genomes containing billions

of sites is a challenge in modern bioinformatics.

Several processes at work in genome evolution may affect

the number of convergent substitutions in a given dataset.

For instance, mutational biases, changes in recombination

rates, biased gene conversion (bGC) or changes in population

size may inflate or diminish the number of convergent substi-

tutions. They may also affect differently the numbers of

foreground and background convergent substitutions.

Although this has not been studied yet, one may assume

that these complex processes make it harder for methods to

distinguish foreground from background convergent

substitutions.

In this article, we first describe some processes contribut-

ing adaptive and non-adaptive foreground convergent

substitutions in coding sequences. Second, we review existing

methods to detect foreground convergent amino acid substi-

tutions and expose the assumptions that underlie them.

Third, we examine their power on simulations of convergent

changes—including in the presence of variations in selection

efficacy—and on two empirical alignments.
(a) Defining adaptive convergent amino acid evolution
In this section, we examine how foreground convergent sub-

stitutions can arise through adaptive processes. To this end, it

is useful to first discuss adaptive genomic evolution in gen-

eral. Adaptive genomic evolution is expected to occur when

constraints on the phenotype change, which alters the selec-

tive pressure at some sites in the genome. Individuals with

mutations that provide an increased fitness in the new

environment have a reproductive advantage. Such mutations

then increase in frequency and can eventually fix. The fix-

ation of one or more of these mutations can, in turn,

change the selective pressure on other sites of the genome

through epistatic interactions [4].

The characteristics of the fitness landscape have an impact

on how likely adaptive convergent evolution is. The fitness

landscape describes the mapping between genotypes and fit-

ness in a species, for a given set of constraints on the

phenotype. Because it treats the genotype as a whole, it natu-

rally considers all the sites of the genome and their

interactions at once. If it is highly peaked, it means that

only one genotype can provide the largest fitness. In that

case, one can expect that several related species under the

same constraints on their phenotype may adaptively con-

verge towards the same genotype, i.e. adaptive convergent

substitutions are likely. Instead, if the fitness landscape is

very flat, different genotypes can provide similar fitnesses,

so that several related species under the same constraints

on their phenotype may move towards different genotypes,

making adaptive convergent substitutions less likely.

These intuitive considerations should make it clear that a

good mechanistic model of convergent evolution needs to
consider the entire genome at the same time, along with

the fitness landscape, to take into account all the dependen-

cies between sites. For computational reasons, and because

fitness landscapes are only rarely studied experimentally

[4], such a model is currently out of reach. Instead, sites

share some general parameters ruling their evolution (e.g.

branch lengths, some parameters of the substitution matrices)

but, conditionally on those parameters, each site is typically

modelled independently of the others. In addition, many

models make simplifying assumptions; for instance, fitness

landscapes only depend on the phenotype, and not on the

lineage under consideration. All models that have been devel-

oped to detect convergent genomic evolution assume such

site-independent models.

In this article, we propose to define convergent evolu-

tion through the comparison of coding sequences across

species. Coding sequences offer a window into where the

mutation process and the selective process meet. Indeed,

non-synonymous mutations (i.e. mutations that change

the encoded amino acid) might be strongly selected, while

synonymous mutations (i.e. mutations that do not change

the encoded amino acid) should be neutral or weakly coun-

ter-selected. Natural models to study coding sequences are

codon models, in which one site is made of three nucleotides

encoding a particular amino acid. The simplest codon models

consider one site at a time, independently of other sites,

and distinguish between synonymous and non-synonymous

substitutions. They assume that synonymous substitutions

provide a proxy for the rate of fixation of neutral substi-

tutions, while all non-synonymous substitutions have the

same rate of fixation, which depends on selection efficacy

[5,6]. More sophisticated codon models distinguish between

different amino acid changing substitutions and assume

that different amino acids provide different fitnesses. Such

models use amino acid fitness profiles—which we simply

call amino acid profiles in the rest of the article (figure 1) [7].

Some of the richest models allow individual fitness profiles

for different sites [8,9]. Overall, codon models provide a

convenient framework to define adaptive convergent amino

acid evolution.

