
Spatial and Temporal Variations of Crop Fertilization and
Soil Fertility in the Loess Plateau in China from the 1970s
to the 2000s
Xiaoying Wang1,2, Yanan Tong1,2*, Yimin Gao1, Pengcheng Gao1, Fen Liu1, Zuoping Zhao1, Yan Pang1

1 College of Natural Resources and Environment, Northwest A&F University, Yangling, China, 2 Key Laboratory of Plant Nutrition and the Agri-environment in Northwest

China, Ministry of Agriculture, Yangling, China

Abstract

Increased fertilizer input in agricultural systems during the last few decades has resulted in large yield increases, but also in
environmental problems. We used data from published papers and a soil testing and fertilization project in Shaanxi province
during the years 2005 to 2009 to analyze chemical fertilizer inputs and yields of wheat (Triticum aestivum L.) and maize (Zea
mays L.) on the farmers’ level, and soil fertility change from the 1970s to the 2000s in the Loess Plateau in China. The results
showed that in different regions of the province, chemical fertilizer NPK inputs and yields of wheat and maize increased.
With regard to soil nutrient balance, N and P gradually changed from deficit to surplus levels, while K deficiency became
more severe. In addition, soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available
potassium increased during the same period. The PFP of N, NP and NPK on wheat and maize all decreased from the 1970s to
the 2000s as a whole. With the increase in N fertilizer inputs, both soil total nitrogen and alkali-hydrolysis nitrogen increased;
P fertilizer increased soil available phosphorus and K fertilizer increased soil available potassium. At the same time, soil
organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium all had positive
impacts on crop yields. In order to promote food safety and environmental protection, fertilizer requirements should be
assessed at the farmers’ level. In many cases, farmers should be encouraged to reduce nitrogen and phosphate fertilizer
inputs significantly, but increase potassium fertilizer and organic manure on cereal crops as a whole.
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Introduction

China has only 9% of the world’s arable land and feeds nearly

22% of the world population [1–2]. This depends heavily on

increasing grain production with the use of chemical fertilizers.

Before the 1970s, farmers maintained the original agricultural

practices, such as crop rotation, diversified plantation, manure

application and legume crop integration, for soil fertility mainte-

nance and pest and disease control. Since the late 1980s, the

practice of applying organic manure in arable cropping systems

has nearly come to an end [2–6]. From then on, almost all

available organic manure has been used on vegetables and fruit

trees, while the nutrients for cereal crops have been mainly in the

form of chemical fertilizers. From 1970 to 2010, total annual grain

production in China increased from 240 to 546 million tons (a

128% increase). However, inorganic fertilizer application in-

creased from 3.51 to 55.62 million tons (a 1485% increase) over

the same period [7].

Soil quality indicators are measurable soil properties that benefit

food production or other specific functions, including physical,

chemical and biological characteristics [8]. The increase or

decrease in single soil index values, such as soil organic matter,

total nitrogen and available nutrients, amplitude of variation and

variation in time, can be used as a monitoring index for

agricultural land management [9–11]. Given the spatial and

temporal variation in characteristics of soil quality, it is necessary

to compare or analyze two or more phase changes to understand

the nature and mechanisms of soil quality [12].

Farmland fertilization is one of the most effective ways to

maintain soil fertility and increase crop yields [13–15]. For this

reason, information on household fertilization levels is of great

value. In addition, wheat and maize are two of the most important

food crops throughout the world, and they account for 51.7% of

the total area for food crops and 53.5% of the total food

production in 2010 in China [7]. Chemical fertilizer consumption

data from official Chinese statistics do not contain information on

usage for each kind of crop. It is imprecise to analyze and evaluate

fertilizer efficiency using total amounts, because the distribution

and application of fertilizer on specific crops are ambiguous [16].

Thus, the objectives of this study were to: (1) reveal the spatial

and temporal variations of chemical fertilization and yields of

wheat and maize at the farmers’ level from the 1970s to the 2000s

in the Loess Plateau in China; (2) reveal the spatial and temporal

variations of soil fertility over the same period; and (3) reveal the

relationships among fertilizer inputs, crop yields and soil fertility.

