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et Molécules, University of
Lille, 59000 Lille, France

2CNRS, Inserm, CHU Lille,
Institut Pasteur de Lille,
UMR9020-U1277 - CANTHER
- Cancer Heterogeneity Plas-
ticity and Resistance to Ther-
apies, University of Lille,
59000 Lille, France

3Lead contact

*Correspondence:
benjamin.pfeuty@univ-lille.fr

https://doi.org/10.1016/j.isci.
2022.104681
SUMMARY

Living cells use signaling and regulatory mechanisms to adapt to environmental
stresses. Adaptation to oxidative stress involves the regulation of many enzymes
in both glycolysis and pentose phosphate pathways (PPP), so as to support PPP-
driven NADPH recycling for antioxidant defense. The underlying regulatory logic
is investigated by developing a kinetic modeling approach fueled with metabolo-
mics and 13C-fluxomics datasets from human fibroblast cells. Bayesian parameter
estimation and phenotypic analysis of models highlight complementary roles for
several metabolite-enzyme regulations. Specifically, carbon flux rerouting into
PPP involves a tight coordination between the upregulation of G6PD activity
concomitant to a decreased NADPH/NADP+ ratio and the differential control
of downward and upward glycolytic fluxes through the joint inhibition of PGI
and GAPD enzymes. Such functional interplay between distinct regulatory feed-
backs promotes efficient detoxification and homeostasis response over a broad
range of stress level, but can also explain paradoxical pertubation phenotypes
for instance reported for 6PGD modulation in mammalian cells.

INTRODUCTION

The oxidative pentose phosphate pathway (oxPPP) is a fundamental pathway of glucose metabolism

involved in nucleotide biosynthesis and redox homeostasis (Stincone et al., 2015). Its role is prominent

following an oxidative stress to generate NADPH required for fueling antioxidant machinery and producing

biosynthetic precursors required for repairing DNA damage. A significant increase of metabolic flux in this

pathway is commonly observed in any living cells subjected to oxidative stress (Ben-Yoseph et al., 1996;

Ralser et al., 2007; LaMonte et al., 2013; Kuehne et al., 2015; Christodoulou et al., 2018; Nikel et al.,

2021). A common rationale for such metabolic flux rerouting relies on the acknowledged roles of NADP

as a coenzyme and NADPH as a competitive inhibitor of the first oxidation reaction of the oxPPP (Warburg

and Christian, 1936; Negelein andHaas, 1935; Eggleston and Krebs, 1974). The scavenging activity of gluta-

thione antioxidant is coupled to the oxidation of NADPH into NADP+, which is therefore prone to increase

G6PD activity and NADPH production. However, oxidative stress has also been shown to induce the allo-

steric or oxidative inhibition of diverse glycolytic enzymes such as PGI (Kuehne et al., 2015; Dubreuil et al.,

2020), GAPD (Ralser et al., 2007; Peralta et al., 2015), PK (Anastasiou et al., 2011), or TPI (Grüning et al., 2011,

2014). A complex pattern of regulation at the levels of both PPP and glycolysis raises the question of their

coordination for efficient metabolic rerouting.

The metabolic network combining glycolytic and pentose phosphate pathways displays a complicate

branching structure comprising both reversible and irreversible reactions, which obstructs intuitive under-

standing of multisite metabolic regulation. To investigate complex regulatory patterns, the kinetic

modeling framework is often used to disentangle the respective and cooperative roles of multiple feed-

back regulations (Relógio et al., 2011; Pfeuty et al., 2018; Sander et al., 2019). Several kinetic models

have addressed oxPPP dynamics with respect to a specific organism and experimental dataset (Thorburn

and Kuchel, 1985; Schuster and Holzhütter, 1995; Kerkhoven et al., 2013). Nowadays, advanced metabolo-

mics and fluxomics studies such as kinetic measurements of concentrations and isotopic labeling patterns

provide a rich material to build increasingly reliable and comprehensive kinetic models (Miskovic et al.,

2015; Foster et al., 2019; Hameri et al., 2019). Regarding the regulation of the oxidative stress response,

such data are available and have already been analyzed in terms of significance and ranking of diverse
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Figure 1. Modeling workflow

(A) Selected set of metabolic and regulatory pathways involved in oxidative stress response (see also Figure S1). The network comprises the glutathione,

glycolytic, and pentose phosphate pathways supplemented with a selected set of allosteric and oxidative regulations (red arrows).

(B) Modeling workflow from the integration of 13C fluxomics andmetabolomics data (Kuehne et al., 2015) to parameter estimation of kinetic model ensemble

and regulation analysis of transient response, dose response, and gain/loss-of-function phenotypes.
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regulatory hypothesis (Kuehne et al., 2015, 2017; Christodoulou et al., 2018). However, questions remain

about the interplay and cooperativity between those different regulatory mechanisms.

In the present study, we aim to build a class of kinetic models inferred from a comprehensive dataset asso-

ciated with the oxidative stress response of neonatal human skin fibroblasts (Kuehne et al., 2015). On the

one hand, the network structure of the model is chosen to fit with the available data and with the objective

to understand metabolic flux rerouting for H2O2 detoxification. On the other hand, flux analysis from 13C-

labeling data and parameter estimation from flux and concentration data are based on Monte Carlo sam-

pling methods (Saa and Nielsen, 2016; Valderrama-Bahamóndez and Fröhlich, 2019; Theorell and Nöh,

2020) so as generate a representative sample of kinetic models consistent with experimental measurement

values and their uncertainties. From such model ensemble, we perform a comprehensive set of analysis

regarding parameter distributions, transient dynamical responses, dose-response properties, and gain/

loss-of-function phenotypes, which portrays the manner how allosteric and redox regulations contribute

to the metabolic response upon oxidative stress. In particular, these analyses converge to the notion

that distributed allosteric regulation is required for efficient metabolic rerouting where regulatory mecha-

nisms display both complementary and cooperative roles.

RESULTS

Kinetic modeling of metabolic response to oxidative stress

Kinetic modeling of the early metabolic response to oxidative stress follows the conventional framework for

building kinetic models of metabolic pathways (Miskovic et al., 2015; Foster et al., 2019; Hameri et al., 2019).