In a simple model that considers one codon at a time,

adaptive convergent evolution can result from an increase

in the selective pressure or from a change in its nature.

Increases in the pressure would mean that, in the amino

acid profile at a given codon, the amino acids that provided

high fitness before the environmental change provide even

higher fitness, while amino acids providing low fitness

before the change now provide even lower fitness

(figure 1a, ‘Scaling of Selection Efficacy’). It has become

more important for the organism to have particular amino

acids at this position. For example, this could be associated

with a lifestyle where the function of the protein has

become more important than it was. Changes in the nature

of the selective pressure manifest themselves by a change

between two amino acid fitness profiles, referred to as ‘ances-

tral’ and ‘convergent’ from now on (figure 1a ‘profile

change’). As opposed to increases in the pressure, profile

changes alter which amino acids are the most fit at a given

position.

In the rest of the article, we distinguish between two types

of adaptive convergent substitutions (figure 1b), because

detection methods vary in their ability to detect each type.

We call ‘type 1 substitutions’ the early substitutions that
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Figure 1. Categories of adaptive and non-adaptive convergent amino acid evolution. (a) At a particular position in a protein, some amino acids provide better
fitness than others. This is represented by coloured bars for six amino acids, the bigger the bar the higher the fitness. In the ancestral environment A, amino acids
blue and green provide the highest fitness, whereas in the convergent environment C, amino acids orange and purple provide the highest fitness. Increasing the
selection efficacy makes the profiles more pointed, while decreasing it makes them more flat, but the amino acid relative rank does not change. Decreases of
the selection efficacy are not adaptive, while the two other types of changes are. (b) Species with the convergent phenotype are named C* and species with
the ancestral phenotype are named A*. Substitutions are represented by small boxes on the branches. We distinguish two types of adaptive convergent substi-
tutions. Type 1 are substitutions that occur systematically on the branch where the phenotype changes, at the transition between Ancestral and Convergent
environments (A – C). Type 2 are substitutions that occur on later branches (e.g. in the branch leading to C3).
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occur on the branch where the phenotype changed, and ‘type

2 substitutions’ those that fix after type 1 substitutions, on

subsequent branches.
(b) Non-adaptive background convergent amino acid
evolution

Background convergent amino acid substitutions may be

linked to convergent phenotypes that have not been detected,

or not linked to convergent phenotypes, and possibly have no

phenotypic consequences. In this latter case, they arise non-

adaptively. Some number of such non-adaptive background

convergent substitutions is expected, if only because there

are only 20 possible amino acids. Further, the structure

of the genetic code and the characteristics of the mutation

process (e.g. that transitions are more frequent than transver-

sions) all contribute to making some amino acid substitutions

more likely than others and therefore increase the probability

that they will be convergent.

In addition, fixation and mutation biases could create pat-

terns resembling adaptive convergent evolution, and possibly

adaptive foreground convergent evolution. In particular, GC-

bGC is a fixation bias that favours G or C alleles over A or T

alleles and is widespread across the tree of life [10,11], and

CpG hypermutability is a well-known mutation bias. bGC

is most intense in regions of the genome that recombine fre-

quently and has a stronger effect over time in species with

large effective population sizes and short generation times.

Those two characteristics have appeared independently sev-

eral times in the tree of life. Because of bGC, one can expect

to detect similar changes to GC alleles in the species sharing

these characteristics, even without any adaptive value to

having GC alleles instead of AT at those positions. This

phenomenon seems to be strong enough to affect single

gene phylogenies in birds [12,13] and may be an important

driver of background convergent sequence evolution. CpG
hypermutability results from a higher rate of mutations of

methylated CG dinucleotides and could also contribute to

background convergent sequence evolution. It has also been

shown to promote foreground convergent evolution, with

recurrent changes at the same CpG site in passerine bird

haemoglobin [14].

Repeated and independent global relaxations of selection

could also create background convergent evolution. If the phe-

notypic change is linked to a genome-wide decrease in

selection efficacy, e.g. through a decrease in the effective popu-

lation size [15], mutations that used to be counter-selected

become tolerated. Because of the structure of the genetic code,

those mutations could result in similar amino acid substitutions

in lineages undergoing the decrease in selection efficacy.

