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THE BIGGER PICTURE While some diseases have known root causes, many consist of multiple abnormal
behaviors connected by unknown biology. These complex disorders require new tools that are able to
leverage data to sketch out the equivalent of a ‘‘foodweb’’ in ecology, i.e., a network of interactions between
various cells and protein signals.
Constructing these networks allows us to examine differences between healthy and afflicted individuals
and identify potential therapies. Discerning meaningful differences in interaction networks also gives a
paradigm for delineating phenotypes. Here, we integrate recent techniques for empirical network inference
and apply them to cyclic thrombocytopenia, a complex blood disease characterized by platelet oscillations.
The agreement between the techniques builds confidence in the networks we have inferred. We validated a
plausible therapeutic intervention in silico, suggesting that interactions along the axis we identify as the
problem may be clinically viable.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
A central challenge in medicine is translating from observational understanding to mechanistic understand-
ing, where some observations are recognized as causes for the others. This can lead not only to new treat-
ments and understanding, but also to recognition of novel phenotypes. Here, we apply a collection of
mathematical techniques (empirical dynamics), which infer mechanistic networks in a model-free manner
from longitudinal data, to hematopoiesis. Our study consists of three subjects with markers for cyclic throm-
bocytopenia, in which multiple cells and proteins undergo abnormal oscillations. One subject has atypical
markers and may represent a rare phenotype. Our analyses support this contention, and also lend new ev-
idence to a theory for the cause of this disorder. Simulations of an intervention yield encouraging results,
even when applied to patient data outside our three subjects. These successes suggest that this blueprint
has broader applicability in understanding and treating complex disorders.
INTRODUCTION

The desirable scenario in which a single biomarker can be map-

ped to a single disease, which presents identically in every pa-

tient, is overly idealistic. In fact, few diseases are diagnosable
This is an open access article under the CC BY-N
via a single metric in a binary ‘‘yes/no’’ fashion. Even single bio-

markers that are extremely indicative of particular disorders,

such as for monogenic diseases, do not ensure an accurate fore-

casting of each patient’s phenotypic presentation. Classic ex-

amples where multiple phenotypes exist for single-hit diseases
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include holoprosencephaly,1,2 epidermolysis bullosa,3 and van

der Woude syndrome,4 among many others. In addition to hav-

ingmultiple phenotypes, many diseases are classified according

to more than one aberrant biomarker. For instance, there is

growing evidence that there may be dozens of phenotypes con-

tained under the ‘‘umbrella’’ of multiple sclerosis, which are

differentiated not only based on life experience and life expec-

tancy but also based on the very biomarkers that are

abnormal.5,6 The growing recognition that many (if not most) dis-

eases are characterized by different phenotypes has led not only

to an increasing emphasis on personalized medicine, but also to

the idea that the existence of multiple phenotypes can be bene-

ficial in translating clinical observations of many phenotypes into

mechanistic understanding of what unites and divides those

phenotypes.7,8 Intersecting mechanisms between different

phenotypes bring us closer to describing the core etiology of

the umbrella ‘‘disease’’ and can translate into better clinical

treatment.

When there are multiple irregular biomarkers which may also

belong tomultiple phenotypes, the technical challenge is in iden-

tifying these phenotypes, assigning patients to phenotypes, and

mapping between clinical observations and phenotypic mecha-

nisms that explain them. To overcome this challenge, here we

argue for the use of a growing body of analytical literature called

empirical dynamics,9,10 which we use to refer to any equation-

free and non-parametric tool that seeks to infer causal mecha-

nisms in a system or structural properties of a system from

empirical data. These are well suited to our purpose because

they assume no model, which fits our lack of knowledge of the

biology connecting the various perturbed components, and

also because the inferredmechanisms order the perturbed com-

ponents into networks of cause-and-effect where no such order

existed before. Our ‘‘blueprint’’ for bringing these techniques to

bear on clinical decisions consists of (1) inferring and vetting

these mechanistic networks, (2) narrowing our attention to small

subnetworks surrounding clinically relevant components, and (3)

modeling clinical interventions based on the subnetwork.

Analyzing these networks also enhances our understanding of

the underlying biology beyond a single intervention, because a

component of interest can now be modeled and understood in

terms of subnetworks which consist of vastly smaller numbers

of components compared with the total dataset. Our battery of

tests include three very different techniques from this area:

convergent cross-mapping (CCM),11–14 transfer entropy,15 and

dynamical mode decomposition (DMD).16–19 Each of these relies

on different mathematical analyses of time series data to deter-

mine whether or not two elements of a given system are mech-

anistically connected: CCM draws on dynamical systems theory

and seeks to reconstruct local patches of a putative underlying

attractor, determining that there is a mechanistic connection be-

tween two variables if they reliably reconstruct the same patches

of one shared attractor; transfer entropy draws on information

theory and seeks to quantify the amount of entropy that is shared

between two causally linked time series; determining that there is

a mechanistic connection between two variables if the mutual in-

formation clears a threshold of significance; DMD draws on

linear algebra and operator theory, and seeks to enumerate a

much smaller number of behaviors (modes) of a system in com-

parison with the number of entities that constitute that system,
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which, while not explicitly identifying mechanistic connections

between pairs of variables, still imputes order and interaction

to larger ensembles of variables. While there may well exist

deeper connections to each of these techniques, such connec-

tions are far from understood, and therefore we believe

consensus between them can be considered increasingly indic-

ative of a reliable connection that can be exploited in the lab or

clinic. Our selection of techniques is also commensurate with

the growing wisdom that the most accurate inference of biolog-

ical networks arises from consensus between orthogonal tech-

niques, rather than from a single approach.20,21

As a first step to demonstrate the natural pairing and viability of

these techniques to complex disorders, we applied them to a

rare blood disease called cyclic thrombocytopenia (CTP).22–24

This disease is characterized by regular oscillations in platelets

as well as the cytokine thrombopoietin (TPO) which regulates

the production of platelets and platelet precursors (megakaryo-

blasts and megakaryocytes). In addition, many patients show

regular oscillations in the counts of many important signaling

proteins (cytokines). The rich time behavior of this disorder has

invited comparisons with canonical examples in dynamical sys-

tems and has fueled many theoretical studies.24–28 However, the

same dynamical richness that has made these systems of inter-

est to theorists also poses challenges to experimentalists and

clinicians, who rely on a particular set of tools to identify thera-

peutic targets and generate functional hypotheses on the etiol-

ogy of a particular disorder in a particular patient. For instance,

correlation analyses are easily confounded by these diseases,

as entities that co-cycle with identical periods will always be

found to be strongly correlated, shedding no light on the

mechanistic interactions driving the oscillations. The temporal

behavior of this disorder therefore presents an ideal case study

in which the analytical tools we are promoting might be able to

untangle mechanistic networks from data that are not amenable

to correlative-type approaches.