PLOS ONE | www.plosone.org 1 November 2014 | Volume 9 | Issue 11 | e112273

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0112273&domain=pdf


Materials and Methods

Ethics Statement
This study has been approved by the Agricultural Technology

Extension Center of Shaanxi province, which is responsible for

fertilization and soil fertility in Shaanxi province. All data in this

study can be published and shared.

Study area
Shaanxi province (Figure 1) is located in the middle reaches of

the Yellow River and the upper reaches of the Yangtze River of

the eastern part of northwest China, and it falls between latitudes

31u429 and 39u359N, and longitudes 105u299 and 111u159E. The

area is 2.0586105 km2, extending about 880 km from north to

south and 160 to 490 km from east to west. The whole province

from north to south can be divided into four agro-ecological zones,

which include the Loess Plateau area of northern Shaanxi, the

Weibei dry plateau, the Guanzhong irrigated area and the Qin-Ba

mountain area of southern Shaanxi; the previous three regions

belong to the Loess Plateau and in this study they are abbreviated

as North, Weibei, and Guanzhong, respectively. The Loess

Plateau region in China, covers five provinces (including Shaanxi

province), stretches over an area of 0.62 million km2, and consists

of typical semiarid and arid areas with rainfed farming [17–18].

Winter wheat is planted in the regions of Weibei and Guanzhong,

while summer maize is planted in the Guanzhong region and

spring maize in the North and Weibei regions. Main soil types and

climatic conditions in the different regions are shown in Table 1.

Data sources
The data from the 1970s to the 1990s was extracted from 380

published papers reporting household fertilization and soil fertility

in the study area; the screening process and results are shown in

Figure 2. Data from the 2000s was collected from the project ‘‘soil

testing and formulated fertilization in Shaanxi province during the

years 2005 to 2009.’’

Statistics
The data were analyzed by EXCEL software. In this study, we

used the following equations to analyze the soil nutrient balance

and partial factor productivity (PFP) of fertilizer:

Soil nutrient balance~nutrient input rate

{nutrient output rate
ðEq1Þ

where the nutrient input rate represents chemical fertilizer input,

and the nutrient output rate represents amounts extracted in crop

products and above ground biomass;

PFP~Y=F ðEq2Þ

where Y represents crop yields, and F represents chemical fertilizer

input.

Results

Spatial and temporal variations of chemical fertilization
and yields of wheat and maize at the farmers’ level in
different regions of Shaanxi province

The average chemical fertilizer NPK inputs for both wheat and

maize at the farmers’ level increased for decades in the different

regions (Figure 3). In the Weibei and Guanzhong regions,

chemical fertilizer N inputs for wheat in the 1970s were 45 kg

ha21 and 52 kg ha21, respectively, and in the 2000s they increased

to 185 kg ha21 and 195 kg ha21, respectively. In these two

regions, chemical fertilizer P2O5 inputs were 45 kg ha21 and

46 kg ha21 in the 1970s and they increased to 112 kg ha21 and

115 kg ha21 in the 2000s. In the 1980s, farmers started to use the

chemical fertilizer K2O for wheat, which was increased from

0.5 kg ha21 and 2.3 kg ha21 to 22.8 kg ha21 and 22.5 kg ha21,

respectively, during the 1980s to the 2000s in the two regions. For

maize in the North, Weibei and Guanzhong regions, chemical

fertilizer N inputs were 48 kg ha21, 89 kg ha21 and 36 kg ha21

and they increased to 237 kg ha21, 223 kg ha21 and 244 kg ha21,

respectively, from the 1970s to the 2000s. Unlike wheat, from the

1980s onward farmers were awarded for using the chemical

fertilizers P2O5 and K2O for maize, and their use has increased

greatly.