The metabolic and regulatory network structure considered in this study is described in Figures 1A and S1

and the workflow from the integration of metabolomics and fluxomics data to model ensemble analysis is

recapitulated in Figure 1B and STAR Methods. The dynamic response of a metabolic network to an oxida-

tive stress perturbation can be described by a set of differential equations derived from the stoichiometry

and enzyme-kinetic reaction rates:

d x!
dt

= N 4!� x!;Sðt;HÞ; p!� (Equation 1)

where x! = ½xi = 1;16� represents the concentrations ofmetabolite species i,N denotes the stochiometricma-

trix, 4! = ½4j = 1;23� represents the reaction rates associated with enzymes j (see Table S1), Sðt;HÞ = HHðtÞ is
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theHeaviside step exposure to extracellular concentrations of H2O2, and p! = ½pk = 1;48� represents the enzy-
matic or regulatory parameters (see Table S2). The steady-state equation is given by N F

!ðX!;H; p!Þ = 0

where capitalized X
!

and F
!

denote steady-state concentration and flux vectors.

The main specificity of our class of kinetic metabolic model relates to its regulatory scheme. So far, kinetic

models of oxidative stress response investigate early intracellular responses at the levels of antioxidant

pathways (Adimora et al., 2010; Kembro et al., 2013; Benfeitas et al., 2014) or of glycolytic and pentose

phosphate pathways (Thorburn and Kuchel, 1985; Schuster and Holzhütter, 1995; Kerkhoven et al., 2013;

Christodoulou et al., 2018), leaving out the TCA cycle. The latter studies either did not include allosteric

and oxidative regulations or explored all possible metabolite-enzyme regulations. In contrast, our model

specifically addresses the respective roles of a subset of regulatory mechanisms that has been acknowl-

edged to contribute to some respect to rapid metabolic adaptation to oxidative stress, namely NADPH-

dependent inhibition of PPP enzymes (Yoshida and Lin, 1973; Holten et al., 1976; Christodoulou et al.,

2018), 6PG-dependent inhibition of PGI (Parr, 1956; Kahana et al., 1960; Gaitonde et al., 1989; Kuehne

et al., 2015; Dubreuil et al., 2020), oxidative inhibition of GAPD (Ralser et al., 2007, 2009; Peralta et al.,

2015; van der Reest et al., 2018), G6P-dependent inhibition of HK, and regulation of other NADPH-

consuming or producing reactions (Jeon et al., 2012; Lewis et al., 2014; Fan et al., 2014; Chen et al.,

2019). Notable exceptions have been to leave out the inhibitions of PK, TPI, or PFK1 enzymes (Anastasiou

et al., 2011; Grüning et al., 2011, 2014; Mullarky and Cantley, 2015) as depicted and explained in Figure S1.

Refined analysis of stress-induced flux redistribution

The stress-induced redistribution pattern of metabolic fluxes can be inferred without any knowledge about

kinetic parameters. Although an expected feature of such redistribution is the increased flux in the oxida-

tive branch of PPP, it remains unclear to which extent is such increase and whether the oxPPP flux is rather

directed toward nucleotide production or toward the nonoxidative branch of the PPP. To gain a quantita-

tive description of stress-induced redistribution of metabolic fluxes, we reanalyze 13C-labeling data

(Kuehne et al., 2015) using a stochastic simulation algorithm-based 13C metabolic flux analysis (SSA-based
13C-MFA described in STARMethods) to simulate the isotope labeling system (Thommen et al., 2022) and a

Monte Carlo sampling to determine posterior distribution of flux parameters. We obtain a distribution of all

reaction fluxes (Figures 2A and S2A) associated with an accurate fit of mass isotopomer data (see

Figures S2C and S2D). The size of confidence intervals associated with the estimated flux distribution de-

termines whether the flux can be estimated accurately enough to be used as a constraint for kinetic

modeling (Figure S2B).

The estimated flux distribution pattern in absence and presence of oxidative stress can be summarized for

the main branches of the metabolic network as depicted in Figures 2B and 2C. The metabolic state in the

unstressed condition corresponds to a glycolytic flux mode where a minor fraction (� 20%) of glucose

import flux is diverted toward oxPPP (Figure 2B). Exposure of H = 500 mM leads to a significant increase

in oxPPP flux up to � 95% which is further split between nucleotide production and nonoxidative PPP (Fig-

ure 2C). It also leads to a significant reduction of about 3-fold of metabolic flux in the lower glycolytic

branch below GAP. This value coincides with the fold-change reduction of PEP concentrations about 2.8

reported in the data (Kuehne et al., 2015). The decrease in PEP concentration, concomitant to that of

GAPD flux, justifies the model assumption of not considering oxidative inhibition of PK and allosteric

inhibition of TPI mediated by PEP (Figure S1).

In addition to the net fluxes associated with the branching architecture of the metabolic network, it is to

note that some directional fluxes could be estimated in the nonoxidative PPP reactions as well as in the

reversible PGI reaction, which are valuable information for kinetic model building.

Optimization and inference methods identify a plausible ensemble of kinetic models

Besides the redistribution of metabolic fluxes, oxidative stress response also induces rapid changes in

metabolic concentrations below the minute timescale (Kuehne et al., 2015), which together provides a valu-

able dataset to estimate the parameters of kinetic models described by Equations 1 and 3. Our parameter

estimation problem consists in estimating the values of 36 parameters (i.e., 12 parameters are fixed

including equilibrium constants to consider thermodynamic constraints (Li et al., 2011)) from a dataset

comprising 13 estimated values of fluxes and 12 measured values of concentration ratios at t = 5min.