Finally, epistatic interactions between sites in the genome

or within a protein can create non-adaptive convergent amino

acid evolution [16,17]. The same mutation at a particular site

can occur in independent lineages simply because by chance

sites that are in epistatic interactions with it happen to be in

the same state in those lineages. The mutation therefore fixes

not because of an adaptation to a new environment, but

because of the states of interacting sites. Such non-adaptive

convergent evolution is more likely in closely related lineages

than in distant lineages [16]. It is difficult to know how frequent

such events are, in part because most of the models used to

study protein evolution have ignored epistatic interactions.

We do not study such phenomena in this article but acknowl-

edge that they may be an important confounding process in the

search for adaptive convergent amino acid evolution.
(c) Detecting adaptive foreground convergent amino
acid substitutions

Several methods have been designed to detect adaptive con-

vergent amino acid evolution. We list them below and

attempt to predict their relative strengths and weaknesses,
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Figure 2. Cartoon examples of the types of sites targeted by each type of method. The tree topologies and species are the same in all examples. Species with the
convergent phenotype are named C*, those with the ancestral phenotype A*; the transitions between ancestral and convergent phenotype occur where the subtrees
become shaded in yellow. Coloured squares on the branches of the phylogeny indicate substitution events, with the colour corresponding to the new amino acid. In
Example A, every time the phenotype changes, a substitution occurs towards amino acid Q (type 1 substitutions to a single amino acid). This is an ideal case for the
methods based on identical substitutions and should be detectable by all methods. Example B shows a site that has undergone a profile change, whereby two
different amino acids, Q and Y, have good fitness in the convergent case. All methods but the identical may detect such changes, although this depends on how
different the ancestral and the convergent profiles are [18]. Example C is similar to Example B except that some substitutions occurred after the phenotype has
changed (type 2 substitutions), not simultaneously with the phenotype change. Example D is similar to Example C except that the amino acid change only occurred
three times out of four: this makes it more controversial and harder to detect. But if the change in profile is strong enough, profile methods should be able to detect
it. Example E shows a case where the evolution of the site does not seem to correlate with the convergent/ancestral state of the species. We do not expect the
methods to detect such a site, but some such sites will nevertheless come out as false positives.
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in particular, their capacity to detect type 1 and type 2 adap-

tive convergent substitutions. Figure 2 presents in cartoon

format the type of convergent sites that each type of

method should be able to detect. None of the following

methods have been designed to detect convergent increases

or decreases in selection efficacy, so we expect they should

do much better at detecting convergent profile changes

than convergent changes in selection efficacy. All methods

except one (msd, [19]) assume that convergent lineages are

known without uncertainty and that corresponding clades

are given as input.
(i) Methods looking for independent substitutions to the same
amino acid

The most intuitive method, the ‘identical’ method, looks for

independent substitutions to the exact same amino acid in

all clades with the convergent phenotype [20,21]. It therefore

assumes that a particular amino acid has a much better fit-

ness than all other amino acids at this particular position of

a protein. In practice, it relies on ancestral sequence recon-

struction to infer the amino acids present before each

convergent transition and make sure that the transition of

interest occurred on the branch where the phenotypic tran-

sition occurred. By design, it is very conservative because it

aims to detect only sites where a single particular amino

acid is much more fit than others, which fixed with a type

1 substitution (figure 2).

An extension of this method, the ‘expectation’ method of

Chabrol et al. [19]—also called msd—looks for sites with a
high ‘convergence index’. This convergence index is the

expected number of substitutions to a particular amino acid

in convergent lineages. Interestingly, and contrary to the

other methods presented here, this method does not

assume that convergent lineages must be known. Instead, it

is enough to have phenotypic annotations for extant species

only. It is unclear whether this method is very conservative

or not: on one hand, it detects only sites where a particular

amino acid is found in most species with the convergent phe-

notype (as in the ‘identical’ method), but on the other hand,

this convergence could apply to only a subset of the species

with the convergent phenotype, an advantage compared to

methods based on amino acid profiles (see below, §1c(iii)).