In accordance with increased chemical fertilizer NPK inputs

(Figure 3), the average yields of wheat and maize showed

increasing trends in the different regions over the four decades

(Figure 4). In the Weibei and Guanzhong regions, from the 1970s

to the 2000s, yields of wheat changed from 1883 kg ha21 and

3377 kg ha21 to 4269 kg ha21 and 6437 kg ha21, with increase

rates of 127% and 91%, respectively. In the North, Weibei and

Guanzhong regions, yields of maize changed from 3636 kg ha21,

2519 kg ha21 and 4232 kg ha21 to 7867 kg ha21, 7077 kg ha21

and 6886 kg ha21, with increase rates of 116%, 181% and 63%,

respectively, for the same period.

Spatial and temporal variations of soil nutrient balance
from the inputs and uptake on wheat and maize plots in
different regions of Shaanxi province

Because the farmers tended not to use organic manure for cereal

crops, especially from the 1980s onward, the soil nutrient inputs

only include chemical fertilizers, and the nutrient uptakes include

those extracted in crop products and above ground biomass. The

nutrient balance was calculated as the difference between the

average input and uptake (Eq. 1). Other losses, from leakage and

gaseous loss, were not included in these calculations. In the 1970s,

N was deficient on wheat and maize plots in the different regions

(except for maize plots in the Weibei region). Then from the 1980s

N was consistently at surplus levels, and it displayed an upward

trend with time. In the 2000s, N surpluses on wheat plots were

74 kg ha21 and 29 kg ha21 in the Weibei and Guanzhong regions,

respectively; meanwhile N surpluses on maize plots were 64 kg

ha21, 67 kg ha21 and 93 kg ha21 in the North, Weibei and

Guanzhong regions, respectively (Figure 5).

In the Weibei and Guanzhong regions, the amount of surplus

P2O5 on wheat plots increased each year from the 1970s to the

2000s, and surplus amounts increased from 24 kg ha21 and 9 kg

ha21 to 65 kg ha21 and 44 kg ha21, respectively. In the North,

Weibei and Guanzhong regions, P2O5 was deficient on maize

plots in the 1980s; then it gradually reached surplus levels until the

2000s with the increased application of chemical fertilizer

phosphorus. The balance of P2O5 on maize plots increased from

234 kg ha21, 27 kg ha21 and 235 kg ha21 to 29 kg ha21, 28 kg

ha21 and 211 kg ha21, respectively, in the three regions from the

1980s to the 2000s. It is worth noting, that winter wheat and

summer maize were in a rotation system in the Guanzhong region,

so total P2O5 was in surplus in this region in the 2000s and the

amount was 33 kg ha21 (Figure 5).

Although farmers have been awarded for using K2O chemical

fertilizer in recent years, the amount used was still small (Figure 3),

and it was usually from compound fertilizers. So K2O deficiency

has become more serious (Figure 5). In the 2000s, K2O deficiency

(Eq 1)

(Eq 2)
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Figure 1. Map of the study area.
doi:10.1371/journal.pone.0112273.g001

Table 1. Main soil types and climatic conditions in the different regions.

Region Main soil types Annual mean temperature (6C) Annual precipitation (mm)

North Castanozems, Sierozems, Loess soils 8,11 275,590

Weibei Black loess soils, Loess soils 9,13 530,630

Guanzhong Cinnamon soils 10,14 600,720

doi:10.1371/journal.pone.0112273.t001
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levels on wheat plots were 2102 kg ha21 and 2165 kg ha21 in

the Weibei and Guanzhong regions, respectively; meanwhile K2O

deficiency levels on maize plots were 2179 kg ha21, 2137 kg

ha21 and 2147 kg ha21 in the North, Weibei and Guanzhong

regions, respectively.