The procedure combines two classes of global optimization methods, namely an evolutionary genetic
iScience 25, 104681, August 19, 2022 3



Figure 2. Stress-induced flux redistribution

(A–C) Mean and SD of the distribution of normalized flux rates obtained using stochastic stimulation algorithm (SSA) for
13C-MFA (see STARMethods details). Estimation is restricted to a set of elementary flux parameters (while other fluxes can

be derived from balance equations) where the index i indicates the enzyme and the index j indicates the directionality and

where estimation is performed for basal (B, blue) or stress (S, red) conditions. Triangles indicate parameter estimation that

is statistically significant based on the relative size of confidence interval distribution (see Figure S2B). (B and C)

Representation of the net flux rates in basal (B) and stress (C) conditions.
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algorithm and aMarkov Chain Monte Carlo (MCMC) algorithm, following a stepwise strategy recapitulated

in Figure 3A and detailed in STAR Methods. First, the nRMSE (Equation 9 in STAR Methods details) of

kinetic models whose parameters are randomly sampled (106 runs) lies with a 50% confidence interval

between 2.6 and 55.4, thus confirming the need of a parameter optimization procedure to find model pa-

rameters consistent with experimental data. Second, an evolutionary genetic algorithm is used as a prelim-

inary step to generate a sample of optimized models whose 50% confidence interval of nRMSE values lies

between 0.8 and 3. Third, a small subset of such local optimum solutions whose nRMSEðpÞ< 1 is used as

initial conditions of MCMC sampling algorithm of the parameter space. The parameter distribution ob-

tained with large enough sampling of � 106 accepted steps provides an estimation for parameter uncer-

tainty and defines a statistical ensemble of kinetic model that is called Popt and that is analyzed in details

in the following. Such statistical model ensemble is characterized with a 50% confidence interval of nRMSE

between 0.63 and 0.86 for which the estimated distributions of fluxes and concentration ratios fall within

the range of experimental uncertainties (Figures 3B and 3C) and whose R-squared values are respectively

R2 = 0:86G0:03 and R2 = 0:96G0:02. Parameter distributions shown in Figure 3D discriminate between

stiff and sloppy parameters for which 50% confidence intervals span from few percents to several order

of magnitude of parameter variations. Spectral analysis of correlation matrix confirms indeed the existence

of a few poorly estimated parameters generally associated with strong correlation between parameters of a

same reaction (see Figures S3A and S3B). Last, a dataset about dynamic and dose-dependent concentra-

tion responses has been retained to assess the predictive capability of the plausible set of model Popt (see

Figure S3C). The dynamical and dose response are overall well predicted with, respectively, R2 = 0:82G

0:05 and R2 = 0:48G0:04 due to sparse discrepancies such as a lower threshold of 6PG response.

In summary, the parameter estimation procedure generates a plausible set of kinetic models whose param-

eters show rather narrow distributions, except some parameters that have a little impact on data
4 iScience 25, 104681, August 19, 2022



Figure 3. Model selection and parameter estimation

(A) Whisker plots associated with random parameter set (106), optimized parameter set using an evolutionary genetic

algorithm (104), and parameter set (Popt ) sampled with MCMC algorithm (106).

(B and C) Whisker plots of the concentration ratio XiðH = 500Þ=XiðH = 0Þ for the model ensemble Popt (red) as compared

with the mean and SD of experimental values (black). (C) Whisker plots of a subset of normalized reaction fluxes Fi= FGLU

for themodel ensemblePopt (H = 0 in blue andH = 500 mM in red) as compared with themean and SD of estimated values

(black).

(D) Violin plots of parameters for the model ensemble Popt where the explored parameter space is represented in white

(non-gray).
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adjustment or that can be compensated by the change of other parameters. Importantly, most inhibitory

constant parameters (KiG6PD , KiGAPD and KiPGI) show a narrow distribution, confirming the role of these reg-

ulations in shaping the metabolic response to oxidative stress. In the following, we systematically perform

analysis on this model ensemble Popt to draw a statistical picture of the regulatory properties.

Transient metabolic responses following stress display multiphasic time courses

The characteristics of the transient dynamics after oxidative stress exposure and before reaching some

steady state give some preliminary insights about the respective contributions of passive and regulated

metabolic responses (Figures 4 and S4). The minute time resolution in the time series dataset seemed

not sufficient to identify trends arising at the second timescale (Ralser et al., 2009; Christodoulou et al.,

2018). In the simulations of the model ensemble Popt , metabolites within a same metabolic module share

a similar dynamic response profile (Figure 4). First, PPP metabolites display a rapid and significant mono-

phasic increase. Second, antioxidant NADPH and GSH metabolites display a fast and significant decrease
iScience 25, 104681, August 19, 2022 5



Figure 4. Transient dynamics of stress-induced metabolic responses

Temporal response of model ensemble Popt to a step of 500mMH2O2 representing the mean value (blue line), a subsample of 50 trajectories (gray line) and

the SD (gray shadow).

(A) Dynamic response of all metabolite species until 5 min.

(B–D) Temporal response of H2O2, G6P, and GAPD activity until 100 s, highlighting multiphasic and rapid adaptation responses.
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followed by a slower increase. Third, glycolytic metabolites show moderate changes where a fast decrease

seems followed by a slower increase. These different temporal response patterns are typically character-

ized with a biphasic response where a fast passive response to the perturbation is quickly followed by a

slower regulated response.
6 iScience 25, 104681, August 19, 2022



Figure 5. Dose-dependent profile of stress-induced metabolic response. Response to varying level H of extracellular H2O2 measured at 5 min (full

line) and 30 min (dashed line)

(A) Dose response in the glutatione pathway of H2O2

H , GPx, and GSH/GSSG ratio.

(B) Dose response of 6PG metabolite (other metabolites are shown in Figure S5).

(C) Dose response of the fluxes through enzymatic reactions G6PD, TKT, GAPD, and PRPP (normalized to glucose import rate FGLU ).
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The biphasic nature of the transient response is illustrated in the case of intracellular concentrations of

H2O2 and G6P (Figures 4B and 4C). H2O2 shows a sharp increase about several orders of magnitude whose

timescale within seconds relates to the basal degradation timescale kGR 3 KmGGPx � 10s. The time profile

of H2O2 later displays an overshoot in the time course where decrease of H2O2 mirrors the increase in GSH

and NADPH, which coincides with the accumulation of glycolytic metabolites including G6P. G6P shows

indeed a rapid decrease until � 10s before to increase again to eventually exceed its initial value (Fig-

ure 4C). The early decreasing phase of G6P dynamics coincides with an increased consumption through

G6PD associated with higher NADP+/NADPH levels while the late increasing phase can only be due to a

decreased glycolytic flux through PGI related to the inhibition of glycolysis at the levels of GAPD or PGI.

GAPD inactivation occurs indeed very rapidly within few seconds (Figure 4D), being a possible candidate

for the accumulation of G6P and detoxification of H2O2 occurring within 10th of seconds.

In summary, the biphasic response observed in simulations of the plausible set of models distinguishes

between a detoxification response in less than a second using the reservoir of GSH and NADPH and a

metabolic rerouting response from few to tenths of seconds involving the inhibition of glycolysis to quickly

restore high G6P levels.