Both type 1 and type 2 substitutions can be detected by

this method, but type 2 substitutions get a higher conver-

gence index than type 1 substitutions and may therefore be

better detected.
(ii) Method based on topological incongruencies
The ‘topological’ method is an early attempt to look for an

indirect effect of convergent sequence evolution, based on

an observation first made on the prestin gene [22] and later

systematized in genome-scale studies [1–3]. When a particu-

lar site has evolved convergently in several lineages, it

displays the same or similar amino acids in those lineages,

and not in lineages with a different phenotype. As a result,

for this site, a phylogeny in which convergent lineages are

grouped together is more likely than the true species phylo-

geny. This approach involves constructing the species
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topology and a ‘convergent’ topology where species with the

convergent phenotype are grouped together. Then, each site

can be tested for which topology it prefers—the true species

phylogeny or the convergent phylogeny—by comparing the

likelihoods of the two trees for this site. This method is cap-

turing a byproduct of convergent evolution, and not its

mechanism, hence it is difficult to know precisely what

type of substitution this method can work with. Presumably,

both type 1 and type 2 substitutions can be detected.
/journal/rstb
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(iii) Methods based on amino acid profiles
‘Profile methods’ are methods aiming to detect selection

pressure changes, whereby different amino acids provide

the highest fitnesses in the ancestral and convergent pheno-

types. The simplest of these methods is the ‘multinomial’

approach, which performs a simple x2 test for multinomial

distributions [23] between two vectors of amino acid frequen-

cies. One vector is based on the amino acids found in extant

species with the ancestral phenotype, and the other vector is

based on the amino acids found in extant species with the

convergent phenotype. This approach has not previously

been used in the literature to our knowledge and suffers

from a major drawback in that it fails to account for the phy-

logenetic structure of the data. However, we chose to include

it in our tests as it provides a baseline against which the other

more sophisticated methods can be tested. Both type 1 and

type 2 substitutions can be detected by this method.

Other profile methods include profile change with one

change (PCOC) [18], diffsel [24] and TDG09 [25], which

belong to a family that we loosely call ‘mechanistic methods’

because they combine a phylogenetic approach with amino

acid fitness profiles.

The ‘PCOC’ method [18] models convergent evolution at

the amino acid level, without taking into account the codon

level. It combines the ‘profile’ idea—by attributing to the 20

amino acids different equilibrium frequencies before and

after the phenotypic changes—with the One Change (OC)

model. OC assumes that convergent sites must have under-

gone a substitution on the branches where the adaptation

took place. Detection of convergent sites is obtained by

comparing the likelihoods of two nested models. In the first

model, both the profile change and OC models are used—

this means that profiles change on branches where the

phenotype changes and that at least one substitution must

occur on each of these branches. In the second model, evol-

ution is homogeneous across all branches. Amino acid

profiles are not estimated but are drawn from pre-existing dis-

tributions that have been estimated on large collections of

alignments [26]. Both type 1 and type 2 substitutions can be

detected by PCOC, but with a different power: the OC com-

ponent of PCOC expects only type 1 substitutions, but the

PC component can accommodate both type 1 and type 2

substitutions.

The TDG09 model [25] is similar to PCOC in that it works

at the amino acid level, but it focuses on profile changes and

does not include the OC component. In addition, it estimates

the profiles separately for each site of the alignment. To do so,

it builds two profiles, one for the species with the ancestral

phenotype, and one for the species with the convergent phe-

notype. Amino acids with a count of 1 or less are considered

absent, and all absent amino acids are assigned a 0.0 fre-

quency in the profile vector. To detect sites undergoing
adaptive convergent evolution, a likelihood ratio test is

performed between a model that assumes a single profile

across the entire tree, or two profiles for the ancestral

and convergent parts of the tree. Both type 1 and type

2 substitutions can be detected by this method.

Finally, diffsel [24] is similar in spirit to TDG09 but works

at the codon level and uses an MCMC algorithm to perform

inference in the Bayesian framework. In this codon model,

mutations occur at the DNA level, and selection occurs at

the amino acid level. Selection is modelled as site-wise fitness

profiles of 20 amino acid fitnesses. Convergent sites are

characterized by a systematic change from an ancestral

amino acid fitness profile to a different amino acid profile

on all branches where the phenotype changed. Both type 1

and type 2 substitutions can be detected by this method.
2. Results and discussion
Some of the methods presented above have been implemented

in several software packages (table 1). In this article, we evalu-

ate these software packages on simulated and empirical data

along with methods we have reimplemented ourselves.