Spatial and temporal variations of soil fertility in different
regions of Shaanxi province

In the different regions of Shaanxi province, soil fertility

indexes, including organic matter, total nitrogen, alkali-hydrolysis

nitrogen, available phosphorus and available potassium, all

increased from the 1970s to the 2000s. Simultaneously, each of

these five indicators increased from the north to the south during

the same period (North,Weibei,Guanzhong) (Figure 6). In the

North, Weibei and Guanzhong regions from the 1970s to the

2000s, organic matter varied from 0.57%, 1.01% and 1.12% to

0.83%, 1.26% and 1.50%, with increase rates of 46%, 26% and

43%, respectively; total nitrogen varied from 0.04%, 0.07% and

0.07% to 0.05%, 0.08% and 0.09%, with increase rates of 42%,

9% and 14%, respectively; alkali-hydrolysis nitrogen varied from

29.95 mg kg21, 20.43 mg kg21 and 30.81 mg kg21 to 35.20 mg

kg21, 58.70 mg kg21 and 68.40 mg kg21, with increase rates of

18%, 187% and 122%, respectively; available phosphorus varied

from 4.98 mg kg21, 7.13 mg kg21 and 9.90 mg kg21 to 8.10 mg

kg21, 14.60 mg kg21 and 26.40 mg kg21, with increase rates of

63%, 105% and 167%, respectively; available potassium varied

from 85.60 mg kg21, 56.78 mg kg21 and 111.75 mg kg21 to

99.60 mg kg21, 160.70 mg kg21 and 170.40 mg kg21, with

increase rates of 16%, 183% and 52%, respectively.

Relationships among fertilizer inputs, crop yields and soil
fertility in different regions of Shaanxi province

Because farmers used little P and K fertilizers in the 1970s and

1980s (Figure 3), only PFP of N, NP and NPK were calculated in

the study (Eq. 2). The PFP of N, NP and NPK on wheat and maize

decreased from the 1970s to the 2000s as a whole in the different

regions (Table 2). The PFP of N on wheat in the Weibei and

Guanzhong regions were 42 kg kg21 and 65 kg kg21, respectively,

in the 1970s, which decreased to 23 kg kg21 and 33 kg kg21,

respectively, in the 2000s. Meanwhile the PFP of N on maize in

the North and Guanzhong regions were 76 kg kg21 and 118 kg

kg21, respectively, and they decreased to 33 kg kg21 and 28 kg

kg21 from the 1970s to the 2000s. In the Weibei region, the PFP of

N on maize changed slightly from 28 kg kg21 to 32 kg kg21,

which resulted from the use of high N inputs relative to the other

two regions (up to 89 kg ha21) in the 1970s (Figure 3). This led to

Figure 2. The screening process and results for literature from the 1970s to the 1990s.
doi:10.1371/journal.pone.0112273.g002
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Figure 3. Variations of chemical fertilization for wheat and maize at the farmers’ level in different regions of Shaanxi province
(error bars show standard deviations).
doi:10.1371/journal.pone.0112273.g003
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a low PFP of N in that period. The PFP of NP on wheat decreased

to 14 kg kg21 and 21 kg kg21 in the Weibei and Guanzhong

regions, respectively; in maize it decreased to 24 kg kg21, 23 kg

kg21 and 24 kg kg21 in the North, Weibei and Guanzhong

regions, respectively. Similar to N and NP, the PFP of NPK on

wheat decreased to 13 kg kg21 and 19 kg kg21 in the Weibei and

Guanzhong regions, respectively; in maize it decreased to 23 kg

kg21, 20 kg kg21 and 22 kg kg21 in the North, Weibei and

Guanzhong regions, respectively (Table 2).

In order to find relationships among soil fertility, crop yields and

fertilizer rates, we used the Weibei region as an example. The

values of fertilization, crop yields and soil fertility did not have one

to one correspondence from the 1970s to the 1990s, so their mean

value from each period was examined (Figures 7 and 8). Although

the sample size was small and some relationships did not reach

significant levels, with the increase in N fertilizer inputs, soil total

nitrogen and alkali-hydrolysis nitrogen both increased. P fertilizer

increased soil available phosphorus and K fertilizer increased soil

available potassium significantly (Figure 7). At the same time, soil

organic matter, total nitrogen, alkali-hydrolysis nitrogen, available

phosphorus and available potassium all had positive impacts on

wheat yields (Figure 8).