Dose-response analysis identifies rate-limiting reactions

The redistribution pattern of metabolic fluxes is determined for a specific level of H2O2 for which 13C

labeling data were available. The oxPPP flux normalized to the glucose import flux, FG6PD=FGLU , is around

1 (Figure 2A) which is far below the maximal flux capacity associated with the full inhibitions of GAPD and

PRPP enzymes (i.e., FG6PD=FGLU % 6). To explore the detoxification and flux capacity at higher stress level,

we perform a dose-response analysis of the kinetic model ensemble Popt focusing respectively on the anti-

oxidant response, the concentration response, and the flux response (Figures 5 and S5). Simulation of the

metabolic response at 5 min as function of H shows a transition in the detoxification response around

500mM (Figure 5A). Below this value, the detoxification activity of GPx increases with oxidative stress level

thereby keeping low intracellular levels of H2O2 at the expense of an increased reduced state of gluta-

thione. Above this value, GPx activity saturates such that reaction flux is bounded and cannot increase

anymore to compensate for the increase in H2O2 production above some level. Beyond this threshold,

H2O2 is eliminated by catalase consistently with the idea of that the rate-limiting enzymes depend on intra-

cellular H2O2 concentrations (Makino et al., 2004; Ng et al., 2007). Another qualitative change of the meta-

bolic response is observed for large enough H2O2 (Figure 5B). 6PG does not quickly reach a steady state

and continues to slowly increase, as values differ between 5 min and 30 min. The appearance of a slower

equilibration dynamics of 6PG coincides with the saturated kinetics of 6PGD enzymatic reaction associated

with increased levels of 6PG below that value of Km6PGD . In parallel to the concentration changes of H2O2

and 6PG, the dose response of metabolic fluxes displays a gradual change from a glycolytic mode to oxPPP
iScience 25, 104681, August 19, 2022 7
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mode up to FG6PD=FGLU � 1:3> 1 indicating that carbon atoms can be recycled multiple times into oxPPP

(Figure 5C).

In conclusion, dose-response analysis identifies distinct classes of rate-limiting mechanisms, where satu-

rated activities of antioxidant enzymes restrain H2O2 detoxification for a given NADPH load while saturated

activities in PPP enzymes and a leak flux through PRPPs reaction restrain the maximal production rate of

NADPH.
Regulation analysis reveals complementary ranges of regulatory efficiencies

The model comprises several regulatory mechanisms likely to contribute to the metabolic flux rerouting

to oxidative stress. Some of these regulations directly act at the levels of reactions producing or

consuming NADPH notably in oxPPP (KiG6PD , Ki6PGD , KiNNH) while others operate at the level of glycolysis

(KiGAPD , KiPGI and KiHK ). The distribution of estimated Ki values provides a preliminary insight for the

need of regulation to reproduce experimental data. Computation of inhibitory strength Xj=Kij (= 1 for

enzymatic activity divided by two) over the model ensemble Popt reveals that stress condition is associ-

ated with significant inhibition of PGI and GAPD (Xj=Kij [ 1) but also significant disinhibition of G6PD

(Figure 6A). In contrast, other inhibitory strength is either low or poorly constrained such as the feedback

inhibition of HK enzyme.

A more comprehensive strategy to quantify regulatory effects consists in measuring gain of function or loss

of function associated with the deletion of a single regulatory mechanism (Kii/N), other things being

equal. For such aim, we define a sensitivity quantity D measuring the impact of modulating regulatory pa-

rameters on some functional output such as intracellular H2O2 (Equation 10 in STARMethods).DY
Ki/N larger

or lower to one indicates that deleting the regulation increases or decreases the steady-state level of Y. In

Figure 6B, removal of NADPH-dependent inhibition of G6PD and H2O2-dependent inhibition of GAPD

leads to higher H2O2 and lower NADPH, highlighting significant contributions of these regulations for

NADPH homeostasis and H2O2 detoxification. Surprisingly, deleting the inhibition of PGI has a minor

impact on metabolic outputs of interest, which can nevertheless be interpreted by a low net flux through

PGI (F+
PGI � FPGI

�) for a particular stress level (Figure 2C).

To investigate whether regulation efficiency indeed depends on oxidative stress level, we evaluate the

deleterious effect of removing a regulation (i.e., loss of function) as function of H (Figures 6C, 6D, and

S6). The dose-dependent profile of DH2O2

Kii
ðHÞ distinguishes different ranges of stress level for which each

regulation Kii is the most efficient (Figure 6C). First, the efficiency of G6PD upregulation is the highest

for low-to-moderate stress level because enzyme activity rather than G6P level is rate-limiting. Second,

the efficiency of 6PG-dependent inhibition of PGI (null for H = 500 in Figure 6B) peaks at intermediate

stress level as it requires both high enough stress for 6PG accumulation (see Figure 5B) and not-too-

high stress such that the downward flux prevails over the upward flux in PGI reaction (F+
PGI >FPGI

� or equiv-

alently FG6PD=FGLU < 1) (see Figure 5C). Third, the efficiency of GAPD inhibition culminates at

high oxidative stress consistently with its ability, in addition to restore G6P levels, to reverse glycolytic

flux coming from the nonoxidative branch of the PPP, thus making possible a flux cycling mode where

FG6PD=FGLU > 1.

To clarify how to reconcile the results that inactivation of GAPD starts at low intracellular oxidant levels

(i.e., H2O2 � KiGAPD � 2mM) and GAPD inactivation is the most effective for high oxidative stress (H>

400mM), we also compute response coefficients (Equation 11 in STAR Methods) as function of stress level

H (Figure 6D). The results show that the effect of Kigapd on 4oxPPP is already effective for low H values but

starts to increase for higher stress level. This dose-dependent effect might relate to the fact that GAPD

inhibition is more prone to promote a glycolytic flux toward G6P and oxPPP flux when the carbon flux in

the nonoxidative branch of PPP is already flowing from R5P to GAP (due to increased levels of R(u)5P

metabolites).

Besides complementary efficiency ranges, two regulations can also combine their effect in non-trivial man-

ners. For instance, G6PD upregulation leads to 6PG accumulation which potentializes the inhibition of PGI.

Alternatively, PGI inhibition reduces G6P consumption which potentializes the upregulation of G6PD.