Regarding empirical data, we focus on sites that had been

identified as convergent in previous publications and look at

how the methods rank those sites. Regarding simulations,

we evaluate the power of the methods in three cases: (1) a con-

vergent profile change; (2) a convergent increase or decrease in

selection efficacy; and (3) a combination of the above two,

whereby a convergent profile change occurs simultaneously

with a scaling of selection efficacy. To achieve this scaling,

we set a selection efficacy parameter that is the product of

two parameters, the population size (Ne) and the selective

pressure (S) (also called scaled selection coefficient). In the fol-

lowing, we refer to this value by NeS, a composite parameter

whose variations can be interpreted as e.g. a genome-wide

variation of population size, or a site-wise variation of selective

pressure. We choose to use NeS ¼ 4 as the reference value,

because it produces alignments similar to empirical align-

ments according to a range of statistics (electronic

supplementary material, figures S4–S7).

We ran the methods on four empirical phylogenies with

different size, depth and number of transitions [20,28,29]

(electronic supplementary material, figure S2).

In case 1, ‘Convergent profile change’, selection efficacy

remains constant but the amino acid profile is different in

convergent lineages compared to the rest of the tree. To simu-

late this case (figure 3a and figure 4a), we change the amino

acid profile in the convergent clades and we keep the same

global NeS along the tree. The results are presented in

figure 3 for NeS ¼ 4, and for the four empirical phylogenies.

Profile methods perform better than the other methods in

the four phylogenies, and among them, diffsel dominates the

benchmark according to AUC values (figure 3). The sensi-

tivity at 90% precision is not as easily interpretable as AUC

because the curves are very rugged; TDG09, PCOC and diff-

sel seem to dominate this metric, with a different order

depending on the tree. Surprisingly, the simplistic multi-

nomial method performs well on the Cyperaceae tree,

competing with the TDG09 and PCOC in terms of its sensi-

tivity at 90% precision. The relative ranks of PCOC,

multinomial and TDG09 vary depending on the tree, which

may be attributable to differences in the number of



Table 1. Summary of the methods used in the pipeline.

name
original method
publication level executable or source available

median computing
time on 2000 sites

identical [20] site no, reimplemented (Python and Cþþ) 55 s

topological [1,27] site no, reimplemented (Python and Cþþ) 5 s

TDG09 [19,25] site yes. Used a modified version.

https://github.com/tamuri/tdg09

1648 s

(27 min)

diffsel [24] site yes:

https://github.com/vlanore/diffsel

141084 s

(39 h)

PCOC [18] site yes:

https://github.com/CarineRey/pcoc

181 s

(3 min)

multinomial — site no, implemented de novo (Python) 21 s

msd [19] gene yes. Used a modified version.

https://github.com/gilles-didier/Convergence

70 s
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convergent transitions and in the relative size of the conver-

gent clades. For instance, we suspect that PCOC’s

performance is degraded when the number of convergent

transitions increases, because by design it looks for sites

with convergent changes in all the convergent clades, not

just a subset of them. TDG09 shows the opposite trend,

with better performance when the number of transitions

increases. The topological, identical and msd approaches

typically perform worse, but the AUC rank of msd is volatile.

The low sensitivity of identical and msd is expected as those

methods can only detect convergent substitutions to a par-

ticular amino acid, not to an amino acid profile. Overall,

these results are qualitatively congruent with previously pub-

lished simulations obtained with simpler settings and fewer

methods [18]. However, the precisions and sensitivities

observed here are much worse than those reported in [18],

because simulations do not use the PCOC model, which

enforces substitutions on all transition branches.