Discussion

Fertilizer use efficiency of both wheat and maize decreased from

the 1970s to the 2000s as a whole in the Loess Plateau of Shaanxi

(Table 2), which was consistent with national trends. Nitrogen

fertilizer, phosphorus fertilizer and potassium fertilizer use

efficiencies were 30–35%, 15–20% and 35–50%, respectively,

from 1981 to 1983, and the average values decreased to 28%, 12%

and 32% on cereal crops by 2001 to 2005 in China [19]. This

suggested that the effect of chemical fertilizers on increasing grain

production had diminished. The PFP of N on wheat in the Weibei

and Guanzhong regions decreased to 23 kg kg21 and 33 kg kg21,

respectively, and the PFP of N on maize in the North, Weibei and

Guanzhong regions were 33 kg kg21, 32 kg kg21 and 28 kg kg21,

respectively, in the 2000s (Table 2). Zhang et al. [19] reported

average PFP values of N for wheat and maize of 43 kg kg21 and

52 kg kg21, respectively, in China. Dobermann and Cassman [20]

reported a global average PFP of N for cereals of 44 kg kg21. This

indicated that nitrogen use efficiency on wheat and maize in the

Loess Plateau of Shaanxi was much lower than the current

national and global levels. Excessive fertilization has been the main

reason for low fertilizer use efficiency in China [19]. In addition,

Liu et al. [21] reported that in agro-ecosystems, surplus N

increased from 1978 to 2005 throughout the country, and our

findings on the Loess Plateau were consistent with this trend. For

example, in the 2000s, chemical fertilizer N inputs on maize were

237 kg ha21, 223 kg ha21 and 244 kg ha21 in the North, Weibei

and Guanzhong regions, respectively (Figure 3); meanwhile N

surpluses on maize plots were 64 kg ha21, 67 kg ha21 and 93 kg

ha21, respectively, in the three regions (Figure 5). This indicated

that excessive N fertilization was a serious problem in the Loess

Plateau, and the same phenomenon has been reported many times

in China, for example, in Beijing [16,22], Shandong [1,23–25],

and Jiangsu [26–27]. Excessive N fertilization not only wastes

resources, but also leads to many serious environmental problems

[28–31] including nitrate pollution of groundwater [32–37],

eutrophication of surface water [38–39], greenhouse gas emissions

and other forms of air pollution [40–42], acid rain [43–46], soil

acidification [36,47–50] and so on. On the other hand, a lower

fertilization rate does not necessarily reduce crop yields [51].

Many studies have shown that reducing the current N application

rates by 30 to 60% could increase N fertilizer efficiency, while still

maintaining crop yields and substantially reducing N losses to the

environment [31,52–53].

Like nitrogen, phosphate fertilizer inputs (Figure 3), P surpluses

(Figure 5) and soil available phosphorus levels (Figure 6) all

increased in the last 40 years on the Loess Plateau in Shaanxi.

Similar results have been noted in north China and all over the

country [25,54]. Yang et al. [55] reported that maintaining soil

available phosphorus at a relatively high level requires a P

application rate of about 80 kg ha21 yr21 in winter wheat/

summer maize rotation systems in the Guanzhong region. Our

Figure 4. Variations of yields for wheat and maize at the farmers’ level in different regions of Shaanxi province (error bars show
standard deviations).
doi:10.1371/journal.pone.0112273.g004
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Figure 5. Variations of soil nutrient balance on wheat and maize plots in different regions of Shaanxi province.
doi:10.1371/journal.pone.0112273.g005
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results showed phosphate fertilizer inputs of up to 163 kg ha21 in

winter wheat/summer maize rotation systems in this region in the

2000s (Figure 3). This indicated that P fertilization was also

excessive, which not only wasted resources but also led to many

serious environmental problems [28–31]. Phosphate fertilizer

production consumes more than 80% of the phosphate rock

resources [56], but phosphate rock resources are limited and high

grade material is in short supply [57]. In addition, the phosphate

fertilization utilization ratio of the main crops ranged from 7% to

20%. It averages 12% in China [19], which has led to phosphorus

accumulation in the soil, increasing the risk of non-point source

pollution from surface runoff [58]. Agricultural non-point source

pollution has become an increasingly serious problem in China,

primarily because it leads to eutrophication.