These are second-order effects that are quantified by the computation of sensitivity factors DY
Kij ;Kik/N asso-

ciated with the combined deletion of two regulations (Figure 6E).
8 iScience 25, 104681, August 19, 2022



Figure 6. Regulation analysis based on gain/loss-of-function simulations

(A) Inhibitory strength Xi=Kij associated with the inhibition of enzyme j by metabolite i for H = 0 (blue) and H = 500mM

(red). Xi=Kij = 1 indicates that inhibition reduces enzymatic activity by 2-fold.

(B) Sensitivity factor DY
Pi
ðDKii = NÞ (Equation 10) of output Y with respect to several deletions of regulation Kii in abscisse,

where the outputs Y are the metabolic responses of H2O2, NADPH, and G6P to oxidative stress relative to basal levels.

Bars are mean values and error bars are standard deviations over the kinetic model ensemble Popt .

(C) Sensitivity factor DH202
Pi

ðH;DKii = NÞ of H2O2 with respect to deleted regulation KiGAPD , KiG6PD , KiPGI as function of H.

The dose-specific areas of regulatory effect associated with each deleted regulation (DðHÞ=Dmax > 0:5) is shown upper to

the panel.

(D) Response coefficients RH202
Pi

ðHÞ and RFoxPPP

Pi
ðHÞ (Equation 11) associated with modulated inhibition of upper and lower

glycolysis KiPGI and KiGAPD as function of H.

(E) Second-order sensitivity factor DY
Pi
with respect to the combined deletion of two regulations in comparison to the

single deletions.
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Ambivalent role of 6PGD enzyme in oxidative stress response

G6PD, 6PGD, and TKT enzymes are common targets of loss-of-function experiments to investigate oxida-

tive stress response (Kuehne et al., 2015; Nóbrega-Pereira et al., 2016; Wan et al., 2017; Sun et al., 2019;

Dubreuil et al., 2020). We therefore perform simulations of our model ensemble Popt while varying the

enzymatic activity parameter from 10-fold reduction to 10-fold increase. We record both the mean of intra-

cellular H2O2, the NADPH-producing oxPPP flux, and some concentration metabolites for the model

ensemble Popt (Figure 7). Expectedly, increase (resp., decrease) of kG6PD leads to a more (resp., less) effi-

cient oxidative stress response related to subsequent change in the oxPPP flux of NADPH production

(Figures 7A and 7B). In sharp contrast, modulation of k6PGD leads to amore surprising and ambivalent meta-

bolic response (Figures 7C and 7D). Depending on the level of stress and of modulation, we observe that

both the increase and the decrease of k6PGD can hamper the oxidative stress response, while decreasing

k6PGD can both weaken and improve oxidative stress response. These ambivalent phenotypes relate to

the dual effect of modulating k6PGD on G6PD activity itself but also on the increased level of 6PG that
iScience 25, 104681, August 19, 2022 9



Figure 7. Gain/loss of function associated with modulated activity of PPP enzymes

Sensitivity DY
X of output Y with respect to modulation of X (Equation 10) as a function of H and the extent of parameter modulation.

(A–F) The output variable Y is either H2O2 (A, C, and E) or NADPH-producing flux (B, D, and F) and themodulated parameter is either kG6PD (A and B), k6PGD (C

and D) or kTKT (E and F).
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inhibits PGI activity and upregulates both G6P level and G6PD flux. Specifically, reducing k6PGD can lead to

an imbalanced state associated with increased metabolic flux through 6PGD and decreased flux through

G6PD, whose relative effect determines the occurrence of loss or gain of function. Last, the modulation

of kTKT has a moderate effect on flux reprogramming restricted to higher stress level (Figures 7E and

7F), consistently with the dose-dependent increase of flux in nonoxidative PPP (Figure 5C) and its crucial

role for enabling a cycling flux where 4G6PD=4GLU > 1. It is to note that some trends observed for the con-

centration response of glycolytic and PPP intermediates in response to modulation of kG6PD and kTKT (see

Figure S7) are qualitatively consistent with knockdown experiments (Kuehne et al., 2015).

DISCUSSION

In this work, we use a kinetic modeling approach to investigate the interplay between several metabolic

regulations in that specific functional context of oxidative stress response. Data-driven kinetic modeling

framework is commonly used to identify large-scale patterns of metabolite-enzyme interactions and to

investigate the role of allosteric regulation in controlling metabolic phenotypes (Grimbs et al., 2007;

Link et al., 2013; Machado et al., 2015; Jahan et al., 2016; Reznik et al., 2017; Millard et al., 2017;
10 iScience 25, 104681, August 19, 2022
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Christodoulou et al., 2018; Britton et al., 2020). The present study purposely focuses on a selected set of

regulation proposed to contribute to the rapid and global changes of flux and concentration upon oxida-

tive stress, resulting in PPP upregulation and NADPH recycling to support antioxidant systems (Ralser et al.,

2007; Kuehne et al., 2015; Mullarky and Cantley, 2015; Stincone et al., 2015; Dick and Ralser, 2015; Christo-

doulou et al., 2018). By integrating metabolomics and fluxomics data, kinetic modeling reveals that the

observed concentration and flux responses require the co-operation of multiple regulatory mechanisms,

and that such co-operation follows a rationale of metabolic efficiency in terms of complementary and syn-

ergistic effects. Specifically, we highlight that the regulations of several PPP and glycolytic enzymes all fulfill

different but coordinated roles for stress-induced carbon flux rerouting.

Using NADP+ as a substrate and NADPH as a feedback inhibitor, G6PD enzyme is sensitively activated by

the decrease of NADP+/NADPH redox ratio associated with the oxidation of NADPH (Yoshida and Lin,

1973; Holten et al., 1976; Christodoulou et al., 2018). However, the efficiency of this sole regulatory mech-

anism is shown to be hampered by the concomitant decrease of G6P when oxPPP fluxes becomes of the

order of downward glycolytic flux. Mechanistically, such decrease of G6P can be compensated either by

a reduction of G6P consumption through PGI inhibition or an increase of G6P production through accumu-

lation of glycolytic intermediates itself mediated by the inhibition of glycolytic enzymes below F6P. In our

class of kinetic models built from a specific dataset, such inhibition is likely to be mediated by the oxidative

inactivation of GAPD, but the inhibition of TPI (Grüning et al., 2011) or PFK1 (Seo and Lee, 2014) could also

fulfill a similar flux rerouting role. Interestingly, inhibition of GAPD is more effective to promote oxPPP for

significant stress levels coinciding with a carbon flux in the nonoxidative branch of PPP flowing from accu-

mulated R5P to glycolytic intermediates. The inhibitory effect of a given glycolytic enzyme tightly depends

on its coupling with nonoxidative PPP reactions at the level of F6P and GAP metabolites. Each regulation

mechanism thus implements a specific flux rerouting strategy which results in complementary ranges of

efficiency but also synergistic cooperative effects, providing altogether a flexible metabolic adaptation

for diverse stress and cellular contexts. A systematic mapping between the regulation motifs and the

flux control properties (Machado et al., 2015; Britton et al., 2020) is needed to refine our understanding

of the role of regulation for maximizing NADPH yield over a broad range of perturbation and irrespective

to the metabolic state.