Note that diffsel, which performs well in our experiments,

is also the most expensive method computationally by sev-

eral orders of magnitude (table 1). Other methods may be

preferable for large datasets unless extensive computing

resources are available. The better performance of profile

methods may be owing to their fitting the simulation con-

ditions better. However, it is unclear how we could have

simulated convergent evolution realistically without using

mutation-selection models that use profiles of amino acid fre-

quencies. In the end, this indicates that profile methods may

perform better on empirical data as well; apart from diffsel,

which always comes out first, the variability of the AUC

ranks among trees, however, indicates that using several

methods on a dataset is recommended.

We then studied the performance of the methods for a

wider range of genome-wide selection efficacies, focusing

on the Cyperaceae tree (see electronic supplementary

material, figure S8 for the three other trees). Figure 4a rep-

resents AUC values for the Cyperaceae tree, for NeS ¼ 1, 4

and 8, corresponding to values for weak, medium and high

selection efficacy respectively, all of which produce align-

ments with realistic properties (electronic supplementary

material, figures S4–S7). As expected, the methods are most
accurate when NeS is high (NeS ¼ 8) and the performance

collapses when selection is not efficient (NeS ¼ 1). In other

words, it should be extremely difficult to detect convergent

molecular evolution in species with small Ne, or for sites

under weak selective pressure.

In case 2, ‘Convergent scaling of selection efficacy’

(figure 4b), the same amino acid fitness profile is used

along the whole tree for a given site, but NeS is changed in

convergent clades (from NeSA to NeSC) in Ha simulations.

It is important to note that an NeS variation implies the modi-

fication of the fitness of each amino acid in the profile but not

of its rank (figure 1a). We made 3 runs, two with an increase

and another with a decrease of NeS in convergent clades.

Overall, methods perform poorly at detecting selection

efficacy scaling, with the exception of the NeSA ¼ 1 to

NeSC ¼ 4 cases where PCOC and diffsel detect a small

number of sites.

By the two previous cases, we saw that methods can

detect adaptive convergent sites under two conditions: they

have undergone a profile change and they are under moder-

ate to high selective pressure. But the methods cannot detect

profile changes when selection efficacy is low and also fail to

detect scalings in selection efficacy alone.

Finally, case 3 introduces a confounding factor. Here we

assume a genome-wide scaling of selection efficacy on top

of which convergent sites undergo profile changes

(figure 4c), and we try to detect those latter sites. This is mod-

elled by a selection efficacy scaling from NeSG to NeSC in

both convergent (Ha) and non-convergent (H0) sites, plus

an amino acid profile change in Ha. We tried both to decrease

(figure 4c(i)) or increase (figure 4c(ii)) the selection efficacy in

the convergent clades and compared the results to the situ-

ation obtained when selection efficacy is constant. With a

decreased selection efficacy in convergent clades, the

methods’ performances deteriorate compared to the reference

simulation. With an increased selection efficacy in convergent

clades, the performances remain roughly the same. In other

words, a decrease in selection efficacy (for instance, owing

to a decrease in Ne) coinciding with convergent transitions

has a negative impact on the detection of convergent profile

changes, but an increase has very little impact.

https://github.com/tamuri/tdg09
https://github.com/tamuri/tdg09
https://github.com/vlanore/diffsel
https://github.com/vlanore/diffsel
https://github.com/CarineRey/pcoc
https://github.com/CarineRey/pcoc
https://github.com/gilles-didier/Convergence
https://github.com/gilles-didier/Convergence
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We then ran the seven methods on two previously pub-

lished datasets, where a list of convergent sites had been

proposed [20,24,28]. In these articles, the detection of conver-

gent sites was performed by a version of the identical method

for Cyperaceae, and by either diffsel or a dN/dS analysis for

Amaranthaceae. Note that in the original diffsel article, the

method was run with slightly different settings: it evaluated

fitness profiles separately for the sister clades of convergent

clades. In this article, diffsel was instead set up to only evalu-

ate one profile per site for convergent clades and one profile

per site for the rest of the tree. This change was done to make

diffsel results more comparable with other methods and

explains the differences with the original results. We com-

pared the ranks of these previously reported convergent

sites across methods. The alignments and the ranks are avail-

able in electronic supplementary material, figures S10 and

S11, along with further discussion. Overall, the methods

tend to agree with each other and rank the previously

reported convergent sites among their best candidates

(figure 5). In particular, most profile methods are in strong

agreement with the publications; this is especially true for

TDG09. Some methods fail to find any or nearly any conver-

gent evolution on the Amaranthaceae alignment (identical,
multinomial, topological), which is consistent with our

results on data simulated on the same tree (figure 3a(ii)).