In spite of increased K fertilizer inputs on wheat and maize in

recent years (Figure 3), the soil K balance has become increasingly

negative (Figure 5) and soil available potassium has increased

(Figure 6) in the last 40 years. This phenomenon was previously

reported in northwest and north China [55,59–60]. Evidently, K

fertilizer application was not the only source of K absorbed by

crops. The primary sources of K for crops were weathering of

parent materials [60–61], release of K into the soil from increased

soil organic matter and changes in soil pH [61]. Yang et al. [55]

found that soil organic matter content in all treatments (including

those without fertilizer) significantly increased over time and soil

pH dropped from the initial value of 8.65 to 8.58 from 1991 to

2010 during long-term field trials in the Guanzhong region. Our

results showed that in the North, Weibei and Guanzhong regions

soil organic matter increased from 0.57%, 1.01% and 1.12% to

0.83%, 1.26% and 1.50%, respectively, from the 1970s to the

2000s (Figure 6). The average soil pH has declined 0.5 units with

the overuse of N fertilizer in the past two decades in China [62]. Li

et al. [63] reported that the soil pH decreased from the initial value

of 8.76 to 8.56 from 1992 to 2008 during long-term field trials in

the North region. There may be other mechanisms involved, for

example, crops might draw on K in the deeper soil layers or from

the non-exchangeable pool. The contribution of K from the

subsoil could be considerable [64]. Witter and Johansson [65]

found that 41–47% of the K was from the subsoil for green

manure crops. Many studies have shown that crops use non-

exchangeable K [66–67]. Decreases in the abundance of non-

exchangeable K with simultaneous increases in exchangeable and

water-soluble K concentrations suggest that much of the K taken

up by crops comes from non-exchangeable species via solution and

exchangeable phases in a way that establishes and maintains the

equilibrium between various forms of K in the soil [66].

Fertilizer rates had a large effect on soil fertility. With the

increase in N fertilizer inputs, both soil total nitrogen and alkali-

hydrolysis nitrogen increased; P fertilizer increased soil available

phosphorus and K fertilizer increased soil available potassium

significantly in the Weibei region (Figure 7). It has been reported

that after 25 years of N fertilization, soil organic carbon and total

nitrogen had increased by 18% and 26%, respectively, from 1984

to 2009 in the Weibei region [18]. Cai and Hao [68] also found

that accumulation of soil nitrogen initially increased and then

decreased with increasing nitrogen, and total nitrogen and alkali-

hydrolysis nitrogen content reached the highest value or the

second highest value of 135 kg ha21 on wheat plots in the Weibei

region, which was in accordance with findings in northwest and

north China by Li et al. [63] and Lin et al. [69]. Through long-

term field experimentation on the Loess Plateau in Shaanxi, Li

et al. [63] and Hao et al. [70] found that with increases in P

fertilizer inputs, soil available P increased significantly. Similar

results have been obtained in northeast and northwest China by

Geng et al. [71] and Zhao et al. [72], and also in America by

Griffin et al. [73]. In addition, Li et al. [74] found that with

increased K fertilizer inputs, soil available K increased significantly

in a long-term field experiment on the Loess Plateau. Further-

Figure 6. Variations of soil organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and available potassium
in different regions of Shaanxi province (error bars show standard deviations).
doi:10.1371/journal.pone.0112273.g006

Table 2. Variations of PFP of fertilizer on wheat and maize in the different regions (kg kg21).