Besides insights into the regulatory logic, the modeling approach could also identify the main rate-limiting

processes for PPP flux increase and H2O2 detoxification. In the models, the maximal PPP flux generates up

to 3 mol of NADPH for 1 mol of glucose due to a cycling mode where each molecule of glucose can be

oxidized multiple times (Kuehne et al., 2015; Dick and Ralser, 2015; Britt et al., 2022), which is nevertheless

far from the maximal yield of 12 mol of NADPH in case of complete inhibition of PRPP and GAPD enzymes.

Besides the production of nucleotide precursors for DNA damage repair and of ATP for stress manage-

ment, we also identify several rate-limiting reactions including GPx enzyme (Ng et al., 2007), but also

6PGD enzyme. For instance, the tight regulation of 6PGD activity is critical for a functional accumulation

of G6P. Indeed, both upregulation and downregulation of 6PGD can penalize the oxidative stress response

by reducing PGI activity, either too weakly for enabling glycolysis shunt at low stress and too strongly for

enabling carbon recycling at high stress. Paradoxically also, the inhibition of 6PDG can both lower the

maximal flux capacity for NADPH production and promote the shunt of glucose into oxPPP through the

inhibition of PGI. This ambivalent effect explains the contradicting experimental observations where ge-

netic or pharmacological inhibition of 6PGD can either promote or decrease oxidative stress response

of mammalian cells depending on the context (Sun et al., 2019; Liu et al., 2019; Dubreuil et al., 2020).

Knowing that AMPK, a master regulator of many metabolic processes, is itself regulated by metabolites

in the oxPPP (Lin et al., 2015; Gao et al., 2019) and regulates glycolysis especially PFK1 (Wu and Wei,

2012), a better understanding of the regulated coordination between glycolysis and PPP is important for

a broad range of metabolic adaptations beyond oxidative stress response.
Limitations of the study

In the present study, kinetic models have been built from a specific experimental dataset associated with

neonatal human skin fibroblasts exposed to H2O2-supplemented medium, which questions whether un-

veiled regulatory patterns can be extrapolated to other types of cells and other sources of oxidative stress.

Although similar metabolic responses have been observed for different mammalian cell types and oxida-

tive stress sources (Kuehne et al., 2015; van der Reest et al., 2018; Christodoulou et al., 2019), there are also

evidences of alternative metabolic adaptation strategies which restricts the generalization of our findings.
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For instance, the feedback loop involving the regulation of PK and TPI glycolytic enzymes has also been

shown to contribute in oxidative stress response, especially in yeast (Anastasiou et al., 2011; Grüning

et al., 2011, 2014). Alternatively, oxidative stress response in some lower eukaryotic and prokaryotic organ-

isms has been shown to involve the Entner-Doudoroff pathway (Nikel et al., 2021) or the ribose salvage

pathway (Xu et al., 2013) which are both directly coupled to the PPP. Another limitation of the study inherent

to any kinetic model confronted to parameter identifiability issues relates to the possible biases related to

model abstractions and assumptions about the choice of reaction kinetics and of involved metabolic path-

ways leaving aside for instance large-scale metabolic activities and adaptations in the metabolism of ATP,

NAD(H), NADP(H), or glutathione.
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É., Van Laer, K., Nagy, P., Gräter, F., and Dick, T.P.
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METHOD DETAILS

SSA-based 13C-MFA

Stochastic simulation algorithm (SSA) for 13C-basedmetabolic flux analysis (13C-MFA) is a direct method for

the forward simulation problem to compute the dynamics and steady state of (mass) isotopomer distribu-

tion in isotopic labeling networks (Thommenet al., 2022). Fromagiven flux distribution 4!and initial labeling

state, SSA computes the temporal evolution of isotopomer numbers which are pooled to obtain the mass

isotopomer distributionmi;j of species j. The sample size parameter of the algorithm is U = 200. From the

experimental valuesmk
i;j;exp measured for ni mass isotopomer, nj species j in nk labeling conditions (Kuehne

et al., 2015), SSA is performed iteratively using aMCMC samplingmethod based on a randomwalkMetrop-

olis algorithm (see section quantification and statistical analysis) for obtaining the posterior distribution of

flux parameters. In such flux estimation procedure, the root mean square error function is given by:

RMSEð4!Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nm

X
i;j;k

�
mk

i;j;simð4!; tÞ � mk
i;j;expðtÞ

�2s
; (Equation 2)

where the measurement time is t = 10min and the number of experiments is Nm = ninjnk = 84 (ni = 3,

nj = 7, nk = 4).
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Differential equation model

The temporal behavior of the metabolic network is described by a differential equation system:

d½H2O2�=dt = 4Ox � 4Cat � 4GPx (Equation 3a)
d½GSH�=dt = 24GR � 24GPx (Equation 3b)
d½NADPH�=dt = 4G6PD +46PGD +4NNH � 4NHN � 4GR (Equation 3c)
d½G6P�=dt = 4HK � 4G6PD � 4PGI (Equation 3d)
d½6PGL�=dt = 4G6PD � 46PGL (Equation 3e)
d½6PG�=dt = 46PGL � 46PGD (Equation 3f)
d½Ru5P�=dt = 46PGD � 4RPI � 4RPE (Equation 3g)
d½X5P�=dt = 4RPE � 4TKT1 � 4TKT2 (Equation 3h)
d½R5P�=dt = 4RPI � 4TKT1 � 4PRPP (Equation 3i)
d½S7P�=dt = 4TKT1 � 4TLD (Equation 3j)
d½E4P�=dt = 4TLD � 4TKT2 (Equation 3k)
d½GLC�=dt = 4GLU � 4HK (Equation 3l)
d½F6P�=dt = 4PGI � 4PFK +4TAL +4TKT2 (Equation 3m)
d½FBP�=dt = 4PFK � 4ALD (Equation 3n)
d½DHAP�=dt = 4ALD � 4TPI (Equation 3o)
d½GAP�=dt = 4ALD +4TKT1 � 4TAL +4TKT2 +4TPI � 4GAPD (Equation 3p)

For reversible reactions, we also introduce directional fluxes satisfying the relation 4j = 4+
j � 4�

j where, by

convention, the + direction goes from G6P to GAP in glycolysis and from R5P to GAP in nonoxidative PPP.