These methods have a more consistent behaviour on the

Cyperaceae dataset. For both datasets, most of the sites that

have low ranks have low ranks across methods. For instance,

this is the case for sites 733 and 770 in Cyperaceae, and 143

and 439 in Amaranthaceae. Overall, methods that produce

the best results on simulated data also recover convergent

sites identified in previous studies. Those sites had been

identified with either diffsel or identical, so it is not surpris-

ing that these methods performed well in our study on the

alignment on which they had been used; nonetheless, the

general agreement between the methods is reassuring.
3. Material and methods
(a) Simulation of alignments of coding sequences
We simulated coding sequences using bppseqgen [30] under

(heterogeneous) mutation-selection models, which belong to

the ‘mechanistic’ family of methods tested in this work.

Mutation-selection models are codon models that combine

mutations at the DNA level with amino acid fitness vectors, so
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that selection operates only at the amino acid level. Our

mutation-selection models were complemented by a parameter

indicating the efficacy of selection, NeS. In our mutation-

selection model, NeS controls the flatness of the amino acid

profiles (electronic supplementary material, §2). With a high

NeS, the profiles are very peaked, and with a low NeS, very

flat. We investigated the impact of different NeS values, in homo-

geneous models, where the same NeS is applied to all the

branches (figure 4a), and in heterogeneous models, where differ-

ent NeS are used for the branches in the ancestral and convergent

parts of the tree.

We performed several types of simulations. Simulation set-

tings are described in the results section (figure 4). For each

simulated codon position, one or two profiles are selected ran-

domly in our set of 263 non-redundant profiles and one or two

NeS values are chosen. One profile and one NeS value are

used for the ancestral branches, and the others for convergent

subtrees.
(b) Methods to detect foreground adaptive convergent
substitutions

In order to compare results across methods, it was necessary to

standardize their output. See the electronic supplementary

material for details.
(c) Pipeline and implementation of the methods
The results in this article were obtained using an all-in-one pipe-

line that encompasses simulations, detection and post-simulation

analysis, including the generation of the plots used for figures 3

and 4. The pipeline itself was implemented in OCaml using

bistro (https://github.com/pveber/bistro), a library to build

statically typed reproducible workflows. Special attention was

paid to reproducibility, in particular, by following the guidelines

given in [31]. Instructions to reproduce our results are given in

the electronic supplementary material.

The implementations of the methods used in the pipeline are

as follows:

— The multinomial method has been implemented de novo in

Python as well as the identical and topological methods
which additionally use executables from the bppsuite [30].

They are available via the pipeline.

— The TDG09 implementation we used is a slightly modified

version of the one available on github (table 1) where multi-

threading has been removed to avoid multithreading-related

problems. Results should be identical to the github version.

In addition, a script available in the pipeline repository was

written to adapt input alignments and trees to TDG09

expected formats.

— For diffsel, we used an optimized version of the original

implementation that is faster but implements the same

model. The implementation we used is available on github

(table 1). In addition, we use a different approach to establish

MCMC convergence. The original method compares two

MCMC chains using the tracecomp program from the Phylo-

Bayes suite [32]. Instead, we run only one chain, use the

Raftery and Lewis’s Diagnostic implemented in the R package

coda (v0.19-1) [33] after 200 iterations to estimate the number

of necessary iterations, then run as many iterations as 120% of

the estimated number and finally perform the same diagnostic

to check convergence.

— We used the github version of PCOC (table 1) as is.

— Regarding msd, we used a version modified by the author so

as to output a p-value for all sites, which we needed to com-

pute scores.

The experiments performed for this article—i.e. the whole

pipeline with 2000 sites for each hypothesis times 12 hypotheses

times four trees—took 5 days to run on a 24-core virtual machine.