CTP is also of immediate clinical relevancy due to difficulty of

treatment,29 especially compared with other blood disorders in

which biomarkers are oscillating (such as cyclic neutropenia).30

Despite frequently being associated with disrupted TPO receptor

interactions,24,31,32 regular treatment with exogenous TPO (the

principal protein regulating the megakaryocyte/platelet axis) mi-

metics is generally ineffective.29 This suggests that CTP may be

mechanistically distinct from the other diseases, which are

more easily treated with mimetics for the defective protein.

To demonstrate the feasibility and usefulness of empirical dy-

namics for our case study of CTP, we analyzed data on platelets,

TPO, and more than 60 cytokines measured in time series for

three individuals: subject A, who carries a heterozygous germline

mutation resulting in a loss of c-mpl function,33 his father, subject

B; and an unrelated individual with CTP, subject C. The father-

son relationship between subjects A and B is particularly inter-

esting because, despite sharing the c-mpl mutation, subject B

has never shown symptoms of CTP. This makes subject B a

useful healthy (non-CTP) control and evidence of a possible

pre-disease state. Empirical dynamics agreed on couplings un-

covered in all three subjects with a remarkable degree of

consensus, further corroborated by a manual verification of

more than 1,000 interactions in the experimental literature. The

networks we uncover are extremely different between subjects
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Figure 1. Phenotypic Heterogeneity in Clin-

ical Presentation of Cyclical Thrombocyto-

penia Is Pronounced in Subject A

(A) Platelet and TPO concentrations over one cycle

from subjects A and C, in addition to four previously

characterized subjects (see Langlois et al.24). As-

terisks indicate the number of standard deviations

from the mean for maximum platelet concentration

(left panel, circle), period length (left panel, line), and

maximum TPO concentrations (right panel, circle)

for subject A compared with the five other in-

dividuals.

(B) The fits of the Langlois24 model for platelet (top)

and TPO (bottom) levels to both subjects A and C is

within the same margins of error as the other

subjects in the figure, while subject A greatly ex-

ceeds these.
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A and C, supporting preliminary evidence that subject A might

represent a novel phenotype. Despite these differences, an un-

expected connection was found in that both phenotypes impli-

cate a single biological mechanism, the Th-17 cell differentiation

and reaction pathways, as critical in causing platelet oscillations.

The heterogeneity between these two individuals is explained as

different dysregulations of Th-17 cell maintenance, but the impli-

cation of this axis situates these two subjects in a broader

ongoing narrative about the role of Th-17 cells in cycling and

non-cycling thrombocytopenia.34,35 As a first step toward actual

therapeutic intervention on this axis, we simulated such an inter-

vention on our subject C as well as other previously examined

patients who we believe belong to the primary phenotype, using

an existing theoretical model.24 Despite the different observed

platelet trajectories and different fits within the model case, the

simulated intervention completely removed fluctuations in the

platelet line for multiple subjects, which we believe represents

a step toward successful combination therapies for this disorder.

RESULTS

We began by evaluating the clinical characteristics of individuals

with CTP identified by our teamat the StanfordMedical Center. A

total of n = 3 individuals were included in the study: subject A has

a previously reported novel c-mpl heterozygous germline muta-

tion affecting TPO receptor function,33 subject B carries the

samemutation but shows no clinical presentation of the disease,

and subject C has CTP. Subject A visited the Stanford Medical

Center clinic every 3–4 days over a period of 84 days and com-

plete blood counts were taken; subject C visited the clinic every

3–4 days for a total of 49 days.
Preliminary Evidence for Multiple
Phenotypes
Subject C has a more classical clinical pre-

sentation of CTP, with an oscillation period

of roughly 27 days, similar to previously re-

ported cases (typically between 25 and

35 days).23,31,32,36 Subject A, despite pos-

sessing a germline mutation, only recently

presented to the clinic. In this individual,

wemeasured amuch longer cycling period
than other CTP caseswith respect to both circulating platelet and

TPO concentrations. We began our investigations by comparing

platelet and TPO concentration time series over one cycle from a

previous cohort24 of individuals with CTPwith subjects A andC. It

was immediately apparent that subject A exhibited both higher

platelet concentrations at maximum and TPO concentrations

substantially higher than any of the other subjects (Figure 1A).

To investigate further, we next compared the cycling period

and themaximumplatelet and TPO concentrations from four pre-

viously examined24 individuals with CTP with subjects A and C

(Figure 1B). In all three metrics, subject A exhibited statistically

significant differences in comparison with both subject C and

the four previously examined subjects (p values of 0.013, 0.005,

and 0.005, respectively, from two-sided Student’s t test). This

suggested that, despite identical clinical diagnoses, there is a

non-clinical phenotypic heterogeneity component to CTP.

Using a mathematical model of platelet production,24 vali-

dated for individuals with a ‘‘classical’’ presentation of CTP, we

simultaneously fit platelets and TPO from both subjects 1 and

3 to characterize the pathophysiology of each individual’s dis-

ease. Given the very high circulating TPO concentrations at

peak, the model was unable to recapitulate both the platelet

and TPO dynamics (Figure 1B, left panel; top and bottom). In

contrast, the Langlois24 model successfully captured the oscilla-

tory patterns in platelet and TPO concentrations from subject C

(Figure 1A). These results underline the unique phenotypic pre-

sentation of CTP in subject A, and the overall phenotypic hetero-

geneity within cyclic thrombocytopenic patients.