Crop Fertilizer type Region 1970s 1980s 1990s 2000s

Wheat N Weibei 42 19 29 23

Guanzhong 65 33 26 33

N+P2O5 Weibei 21 13 20 14

Guanzhong 34 23 17 21

N+P2O5+K2O Weibei 21 13 20 13

Guanzhong 34 23 17 19

Maize N North 76 34 28 33

Weibei 28 30 21 32

Guanzhong 118 39 32 28

N+P2O5 North 76 33 25 24

Weibei 28 25 17 23

Guanzhong 118 37 29 24

N+P2O5+K2O North 76 33 25 23

Weibei 28 25 17 20

Guanzhong 118 37 29 22

doi:10.1371/journal.pone.0112273.t002
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more, many studies in this area have shown that on the basis of N

and P fertilizer application, long-term K fertilizer application can

increase soil available K and grain yields [75–76].

Our research also found that soil fertility had a positive impact

on crop yields (Figure 8). Zhou et al. [77] revealed that soil organic

carbon and total nitrogen concentrations had a significant effect

on crop yields in the semi-arid Loess Plateau by long-term

experimentation. Higher yields without fertilizer were generally

obtained in soils with higher average soil organic matter

concentrations. For example, yields without fertilizer ,4000 kg

ha21 were obtained with average soil organic matter concentra-

tions of 1.41% for winter wheat and 1.46 for summer maize. In

contrast, average soil organic matter concentrations were 1.69%

for winter wheat and 1.61% for summer maize for plots with

yields.6000 kg ha21 without fertilizer in north China [78]. Gong

et al. [79] also found that the contribution percentage of basic soil

productivity to wheat yield was significantly correlated with soil

organic carbon, total nitrogen, available nitrogen, available

phosphorus and available potassium in long-term soil fertility

experiments in north China. Similar results have been obtained in

other parts of mainland China [80], indicating that inherent soil

productivity contributed to the substantial increase in China’s crop

yields.

In addition, although the use of chemical fertilizers to

supplement NPK nutrients in the soil is important, many

researchers at home and abroad reported that the application of

chemical fertilizer in combination with organic manure is helpful

in maintaining soil fertility (especially soil organic carbon) and

buffering capacity, and in reducing NO3-N accumulation in the

soil, while maintaining high soil productivity [4,81–87].

Conclusions

From the 1970s to the 2000s in the North, Weibei and

Guanzhong regions of the Loess Plateau in Shaanxi province,

chemical fertilizer NPK inputs and yields of wheat and maize

increased at the farmers’ level. In the 1970s, N was deficient on

wheat and maize plots in the different regions; thereafter N was in

surplus. In the same way, P gradually changed from deficit to

surplus levels. In addition, soil organic matter, total nitrogen,

alkali-hydrolysis nitrogen, available phosphorus and available

Figure 7. Relationships between N rates and total nitrogen, N rates and alkali-hydrolysis nitrogen, P2O5 rates and available
phosphorus and K2O rates and available potassium on wheat plots in the Weibei region of Shaanxi province. **Significance level: P,

0.01.
doi:10.1371/journal.pone.0112273.g007

Variations of Crop Fertilization and Soil Fertility in China

PLOS ONE | www.plosone.org 10 November 2014 | Volume 9 | Issue 11 | e112273



potassium increased over the same period. However, K deficien-

cies became more and more severe. The PFP of N, NP and NPK

on wheat and maize all decreased from the 1970s to the 2000s as a

whole. With the increase in N fertilizer inputs, both soil total

nitrogen and alkali-hydrolysis nitrogen increased; P fertilizer

increased soil available phosphorus and K fertilizer increased soil

available potassium significantly. At the same time, soil organic

matter, total nitrogen, alkali-hydrolysis nitrogen, available phos-

phorus and available potassium all had positive impacts on crop

yields. In order to promote food safety and environmental

protection, farmers should be encouraged to assess their fertilizer

needs carefully. Many can reduce nitrogen and phosphate

fertilizer inputs significantly and increase potassium fertilizer and

organic manure on cereal crops.
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