Computation times observed during this run for individual

detection methods are given in table 1. Note that most of the

computing time for the whole pipeline is spent in diffsel tasks,

which are a lot more costly to compute than other methods.
(d) Using the methods on real alignments
We ran the methods on two previously published alignments:

the Amaranthaceae alignment (447 sites, 15 published conver-

gent sites) [24,28] and the Cyperaceae alignment (458 sites, 16

published convergent sites) [20]. The sites displayed in figure 5

are the sites proposed as possibly convergent in the original pub-

lications. Scores were obtained for each method and the sites

were ranked (tied elements get the highest rank).

https://github.com/pveber/bistro
https://github.com/pveber/bistro
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4. Conclusion
Our simulation results reveal the performance of existing

methods to detect two different types of convergent amino

acid evolution on simulated data, in isolation or combined

with each other. The simulations have been performed with

complex models of sequence evolution, parametrized so as

to generate datasets that resemble empirical data on a few

test statistics. However, some key assumptions underlying

those models are clearly unrealistic: first, each site is simu-

lated independently of the others. It would be useful to

incorporate epistatic constraints in our simulations as those

increase the number of background convergent substitutions

[16]. Such a model has been proposed [16,17], but the current

implementation can only work one branch at a time, not

along a tree topology.

Second, although it is an important part of the model, the

phenotype is here considered in an extremely naive fashion.

In particular, we have made no effort to incorporate a distri-

bution of fitness effects, whereby different sites would

contribute differently to the phenotype under consideration,

and therefore to the fitness [34]. Using such a distribution

would be key to understanding why some sites, those of

large effect, undergo convergent evolution while others,

with smaller effects, do not. It could also indicate to users

what effect sizes are large enough to be detected in a given

experimental setting, and what effect sizes are just too

small to be detected.

Third, several known confounding factors have not been

simulated. In particular, we have not incorporated bGC in

our simulations, and we have not incorporated population-

level processes that would allow polymorphisms to cross

speciation events (incomplete lineage sorting, ILS) and

would increase the levels of polymorphisms present at the

tips of the trees. We have not investigated several factors

that are likely to affect the ability of the methods to detect

convergent amino acid evolution such as tree size, tree

shape and branch lengths (but see [18]). Our simulation

pipeline can, however, be used to study such parameters.

With these caveats in mind, our simulations show that

existing methods are much better at detecting convergent

profile changes rather than convergent selection efficacy

rescalings. Further, detection of convergent profile changes

is improved when selection efficacy is high, possibly because

this increases the frequency of type 1 substitutions. They also

show that model-based methods, which explicitly rely on

profiles, perform better than other methods.

Moving forward, we can think of three complementary

directions for improving methods aiming to detect adaptive

convergent evolution in amino acid sequences. In all cases,

they will be based on profile methods anchored in a mechan-

istic modelling of sequence evolution. As a first direction, we

need to complement models of sequence evolution so that, in
addition to profile changes, we can also accurately detect

changes in selection efficacy and distinguish those adaptive

processes from confounding factors such as bGC and ILS.

Further anchoring the model in population genetics theory

may allow the interpreting of detected sites in terms of the fit-

ness advantage they provide. As a second direction, we need

to improve the computational efficiency of model-based

inference. This should be a major concern here, because data-

sets are getting larger every year; algorithmic or

mathematical developments will probably be necessary to

fit such complex models onto large datasets. In this respect,

one intriguing result of this study is the performance of the

multinomial method. This simplistic method ignores nearly

everything of the complexities of codon models of sequence

evolution and yet achieves a performance that rivals them

in some conditions. Correcting the multinomial method for

phylogenetic inertia could provide even better performances,

and it may be possible to improve it further while keeping its

excellent speed. Finally, we have only tested the methods’

ability to detect individual convergent sites; some methods

(e.g. msd) can also employ a statistical procedure to detect

convergent genes by combining site-wise evidence. Alterna-

tively, TDG09 has a procedure to control its false positive

rate, and diffsel estimates parameters based on entire align-

ments, not single sites. None of those features have been

tested but are crucial for application to real data, in particular,

for application to genome-wide datasets. Future analyses will

have to investigate these aspects.
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