To distinguish phenotypic heterogeneity in CTP beyond

the behavior of TPO and platelets, we employed ELISA and a

62-plate Luminex immunoassay to quantify TPO and plasma
Patterns 1, 100138, December 11, 2020 3
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Figure 2. Structure of Hierarchically Clustered Correlations Suggests Strong Heterogeneity between Subjects A and C

Pairwise correlations between each cytokine (as well as TPO and platelets), clustered according to similarity. (A) Subject A, (B) subject B, (C) subject C. In all:

purple indicates negative correlation, green indicates positive correlation. For a version without hierarchical clustering, see Figure S3.
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cytokine concentrations,33 respectively, in all three of our sub-

jects. We have previously reported classes of cytokines cycling

with identical periods in each subject through Lomb-Scargle37,38

periodogram analysis.24 Here, we extended our analysis by per-

forming correlation analysis on all cytokines (as well as TPO and

platelets) within each subject, including on pairs of entities that

do not have identical periods. We then performed hierarchical

clustering based on dissimilarity using the Lance-Williams

dissimilarity update formula.

Our results show that the two symptomatic individuals (sub-

jects A and C) have very different structure in their correlation hi-

erarchies (see Figures 2A–2C for a version without hierarchical

clustering, such that the cytokines are in the same order for every

subject; see also Figure S3). Whereas subject C has most cyto-

kines correlated and only two adhesion factors (intercellular

adhesion molecule 1 [ICAM1] and vascular cell adhesion protein

1 [VCAM1]) anti-correlating, the correlation network in subject

A’s case has more complex structure, with several correlated

clusters as well as many more cytokine pairs that are un- or

anti-correlated. Despite the genetic relationship between sub-

jects A andB and the disease-specific relationship between sub-

jects A and C, it is actually subjects B and C who have the most

similar structure in these hierarchies, suggesting that there is sig-

nificant phenotypic heterogeneity between subjects A and C.

Network Inference: Identifying Distinct Coupling
Networks between the Two Proposed Phenotypes
To characterize regulators of observed cytokine oscillations in

these individuals, we sought to distinguish causal interactions

from the correlations we identified. For this, we employed

CCM, a causal network inference technique,11–14 to provide

mechanistic and etiological insight into the hematopoietic pro-

cess in all three subjects (see Experimental Procedures), which

we later validate using both orthogonal inference techniques

and manual verification in the literature.

CCM is a particularly apt choice for this dataset, because it

excels at mechanistic inference in time series with any kind
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of generalized recurrent or oscillatory behavior. This is due

to its particularly geometric nature. The method consists of

a leave-one-out cross-validation test for Takens’ theorem,39

an observation that mechanistically coupled variables

have the unusual property that data points clustered in a

delay embedding (a plot of the points on the axes

fXðtÞ;Xðt�1Þ;Xðt�1Þ; :::Xðt�E�1Þg of one variable will also

be clustered in the other variable. An example with a 2D (E = 2)

embedding of TPO and platelets for subject A is shown in Fig-

ure 3A. CCM assumes the clustering described in Takens’ theo-

rem, and uses it to reconstruct a prediction for one variable using

local clusters fromanother. If this prediction is sufficiently good, it

is taken as evidence that Takens’ theorem holds for that pair of

variables, meaning that they are mechanistically connected

(see Experimental Procedures for a more detailed algorithm,

and Supplemental Experimental Procedures for the mathemat-

ical foundations). The benefit of generally recurring behaviors in

the underlying time series is seenby understanding the delay em-

beddings as a kind ofpattern space. For instance, in a 2Dembed-

ding, nearby points have very similar values of ½XðtÞ;Xðt � 1Þ�,
which in theoriginal timeseriesare just similar line segments; like-

wise, in a 3Dembedding, nearby points look like similar quadratic

patterns in the time series (and cubic patterns in 4D, etc.). Any

time series which repeats similar patterns will provide a denser

resolution of points (patterns) in thedelay embedding ifmeasured

often enough, which will in turn give tighter predictions in CCM

and therefore sharper results when variables are actually me-

chanically coupled. We believe this generalized near-repetition

of patterns occurs broadly in biomedical data. Even in diseased

states without obvious repetition, fluctuations about a mean

value still occur on time scales that are not directly tied to the dis-

ease, such as circadian rhythms, and these fluctuations still

contain information about mechanistic couplings.

The networks inferred via this method for subjects A, B, and C

areshown inFiguresS4,3B,S5,andS6, respectively.As in thepre-

vious correlation results, there is a substantial difference between

the inferred networks for subjects A and C. Subject C has a
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Figure 3. Mechanistic Relationships between Cytokines Are Revealed by CCM

(A) CCM infers mechanistic interactions by testing if information about the delay embedding (see the Experimental Procedures) of one variable is contained in

another variable. Numbers (and hue) denote the observation corresponding to each point, and subsequent observations are connected by dashed lines to help

visualize the geometry of the embedding. Here, we have highlighted observation 21 in the 2D delay embedding of platelets in subject A, as well as the three

(because three points are necessary to triangulate a point in 2D) nearest neighbor observations (left panel). To test if platelets and TPO are interacting, we use the

same three nearest neighbors to interpolate a prediction of the value of TPO in subject A at observation 21 (center panel). Repeating for every observation yields a

prediction of TPO in subject A, based off the behavior of platelets (right panel). If the prediction and the true data are sufficiently close (see the Experimental

Procedures), then we conclude that platelets are a mechanistic driver of TPO.

(B) Repeating the process detailed in (A) for every possible pair yields a network of interactions. Here, we show the inferred network for subject A, with platelets

(the primary variable of interest in CTP) highlighted in green to aid the eye. For a comparison between the adjacency matrix and the correlation results in Figure 2,

see Figure S1. Enlarged images of the networks for each subject are provided in Figures S4–S6.
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well-connected network with very little structure. The interactions

in subject A form a complex structure consisting of three hubs

connected via bottlenecks of one to three cytokines (Figure 3).