Note that 4PFK represents the net flux of the two reactions between F6P and FBP, where 4+
PFK corresponds

to the PFK1 reaction and 4�
PFK corresponds to the FBPase reaction.

List of abbreviations for metabolites and enzymes

Glc, intracellular glucose; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphos-

phate; ALD, fructose 1,6 bisphosphate aldolase; DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde-

3-phosphate; PEP, phosphoenolpyruvate; 6PG, 6-phosphogluconate; 6PGL, 6-phosphogluconolactone; X5P,

xylulose 5-phosphate; R5P, ribose 5-phosphate; TPI, triosephosphate isomerase; Ru5P, ribulose 5-phosphate;

OX, oxidative stress E4P, erythrose-4-phosphate; S7P, sedoheptulose 7-phosphate; PEP, phosphoenolpyr-

uvate; GT, total glutathione; NT, total NADP; Cat, catalase GR, glutathione reductase; GPx, glutathione

peroxydase; Prx, peroxiredoxin; Trx, thioredoxin; HK, hexokinase; G6PD, G6P dehydrogenase; 6PGD, 6PG

dehydrogenase; GLase, 6-phosphogluconolactonase; PRPP, phosphoribosyl pyrophosphate; PGI, phospho-

glucose isomerase; PFK, phosphofructokinase (type 1); FBPase, fructose-1,6-bisphosphatase; GAPD, GAP de-

hydrogenase; PK, pyruvate kinase; TLD, transaldolase; TKT(1/2), transketolase (type 1/2); NNH, conversion from

NADP+ to NADPH; NHN, conversion from NADPH to NADP+.

Enzyme-kinetic reaction rates

Reaction rates 4ð ,Þ can be described by diverse kinetic laws (e.g., mass action, Michaelis-Menten, Hill,

Monod-Wyman-Changeux.). In the present work, we mainly use the generalized mass action kinetics,

eventually associated with inhibition:

MAðm;nÞ : 4
�
S; P; I; ki;Keqi;Kii

�
= ki

 Y
j = 1;m

Sj �
�
Keqi

�� 1
Y
j = 1;n

Pj

!
ð1+ I=KiiÞ� 1 (Equation 4)
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where m and n are the number of substrates and products.

However in the context of oxidative stress response, the significant increase of some metabolite

concentrations may require to take into account saturation constants that appear due to the formation

of intermediate complexes. A generalization of the uni-uni Michaelis–Menten equation can also be used

for irreversible and reversible uni/bi-substrate reaction kinetics (Rohwer et al., 2006):

MMðm;0Þ : 4ðS;P; ki;KmiÞ =
ki
Q

jSjQ
j

�
1+ Sj

�
Kmsj;i

� (Equation 5)

�Q � �� 1Q �

MMðm;nÞ : 4�S;P; ki;Keqi;Kmi

�
=

ki jSj � Keqi jPjQ
j

�
1+ Sj

�
Kmsj;i +Pj

�
Kmpj;i

� (Equation 6)

where j = 1 for unisubstrate reactions and j = 1; 2 for bisubstrate reactions, and where the denominator

contains numerous terms for each substrates and products. In some bisubstrate reactions, the assumption

that S � Km is made so as to reducing the number of terms and parameter in denominator. Specifically,

Michaelis constants are considered only for 6PG, H2O2, GSSG and GSH and in nonoxidative PPP reactions.

For GPx and GR reactions, the saturation terms follow a common scheme based on experimental data

(Benfeitas et al., 2014). A minimal description of saturation in nonoxidative PPP reactions consists in keep-

ing only product terms (which prevails in case where Si=Kmi larger than one) and assumes a sameMichaelis

constant for substrates and products.

The oxidative stress-dependent inhibition of NADPH consumption related to putative biosynthetic shut-

down (Fan et al., 2014) is modeled as an effective rate constant kNADPH=
�
1 + ½H2O2 �

KiNNH

�
. As well, a simplified

description of the oxidative inhibition of GADP enzyme considers a two-state enzyme (non-oxidized and

oxidized) where the back-and-forth transition rates depend on the concentration of H2O2 and GSH,

respectively:

d½GAPD�=dt = f1ð½GSH�Þð½GAPDTOT � � ½GAPD�Þ � f2ð½H202�Þ½GAPD� (Equation 7)

which becomes following quasi-steady-state approximation and linear approximation of regulatory func-

tions f1 and f2:

½GAPD�
GAPDTOT

=
1

1+ f2=f1
z

�
1+

½H2O2�½GT �
½GSH�KiGAPD

	� 1

(Equation 8)

from which we derive the expression of 4GAPD given in Table S1. The reaction kinetic law associated to each

enzymatic reaction 4jð ,Þ is recapitulated in Table S1.
Parameter setting and estimation

Model includes 48 parameters including kinetic constants ki, equilibrium constants Keqi , Michaelis (satura-

tion) constants Kmi, inhibitory constants Kii, where i denotes the enzyme, but also conserved quantities ½NT �
and ½GT �. To restrict and ease the parameter estimation process, parameters are boundedwithin a restricted

range of realistic values as it is often assumed (Christodoulou et al., 2018). An exception is that 8 equilibrium

constant values Keqi have been fixed based on estimated physiological standard free energy of correspond-

ing reactions (Li et al., 2011). In addition, two saturation constants Kmi and the conserved quantities ½GT � =
2½GSSG�+ ½GSH� and ½NT � = ½NADPH�+ ½NADP + � have also been fixed based on typical values (Benfeitas

et al., 2014) and the modeling requirement to reduce parameter space and to constraint parameter estima-

tion. A specific model of index j is denoted as p!j
and a set k of model j = 1;Nk is denoted Pk .