Further, these bottlenecks are of unique specificity to subject A;

notably, an interaction between TPO, platelets, platelet-derived

growth factor-BB (PDGFBB), and the bottleneck cytokine inter-

leukin-12 subunit p40 (IL12-p40) was one of the strongest inferred

for subject A, but is not known in the literature and was categori-

cally rejected as a possible mechanism in his father, subject B

(CCM end-library score of precisely 0 for all of these edges; see

Table S1). This begins to suggest a unique role for IL12-p40 in sub-

ject A andalsodesignates it as amarker of interest for understand-

ing the biological mechanism of subject A’s condition.
Network Validation
To ascertain the accuracy of the hematopoietic network inferred

by CCM, we checked the literature for previous studies on the in-

teractions described by each of the edges in the interaction net-

works inferred for subjects A and C. In both subjects, most of the

inferred edges are described by previous studies (subject A:

78% (215/275) of inferred couplings supported by the literature;

subject C: 76.8% (586/763) of inferred couplings supported by

the literature; Supplemental Information [Spreadsheet]). The re-

maining 20% of the inferred interactions could therefore repre-

sent false positives, novel interactions in normal hematopoiesis

not known in the literature, or novel interactions peculiar to

CTP. To try to unravel which unsubstantiated interactions might
Patterns 1, 100138, December 11, 2020 5
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be false positives and could potentially represent true discov-

eries, we re-analyzed the unsubstantiated interactions found

by CCM both using transfer entropy. Transfer entropy40,41 infers

mechanistic couplings in variables when they sharemutual infor-

mation, whereas CCM infers mechanistic couplings in variables

when one variable can recapitulate information about a dynam-

ical attractor observed in the other (Experimental Procedures

and Supplemental Experimental Procedures). While it is possible

that these two techniques are not completely orthogonal to one

another, they rely on very different mathematical tools to perform

their inference and therefore we consider positive results from

both to be a stronger result than either one independently. Trans-

fer entropy agreed with 100% (177/177) of the unsubstantiated

couplings found by CCM in subject C and 25% (15/60) of the un-

substantiated couplings in subject A (see Experimental Proced-

ures and Supplemental Experimental Procedures).

A possible source of false positives in both the correlation and

CCM analysis is the fact that many cytokines cycle with exactly

the same dominant period, i.e., their periodograms havemaxima

at the same location (see, for instance, the period classes of Fig-

ures 5 and S12). A visual intuition for why this could generate

false positives can be gained from Figure 3A, which shows the

delay embedding described above for both platelets and TPO,

which always have the same dominant period in CTP. These

two representations look rather similar in shape because the

two underlying time series have similar periodograms and are

measured at the same rate. Such co-cycling behavior represents

a challenge to any causal inference tool, and not just CCM; for

instance, if two time series are represented by a single oscillatory

mode, they will always be found to be mechanistically driving

one another. We have devised a null hypothesis test specifically

to address this problem: if the inferred coupling is simply due to

the two variables having similar periodic behavior, such a

coupling should be inferred just as easily with synthetic data

that have the same periodogram as the original data. If the in-

ferred coupling is due to something more than the periodogram

similarity between the two time series, than the original data

should drastically outperform such synthetic data. Therefore,

to investigate the remaining 75% (45/60) of the unsubstantiated

edges in subject A that were not also inferred by transfer entropy,

we generated 100 surrogate time series for the variables in ques-

tion, using a technique that ensures each surrogate has the same

periodogram as the time series of the variable it is meant to

replace.40 An example of such a surrogate is illustrated in Fig-

ure S15. If the original variable had a CCM score (see Experi-

mental Procedures) in the top 5% of all of the surrogates with

the same periodic behavior, we considered that as possible

additional evidence that these were not false positives, or that

the source of the false positive was not the periodic behavior.

Repeating the CCM analysis with the surrogate time series

returned positive couplings on 67% of the unsubstantiated

couplings from the first analysis, including each of the 25% of

the unsubstantiated couplings that were found as positives by

transfer entropy. Of the unsubstantiated couplings, 20/60

(33%) found by CCM had no further support.

We next computed the Pearson correlation between possible

cytokine-cytokine pairs for subject A and used the same confi-

dence threshold as for CCM (Pearson’s R > 0.8 with p < 0.07)

to induce an undirected interaction network for comparison
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(Table S3; Figure S2). This network had only 58% (187/328) of

its edges corroborated by the literature. To provide a null hypoth-

esis for comparison, we drew 100 random ‘‘couplings’’ from the

4,032 possible pairs of cytokine interactions and again searched

for any experimental validation, finding support for 37% (37/100;

Table S2).

Finally, we examined the cytokine time series using DMD16

(Experimental Procedures and Supplemental Experimental Pro-

cedures). DMD uses linear analysis tools based on operator the-

ory to decompose all of the time series into a much smaller num-

ber of modes—collections of variables (potentially overlapping

between modes), which, as an ensemble, fit well to complex

exponential functions. As such, it is not designed to test every

single possible pair of variables and infer whether or not they

are mechanistically connected, because no information is pro-

vided below the level of which variables belong to which modes,

and there can be dozens of variables in a single mode. Our anal-

ysis was intended to provide additional insight on the timescales

relevant to the disease rather than to probe the various couplings

between cytokines from yet another angle. However, we none-

theless found that the cytokines in each mode provided a

remarkable degree of consensus on the networks of couplings

in each subject. In Figure 4, for instance, we superpose the

groupings of cytokines into the leading DMD modes for subject

A atop the network of couplings inferred by CCM. To the eye,

the three leading modes correspond highly to the three hubs in

the network, and cytokines that are shared by multiple modes

correspond highly to the bottleneck cytokines that connect

the hubs.

Subnetwork Analysis: Identifying IL12-p40 as a
Potential Novel Therapeutic Target for Subject A
Lomb-Scargle periodogram analysis on our data reveals that, in

subjects A and C, many cytokines have identical periods to one

another. In subject C, all cytokines (save one) fall into one of two

classes: not cycling, or cycling with a period of 26.25 days (Fig-

ure S11). Subject A perfectly divides into six classes: not cycling,

and cycling with periods of 29.2, 31.9, 35.1, 39.0, and 43.8 days.

This further highlights the difference between the two subjects,

and also offers more information to leverage understanding

how the various cycling cytokines are connected. Given the de-

gree of pairwise correlations within each class, we anticipated

the mechanistic coupling networks to be complete graphs

(each node connected to every other by a unique edge). The

29.2 and 31.9 day classes almost achieve completeness, save

for one or two edges (in the 29.2 class, for example, interferon-

g (IFN-g) and IL-31/macrophage colony-stimulating factor

(MCSF) do not cross-map, nor do MCSF and IL-31, whereas

stem cell factor (SCF) does not cross-map to IL-13 in the 31.9

class); however, interesting structures emerge in the 35.1, 39.0

(the period of oscillations in the platelets and TPO), and 43.8

classes where graphs were not complete. In the 39.0 day class,

IL-1b only sends and receives information from IL-5 and func-

tions as a controller outside of the complete subgraph formed

by IL-5, IL-2, TPO, PDGFBB, and circulating platelet concentra-

tions. Similarly, in the 43.8 class, VCAM1 sits atop the complete

subgraph comprised of ICAM1, IL-7, and RANTES (regulated on

activation, normal T cell expressed and secreted), and interacts

solely with VCAM1. Most curiously, there are no edges between



Figure 4. Dynamical Mode Decomposition Recapitulates the Network Structure and Elucidates Timescale Dynamics

Dynamical mode decomposition (DMD isolates complex exponential modes in data. Top left: the leading modes in subject A are shown according to their

amplitude, period, and relative phase. For all modes, the real part of the exponential is zero (stable modes). Stem plots: the loadings for the leading four modes in

subject A. The horizontal lines are merely an aid for the eye. Network: the leading three modes recapitulate the network structure found by CCM to a surprising

degree, but also reveal broader coupled oscillations. For instance, most of the cytokines in the third mode are not found to be cycling by individual periodograms,

but DMD suggests that they may be cycling with periods longer than any of the cytokines for which the periodogram confidence was high. Three nodes in the

network (EGF, MIP1B, and BDNF) occur in none of the top four modes with very high loading and have been grayed out. Expanded figures of mode loadings are

provided in Figures S8–S10.
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themembers of the 35.1 class (IL18, IL12-p40, and brain-derived

neurotrophic factor [BDNF]). One of these (IL-12p40) appears as

a critical bottleneck mitigating information from the shorter-

period cytokines (29.2 and 31.9 day classes) and the longer-

period cytokines (39.0 and 43.8 day classes). This is further

support for the importance of this cytokine, which was the

source of several of the unique (unsubstantiated by previous ex-

periments) couplings found in the previous section. We consider

the fact that this cytokine is found by all of our analyses to be

directly coupled with platelets to be significant, especially as

its biology is of unique specificity to a particular cell type, which

we explore in the next section.

The topology of the period classes recapitulated the DMD

analysis of the previous section, with the left-hand cluster corre-

sponding to one DMD mode and the right-hand cluster to

another; however, the suggested time-dynamics are richer

(with five periods, opposed to the two suggested by DMD) and

also involve longer periods, as DMD suggested periods on the

order of a few days (likely the difference between the two period

classes being lumped together into a single mode), whereas

each period class is 29 days or longer. The flow of information

in this topology again suggests the bottleneck role of IL12-p40

in conveying cycling information to the DMD mode containing

platelets from the DMD mode and containing many important

growth factors, including SCF.

Integrated Data-Driven and Predictive Modeling: Th-17
Dysfunction as aMechanism for CTP, and Simulations of
Interventions
Equipped with the dimensional reduction provided by CCM, we

trained statistical models for subjects A and C using their up-

stream nodes as predictors via LASSO regression42 (Experi-
mental Procedures and Supplemental Experimental Proced-

ures). For subject A, these nodes are TPO, IL-2, IL-7, IL12-p40,

ICAM1, and VCAM1. For subject C, these are TPO, nerve growth

factor, C-X-C motif chemokine 1, IFN-a, IFN-b, IL-13, IL-17f, IL-

18, IL-1RA, IL-22, IL-27, IL-5, IL-6, IL-9, macrophage inflamma-

tory protein 1b (MIP1B), RANTES, FASL, and transforming

growth factor-a (TGF-a).

For subject A, the error-minimizing model had predictor coef-

ficients of comparable orders of magnitude with the exception of

VCAM1. However, all the best-performing models (mean stan-

dard error of 10% with 10-fold cross-validation) gave priority to

IL-2, IL12-p40, and TPO, in that order. For subject C, the best-

performing models were slightly less accurate (mean squared

error around 20%), and often discarded many predictors, with

the same preferred features appearing in all the best-performing

models: IL-17f, TGF-a, TPO, and MIP1B, in this order.

Given the significant differences between subjects A and C, it

is not surprising that the best internal predictors are different.

However, what is unexpected is that both sets of predictors

have high specificity to the life cycle of Th-17 cells. This is espe-

cially relevant to the discussion of what causes thrombocyto-

penia, as recent studies suggest that Th-17 cells are critical in

immune (non-cycling) thrombocytopenia.43–45

The dominant contribution of IL-17f in subject C makes this

relationship obvious, because only Th-17 cells independently

secrete IL-17. We plot comparisons of platelet counts to these

leading contributors for both subjects in Figure 6, where IL-17f

is shown to be strongly correlated with platelet counts in subject

C. Since Th-17 cells are the only cells that create IL-17, we

consider this cytokine-platelet correlation to be a direct proxy

for Th-17 cell counts and/or activity levels. It is reasonable to

conclude that Th-17 cells are either directly implicated in the
Patterns 1, 100138, December 11, 2020 7
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Figure 5. Mechanistic Relationships among

Period Class Pairs and Cycling Cytokines in

Subject A

(A) Combining the periodogram analysis and

convergent cross-mapping analyses reveals a

mechanistic network among elements of cytokine

classes that have identical periods. Cytokines

belonging to period classes are mapped in Fig-

ure S12. Cytokines are represented in the network

as nodes, with node color assigned according to

period (legend bottom left). Nodes with black text

labels cycle with their assigned period with a = 0.05.

Nodes with red text labels cycle with their assigned

period with a = 0.5. In this panel, interactions are

restricted to elements of the same periodogram

class.

(B) Convergent cross-mapping analysis also un-

covers links between cytokines that belong to

different period classes. Here edges are colored

with the same color as their source node. See Fig-

ure S13 for the equivalent in the other two subjects.

ll
OPEN ACCESS Article
mechanism of CTP in this subject, or are directly affected by the

same mechanism that is causing CTP.

In subject A, the top two predictors (IL-2 and IL-12p40) are

also implicated in the life cycle of Th-17 cells, albeit in a more

nuanced manner. Both cytokines are strong antagonists of po-

larization of Th cells to Th-17 cells.34,35 It is interesting, then,

that IL-2 correlates so strongly with platelets in both CTP-pre-

senting subjects, despite not being selected by the models as

a strong predictor for subject C. The complex role of IL-12p40

in the CTP mechanism in subject A is highlighted by the fact

that IL12-p40 cycles almost completely out-of-phase with plate-

lets (Figure 6).