Given a parameter space P where parameter values are restricted by upper and lower bounds (listed in

Table S2), the parameter estimation problem consists in scoring parameter set p!˛P by using a normalized

root mean square error (nRMSE) :

nRMSE
�
p! ˛ P� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NR +NF

 X
i = 1;NR

�
FCi;sim

�
p!� � FCi;exp

DFCi;exp

	2

+
X

i = 1;N4

�
Fi;sim

�
p!� � Fi;exp

DFi;exp

	2
!vuut ;

(Equation 9)
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where FCi = log2

�
XiðH = 500Þ
XiðH = 0Þ

�
are concentration ratios in log scale and Fi are the estimated fluxes of reaction

i in basal condition and in stress condition. Experimental data consists in NR = 12 and NF = 13 values of

concentration ratio FCi and estimated fluxes Fi with a typical standard deviation DFCi = 1 and DFi that

is estimated from 13C-MFA.

This error function is used first with a population-basedmetaheuristic algorithm called evolution strategy to

quickly explore and sample local solutions (Pfeuty and Thommen, 2016). Starting with a pool of NI = 20

parameter vectors of random values (bounded uniform distribution), the algorithm involves three steps:

(i) a reproduction step where a parent is randomly selected to be duplicated without applying any fitness

criterion at this stage, and to generate NI offspring; (ii) a mutation step where the parameters of each

offspring are modified with a probability pm through multiplication by a factor 10r , where r ˛ ½ � am; am�
is a random number of uniform distribution; (iii) a selection step where the nRMSE of the NI offspring

are evaluated, and only the NI highest-fitness individuals in the pool of 2NI parameter sets (parents and

offspring) are selected to generate the parents of the next generation. Finally, the optimization process

terminates after a maximal number of generations (NG = 104) where a local minimum of nRMSEðp!Þ is usu-
ally reached. This evolution is repeated for a broad set of random initial conditions to obtain a first set of

optimized models, some of which satisfies the plausibility criteria nRMSE < 1. The lowest-nRMSEmodel p!1

is used as an initial condition of the MCMC algorithm (see section quantification and statistical analysis)

used to sample a posterior probabilistic distribution of parameters. After a transient, a sample of 106

accepted values are recorded to converge to a representative model ensemble associated to quasi-

stationary distributions, while a random subsample of 105 models is used for the statistical analysis of

model behaviors.

Sensitivity analysis

Sensitivity quantities are defined to evaluate the effect of parameter changes on stress response behaviors.

Amodel ensemble is defined by a set of model p!j = 1;nM . For a given kinetic model of parameter values p!j
, a

parameter pj
i is multiplied by a factor Dpi. A sensitivity factor that informs about the impact of a given

parameter pi on the output state variable Y in response to a stress level H is given by:

DY
pi

�
H;Dpi

�
=

Y
�
H; q!j�

Y
�
H; p!j�; (Equation 10)

where qj
i = Dpip

j
i. The choice of parameter pi and variation Dpi are selected (i) to evaluate the impact of a

regulatory mechanism (i.e., pi are inhibitory parameters Kii andDpi = N) and (ii) to mimmic overexpression

or knockdown experiments (i.e., pi are enzymatic activity rates ki and 0:1<Dpi < 10). Another class of sensi-

tivity quantities are response coefficients:

RY
pi
ðHÞ =

vlnY ðHÞ
vlnpi

; (Equation 11)

The relation between both sensitivity quantities is given by RY
pi
ðHÞ = limDpi/1

h�
DY
pi
ðH;DpiÞ � 1

�
=ðDpi � 1Þ

i
.

Model updating procedure

From a methodological perspective, the modeling approach relies on a systematic procedure for model

inference and parameter estimation, which deliberately considers more parameters than data to provide

the possibility to update the probability distribution as additional data becomes available or as additional

mechanistic hypothesis are tested. MCMCmethod is very well adapted for suchmodel updating procedure

(Beck and Au, 2002). Specifically, MCMC sampling can be restarted from a given parameter distribution

with a modification of the score function and of the sample space. By testing the predictive capacity of

the model on dataset that are not included in the model inference procedure, we could indeed identify

sparse phenotypes poorly described by the model. An example of model improvement would be to

add the corresponding dataset into the monte-carlo sampling procedure which might slightly shift the

parameter set of solution to be consistent with these new dataset.

QUANTIFICATION AND STATISTICAL ANALYSIS

Monte Carlo Markov Chain (MCMC) method

Monte Carlo Markov Chain (MCMC) method is used for estimating the distribution of (i) metabolic flux from
13C labeling data and (ii) kinetic model parameters from concentration data and flux estimation. These two
18 iScience 25, 104681, August 19, 2022
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computational problems are both defined by a set of np parameters q
!
, a set of nd data values y! and a root

mean square error rð q!; y!Þ measuring the difference between data predicted by the parameters and the

actual data (see Equations 2 and 9). MCMC simulation methods use Monte Carlo sampling techniques

to build Markov chains that converge to the posterior distribution of parameters q associated to data Y.

For both problems, we consider a bounded uniform distribution for the prior. For sampling, a Metrop-

olis-Hasting algorithm is used to generate the random walk Markov chain based on (i) a Gaussian jumping

distribution and (ii) an acceptance rate function a that is the ratio of likelihood associated to the next

parameter state and actual parameter state. Typically, the likelihood function can be written based on

the expected or assumed distribution of observed data, as LðY ;qÞ = ð2psÞ�n=2exp
�
� n r2

2s2

�
. Specifically,

we use the acceptance rate a = min
�
1;exp

�
� r2

i + 1
� r2i

2s2

��
where the variances of jumping distribution and

likelihood function s are chosen to provide reasonable acceptance rate (> 10%) and convergence rate. a.
R-squared

Although R-squared is commonly used to assess the goodness-of-fit for a regression model, this quantity

can be applied, in addition to RMSE, to assess the fitting and prediction score for the ordinary differential

equation models without requiring knowledge about experimental uncertainties:

R2
�
p! ˛ P� = 1 �

P
i = 1;NY

�
Yi;sim

�
p!� � Yi;exp

�2
P

i = 1;NY

�
Y i;exp � Yi;exp

�2 (Equation 12)

where Yi;exp = 1
NY

P
i = 1;NY

Yi;exp and Y represents some measurement such as fold-change concentrations.
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