As a first exploration in this direction, we performed simula-

tions of an intervention that we believe is representative of sup-

pressing IL-17 overexpression in subject C. To this end, we used

a theoretical model of CTP24 that was first fit to the measured

data on subject C. This model was constructed directly from

the mechanistic principles of thrombopoiesis, namely the differ-

entiation of hematopoietic stem cells (HSCs) into megakaryo-

blasts, megakaryoblast mitosis and transformation into mega-

karyocytes, megakaryocyte endomitosis and shedding into

platelets, and the circulating dynamics of platelets. This model
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has previously been shown to accurately

predict CTP dynamics in multiple individ-

uals through bifurcation and numerical

analysis. We represented the pro-inflam-

matory IL-17, identified from the above

network analysis, as leading to abnormal

rates of differentiation of HSCs into the

megakaryoblast lineage (kP in the model).

This is based on the hemato-immunolog-

ical observation that inflammatory and

stress conditions typically lead to overpro-

duction of HSCs and increased differentia-

tion into the megakaryocyte and platelet

lineage.46 Using the best fit for subject C

to this parameter, we then simulated the

platelet and TPO levels over time for
several periods in the presence of ±20% of this differentiation

rate. As shown in Figure 6, this is projected to lead to an almost

complete cessation of platelet fluctuations not only in subject C,

but in anothermember of the cohort of patients plotted in Figure 1

who was not directly examined by us. This is extremely prom-

ising, as each of these two patients fits to a different kPas well

as other kinetic parameters, yet nonetheless show the same flat-

tening of oscillations. While the platelet volume numbers would

still be considered clinically impoverished, there is amuch higher

rate of success with TPO mimetics in non-cycling thrombocyto-

penia,47–49 and we suspect that removing the oscillatory mech-

anisms may be the first step in successful combination

therapies.

DISCUSSION

At present, most network analyses in hematopoiesis have

focused on genetic regulation at the intracellular level. However,

a multitude of cytokines also transmit information as they coor-

dinate both the production and function of blood cells. Cytokine

and blood cell concentrations fluctuate daily, but additional in-

formation about the dynamic nature of the hematopoietic system
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Figure 6. Leading Predictors of Platelet

Levels in both CTP-Presenting Subjects

(A) Here, we show the measured platelet counts

alongside cytokine counts for both subject A (top

row) and subject C (bottom row). The cytokines

chosen are two of the leading predictors for the

LASSO fit to subject A (calledmodel A, including IL-

12p40 and IL-2, shown in the left-hand column) and

the fit to subject C (called model C, including IL-17f

and TGF-a, shown in the right-hand column). The

model C cytokines show little dynamics in subject

A, whereas one of the model A cytokines (IL-2)

shows high correlation with platelets in subject C.

TPO was not chosen despite being a leading pre-

dictor in both models since it is always strongly

anti-correlated with platelet count. The strong cor-

relation of IL-17f with platelets in subject/model C

implicates higher Th-17 counts and/or activity

when platelets are high. The anticorrelation be-

tween IL-12p40 and platelets in subject/model A

suggests a more nuanced interaction between

platelets and Th-17 cells, if indeed one exists. See

also Figure S7.

(B) Results of in silico interventions for the pro-in-

flammatory role of IL-17 inferred in subject C, per-

formed on subject C, as well as three other subjects

for which data are available. The intervention

consists of a 20% reduction in the number of stem

cells entering the megakaryocyte differentiation

pathway simulated using a theoretical model of

CTP.24 The y axis represents the relative change

from the clinically observed values. The arrows for

the Zent subject and subject C indicate that the

oscillations completely vanished in the simulated

trajectories.

(C) The same intervention, but with a 20% increase

in the same parameter.
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is revealed in oscillatory hematopoietic diseases, such as CTP.

Here, we have combined information from subjects with this dis-

easewith a collection of tools uniquely positioned both to identify

intervention points and untangle different phenotypes that

currently are identified as only one disease—a situation which

is relevant for diseases beyond CTP.

Preliminary cohort analysis of platelet and TPO concentrations

from six individuals revealed that subject A had a significantly

different clinical presentation than other previously studied

CTP subjects and subject C in our study. Standard correlation

analysis further suggested more lumping into subnetworks pre-

sent in subject A than in subject C, with subject B positioned as

intermediate between individuals. To explore this non-clinical

phenotypic heterogeneity, we combined CCM, transfer entropy,

and DMD, three non-parametric causal inference techniques

from very different areas of mathematics, and found consensus

on couplings uncovered in the hemato-immune networks of all

three subjects. These analyses were further corroborated by

searching the literature to assess the novelty of interactions re-

vealed by our statistical and dynamical studies.

Our integrative approach uncovered many previously corrob-

orated cytokine relationships (with 78% of the mechanistic rela-

tionships in each subject finding confirmation in the literature),

with a higher percentage of supported couplings than was in-

ferred by correlation analysis alone (57%) or by random picking
of cytokine pairs and checking if there was a connection (37%).

Using empirical-dynamical techniques to narrow the scope of

investigation allows us to better elucidate models for each sub-

ject and to better discriminate between different phenotypes in

CTP, which to our knowledge are previously unreported. For

instance, it is clear from comparing subjects A and B that a

particular genetic mutation (c-mpl) is not sufficient to induce

thrombocytopenia, corroborating the knowledge that, unlike cy-

clic neutropenia, CTP is not easily treated by targeting a single

cell type or signaling pathway.29 From comparing both the

CCM networks and periodograms for subjects A and C, it is

also clear that within CTP there are different phenotypic presen-

tations. However, these dimensionally reduced models also

suggest a potential common axis rooted in control of Th cell dif-

ferentiation. The seemingly atypical behavior of some regulatory

cytokines in this axis (notably IL12-p40) may provide therapeutic

targets.

Although these new techniques promise new understandings

of this disease as well as others, some open questions are

beyond our reach. Despite the father-son relationship and

shared c-mpl mutation, the dramatic difference between sub-

jects A and B remains puzzling, and we were not able to shed

light on what induces CTP in subject A but not subject B.

We believe that the use of these tools in exploring other com-

plex disorders is immensely promising, and has implications far
Patterns 1, 100138, December 11, 2020 9
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beyond CTP. Indeed, as far as the methodology is concerned,

CTP represents nothing more than time series data on a system

comprised of many cytokine and cell types, and so similar plots

and results could be generated for any complex disorder,

althoughwe have no a priori evidence that it can be as successful

in every case. There could be implications for our work even

beyond identifying therapeutic targets and/or distinct pheno-

types. For instance, the collection of corroborated relationships

we uncovered, along with their strong couplings as indicated by

CCM, suggests a method of more cost-effective multiplex as-

says by not measuring redundant cytokines in cases where

they can be predicted from the levels of other cytokines with

high accuracy from a pre-existing mechanistic network. Giving

more rigor to this ensemble such that it could provide a robust,

portable analytical tool for complex disorders will be a useful

avenue of future investigation.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Morgan Craig, CHU Sainte-Justine Research Center, 3175 chemin de la Côte-

Sainte-Catherine, Montréal (Québec) H3T 1C5 Canada, morgan.craig@

umontreal.ca.

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

Any data which do not appear in the main text or the Supplemental Information

will be made publicly available upon the publication of a companion piece in

preparation, and is also available upon request. Sample code for analytical

techniques is either linked to directly below or is written in pseudocode format,

and can be made available in specific formats upon reasonable request.

Ethics Statement

All participants gave written informed consent. The Institutional Review Board

at Stanford University approved this study (IRB no. 13735).

Cell Counts and Cytokine Assays

Blood samples were drawn from three individuals (subjects A, B, and C) with

the following schedule: subject A visited the Stanford Medical Center clinic

every 3–4 days over a period of 84 days and complete blood counts were

taken; subject B visited every 3–10 days over a total of 83 days; and subject

C visited the clinic every 3–4 days for a total of 49 days. Subject A is a 53-

year-old individual with a previously described33 presentation of CTP related

to a heterozygous germ line mutation resulting in the loss of c-mpl function.

Because subject B does not present with CTP and was not a patient of the

clinic, his samples were collected by a separate clinic off-site and overnight-

shipped to the Stanford Medical Center. Samples were received and pro-

cessed on average every 3–7 days over the course of 17 samples (83 days

in total). Due to the differences in sample preservation and processing

time, a number (239 out of 1,054 total wells, or 22%) of the samples for sub-

ject B were flagged by quality control for having coefficient of variation (CV

%) exceeding 20% between replicates. Because these could represent

degraded samples, we removed these data points. No cytokine had fewer

than eight valid samples remaining. To control for the missing data points

and irregular sampling times, we applied cubic Hermite spline interpolation

to the extant data and performed all analysis on the interpolated data. For

each cytokine, we list the number of samples used and the CV% over

time in the samples used (to give confidence in the accuracy of the splines,

since few cytokines vary by much in this non-CTP-presenting subject) in

Table S4. One sample (sample 13) in subject C was flagged and corrected

using the same method. Because of the possibility that differences in

sampling procedures may have adjusted overall baseline measurements

between subject B and the two CTP patients, we primarily compared the in-

ternal relationships between the cytokines measured in each subject.
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Platelet-poor plasma was isolated to measure thrombopoietin concentration

via ELISA and a panel of 62 cytokines using a Luminex immunoassay.

Lomb-Scargle Periodogram Analysis

The Lomb-Scargle periodogram37,38 was used to estimate the period of oscil-

lations within cell and cytokine observations for each subject. In brief, the

Lomb-Scargle periodogram is a generalization of the discrete Fourier trans-

form for unevenly spaced data that evaluates the power spectrum density of

a given signal. We used the MATLAB function plomb to return to the power

spectrum density and calculated the statistical alpha-level of the returned

values. We noted periods detected with alpha values above 0.1 and consid-

ered those above 0.05 to be significant.

Correlations between Measures

To understand the statistical associations between platelets, thrombopoietin,

and the 62 cytokines, we quantified their pairwise Pearson correlations using

the cor function in R50 and plotted the results with corrplot.51 Hierarchical clus-

tering based on dissimilarity using the Lance-Williams dissimilarity update for-

mula, as implemented R,50 was applied to group statistically similar cytokines.

Determining Causal Relationships Using CCM

CCM11 is our primary method of use for organizing a collection of abnormal-

ities (i.e., our 60 cytokines, platelets, and TPO), where a significant fraction

are behaving unusually (oscillating) in subjects A and C, into a network of

mechanistic couplings, where an edge from variable X to variable Y implies

that the value of variable X has an influence on the value of the variable Y.

CCM accomplishes this by transforming an important theorem in dynamical

systems theory into a leave-one-out cross-validation test for mechanistic

coupling. Takens’ theorem39 states that if two variables X and Y are coupled

in a dynamical system, they have the property that, when embedded in the

variables ðXðtÞ;Xðt�1Þ; :::Xðt�EÞÞ (a delay embedding of order E; same

embedding for Y, so that both variables are embedded completely indepen-

dently of one another), local neighborhoods are preserved—meaning if the

nearest neighbors in the X embedding of observation Xð21Þ are fXð3Þ; Xð7Þ;
Xð192Þg, then if X and Y are coupled, the nearest neighbors of Yð21Þ should
be fYð3Þ;Yð7Þ;Yð192Þg. This can be rigorously tested via the following outline

(full details in the Supplemental Experimental Procedures):

1. Create the order-E delay embedding of XðtÞ and YðtÞ(all possible E

values are tested), using a portion L* of the total length of the time series

(L).

2. To test the idea of amechanistic coupling X/Y , discard a single obser-

vation Xðt�Þ(because if X/Y, it is Y that contains information about X

and not the converse); the discarded datum will be approximated using

data from Y).

3. The E + 1 nearest neighbors of Yðt�Þ, fYðt1Þ;Yðt2Þ; :::YðtE + 1Þgare iden-

tified (because E + 1 observations are necessary to triangulate a point in

E-dimensional space).

4. fXðt1Þ; Xðt2Þ; :::XðtE + 1Þgare interpolated to produce an approximation
bXðt�Þfor the discarded observation.

5. Repeating this for every t* produces a complete time series bXðtÞ, which

is an approximation based on assuming that X/Y holds and using

Takens’ embedding idea. The Pearson correlation between the real

time series XðtÞand the approximant bXðtÞ, rL� ðX; bXÞ, is measured.

6. The process is repeated for all L*%L. This gives a relationship between

how good the Takens’ approximant is, ðrL� Þ, versus howmuch datawas

used, ðL�Þ. The relevant measures from the test are ðrLÞ, the strength of

the test with the most data included, and also the Spearman correlation

between L� and rL� , because in a true coupling the slope between the

amount of data we have and the amount of predictive power we have

should be monotonic.

For each of the 633 62 = 3,906 (we have 63 total time series measured; self-

maps are redundant, so that the total is not 633 63) total possible cross-maps,

we calculated the cross-mapping skill as a function of library length L (which

cannot exceed 24, the total number of measurements) and embedding dimen-

sion E. We then performed Spearman rank-correlation on cross-mapping skill

and L for each cross-mapping to isolate those that showed CCM. An

mailto:morgan.craig@umontreal.ca
mailto:morgan.craig@umontreal.ca
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interaction pair that provided accurate forecasting was only considered a

convergent cross-map if the p value of the Spearman correlation was less

than 0.068. This value was chosen rather than the more typical 0.05 because

it is the threshold at which the interaction TPO-platelets satisfies convergence,

which is a fundamental interaction in thrombopoiesis.

Surrogate/Permuted CCM Test

For the 60 interactions not previously reported in the literature, we performed

additional tests. To rule out false positives due to similar periodograms, we

repeated the CCM analysis with bootstrapped surrogates having identical

periodograms to the original measurements, using a previously established al-

gorithm for generating such surrogates.40 This guarantees that each surrogate

time series not only has the same primary oscillation frequency (the number

labeling the period classes in Figure 5, for instance), but also contains other

subdominant modes that might be present in the original data. For each inter-

action, we generated 99 surrogates (the original data representing the 100th

candidate) and measured the CCM forecast accuracy and Spearman p value.

If the original data gave a forecast accuracy in the top 5% of all convergent

maps, we considered this interaction to ‘‘pass’’ the permutation test. We im-

plemented the algorithm40 via an external package, which itself was a subset

of the transfer entropy package employed (see next section).

Transfer Entropy

We further cross-examined these 60 undocumented interactions using the

orthogonal inference method of transfer entropy.15 Transfer entropy bins

different areas of state space into discrete, labeled chunks, and then considers

a time series of a continuous variable as a signal on the discrete states. The

number of discrete states is determined by the length of the time series.52

Two time series are then considered causally related if the information, or en-

tropy in one discrete signal is reduced given information about the other

discrete signal. The difference in entropy between the signal by itself and

the signal conditioned on the second variable is the transfer entropy. If the

transfer entropy is significantly higher between two variables than between

bootstrapped surrogates of the variables40 (using the same bootstrapping

technique described in the previous section), then we consider them to be

causally related. In this work, we examined three different methods of discre-

tizing the state space, based on methods previously useful in biological time

series41 (uniformly spaced bins, bins whose size is inferred by kernel density

estimation on a normal probability distribution fit to the data, and bins whose

size is learned via the Darbellay-Vajda algorithm).53 As the length of our time

series informs the number of states used,52 four were used in our analysis.

We only considered a result to be positive if it was positive using all three dis-

cretization schemes. Exact details on the algorithm as implemented and why

they were chosen can be found in the Supplemental Experimental Procedures.

The methods were implemented via the package that was published simulta-

neously with the application to biological time series.41

Lasso

We used MATLAB’s Lasso (and lassoPlot) function (which imposes a

constraint on the L1 norm of all fit coefficients onto a linear regression) with

the direct upstream predictors of platelets in the causal networks for the three

subjects (for subject B, who has no platelets in the network, we tested the

model of subject A, since subject B is the father of subject A). The target to

fit was the amount of platelets. For platelets and all predictors, we first em-

ployed Z score normalization such that each quantity had zero mean and

unit variance. More information and error plots can be found in the Supporting

Information.

DMD

DMD16–19 is a technique for extracting eigenfunctions of the Koopman (or,

‘‘composition’’) operator U, a transfer-operator-theoretic representation of a

dynamical system that takes observations of variables in a system at one

time point into the next, so that each column represents a ‘‘snapshot’’ of the

whole system as observed in a single moment. This statement can be written

as 4ðt + 1Þ = U4ðtÞ+R, where 4ðtÞ is the observation of all the variables in the

system at time t and R is residual error in this linear approximation. This oper-

ator therefore offers a linear model of a nonlinear system—the operator acting

on one snapshot gives the next one, so that it represents the flow of the
dynamical system, and in the theoretical limit where the number of observa-

tions becomes infinite, the Koopman operator perfectly recaptures the original

nonlinear system, albeit at the price of exchanging a finite, nonlinear system for

an infinite-dimensional linear one. The linearity offers dimensional reduction,

because the main eigenfunctions capture much of the dynamic information

observed in the data. These eigenfunctions are complex exponentials, mean-

ing they represent coupled modes of the variables that grow, shrink, and

oscillate over time (in the modes revealed in our data there is no growing

and shrinking, only pure oscillations). Additional information can be found in

the Supplemental Experimental Procedures.

Since the operator itself is represented by the simple expression above, the

technical challenge lies in picking a U that minimizes the residuals R, and then

extracting the eigenfunctions—each the purview of computational algebra al-

gorithms. After Z score normalization and subtraction of the mean over the

entire dataset taken over the observations, DMD was implemented via the

MATLAB package provided by Marko Budisi�c (https://github.com/mbudisic/

koopman).

Simulated Intervention along the Th-17 Axis Using the

Existing Model

We simulated the proposed intervention along the Th-17 axis by periodically

modulating the rate of differentiation ðkPQ�Þ in our previously published model

of (cyclic) thrombocytopenia24 (see Figure S14 for a complete model sche-

matic; for the governing equations, see Equations S3–S7). For each subject,

we simulated a 20% reduction in differentiation lasting 1 day every 21 days

for a total of 6 cycles. We then characterized the resulting change in maximum

platelet/TPO concentrations and in period length, and compared these values

with their original values, established through simultaneously fitting to un-

treated oscillating platelet and TPO concentrations, as previously described.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

patter.2020.100138.
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