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Abstract 21 

 22 

Severe COVID-19 causes profound immune perturbations, but pre-infection immune 23 

signatures contributing to severe COVID-19 remain unknown. Genome-wide association 24 

studies (GWAS) identified strong associations between severe disease and several 25 

chemokine receptors and molecules from the type I interferon pathway. Here, we define 26 

immune signatures associated with severe COVID-19 using high-dimensional flow 27 

cytometry. We measured the peripheral immune system from individuals who recovered 28 

from mild, moderate, severe or critical COVID-19 and focused only on those immune 29 

signatures returning to steady-state. Individuals that suffered from severe COVID-19 30 

showed reduced frequencies of T cell, MAIT cell and dendritic cell (DCs) subsets and 31 

altered chemokine receptor expression on several subsets, such as reduced levels of 32 

CCR1 and CCR2 on monocyte subsets. Furthermore, we found reduced frequencies of 33 

type I interferon-producing plasmacytoid DCs and altered IFNAR2 expression on several 34 

myeloid cells in individuals recovered from severe COVID-19.  Thus, these data identify 35 

potential immune mechanisms contributing to severe COVID-19.  36 

 37 

 38 
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Introduction 39 

 40 

The recent COVID-19 pandemic caused an unprecedented global health crisis. 41 

Demographic and socioeconomical factors affect disease severity and mortality (1). 42 

Underlying health conditions such obesity and diabetes or gender with higher risk for 43 

males have been associated with disease severity (1). Additionally, genetic predisposition 44 

contributes to the development of severe COVID-19 (2, 3). GWAS identified several 45 

genes encoding for pro-inflammatory chemokine receptors and molecules from the type 46 

I interferon pathway, such as OAS1, DPP9, TYK2 and IFNAR2, that associate with the 47 

development of severe COVID-19 (2, 3). Thus, tissue distribution of immune cells and the 48 

responsiveness of innate immunity to infection may be key factors to prevent severe 49 

outcome in COVID-19. While GWAS enable the identification of associations between 50 

genetic variants and disease severity, such studies fall short of providing insights into the 51 

mechanisms by which these genetic traits manifest disease susceptibility.  Nearly all of 52 

the SNPs identified in GWAS are regulatory and not coding in nature; the altered 53 

regulation could be expressed on subsets of immune cells rather than organism-wide. 54 

Thus, immunological studies such as immunophenotyping at the single cell level are 55 

necessary to gain mechanistic understanding of how genetics affect immune responses 56 

(4).  57 

 58 

Chemokine receptors are crucial in regulating leukocyte trafficking and thereby 59 

orchestrating immune responses (5, 6). Thus, chemokine receptors are critical in all 60 

aspects of immune responses including adaptive immunity in lymphoid organs (6), early 61 

influx of innate immune cells (7) and migration of cells in inflamed tissues (8). Their 62 

expression is tightly regulated and depends on the immune milieu (5). Imbalance or 63 

perturbations in the homeostasis of chemokine and chemokine receptor expression are 64 

associated with inflammatory and autoimmune diseases (8).  65 

 66 

The innate immune system ensures rapid and effective immune responses against 67 

viruses and is impaired in severe COVID-19 (9-11). IFNAR2 is critical for type I interferon 68 

mediated immunity; homozygous mutations, which abrogate IFNAR2 expression, are 69 
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associated with fatal outcome in viral infections (12). The role of type 1 interferon remains 70 

controversial in SARS-CoV2 (13). Severe COVID-19 is associated with low serum levels 71 

of type I interferon (14). In contrast, robust type I interferon response occurs in lung 72 

tissues from severe but not mild COVID-19 cases (15). Furthermore, neutralizing 73 

autoantibodies against type I interferon (16) or loss-of-function mutations in type I 74 

interferon pathway (17) occur more frequently within severe COVID-19 cases. Thus, while 75 

excessive type I interferon response may exacerbate inflammation and severity of 76 

COVID-19, it is likely that the lack thereof is also detrimental. 77 

 78 

Based on the GWAS data (2, 3) we hypothesized that immune signatures at steady-state 79 

(i.e. prior to infection and following recovery) impact the outcome of COVID-19 severity. 80 

This may manifest as a variety of phenotypes: altered level of expression or altered 81 

regulation of certain subsets of immune cells. Here we tested this hypothesis using high-82 

dimensional, comprehensive immunophenotyping in peripheral blood mononuclear cells 83 

(PBMC) of individuals that recovered or substantially improved from mild, moderate, 84 

severe and critical COVID-19 (Extended Data Figs. 1-2). Particularly, we focused on the 85 

expression of chemokine receptors and IFNAR2 identified by GWAS (2, 3). We identified 86 

several immune signatures at steady-state which differed between individuals recovered 87 

from non-severe and severe COVID-19. This included altered expression of various 88 

chemokine receptors on NK and MAIT cells as well as altered abundance of innate 89 

immune subsets. In addition, our data revealed reduced levels of type I interferon 90 

producing pDCs (18) and increased expression of IFNAR2 on several myeloid cell 91 

subsets at steady-state in individuals recovered from severe COVID-19, pointing towards 92 

impaired type I interferon responsiveness. Thus, these data define predictable immune 93 

signatures associated with severe COVID-19 outcome and improve our understanding of 94 

pathogenesis of COVID-19. 95 
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Results 96 

 97 

Expression profile of chemokine receptors, IFNAR2 and functional receptors 98 

We assessed the immune profile in PBMC from 173 healthy individuals using 28-color 99 

flow cytometry (Fig. 1a and Supplementary Tables 1-2). We measured immune cell 100 

subsets with two backbone panels focusing on either B cells and myeloid cells or innate-101 

like and conventional T cells as well as NK cells (referred to as BDC and TNK panels, 102 

respectively; Table S1). We used each backbone panel with two sets of chemokine 103 

receptors (CR1 and CR2). Thus, for each sample, we measured a total of 4 unique sets 104 

of markers. Manual definition of immune subsets and functional marker expression profile 105 

on these subsets are shown in supplementary material (Supplementary Data 2-7).  106 

Immune subsets showed heterogenous expression of various chemokine receptors, the 107 

Ecto-NTPDase CD39, co-stimulatory receptors CD40 and CD86, Interferon-alpha 108 

receptor 2 (IFNAR2) and co-inhibitory molecule TIGIT (Fig. 1a). We focused our 109 

subsequent analysis on immune traits for which the lineage showed discernible 110 

expression. For instance, XCR1 and CCR3 were only expressed on cDC1s and 111 

Basophils, respectively, while B cells did not express CCR1, CCR2, CCR3, CCR4, CCR8, 112 

CXCR6 and CX3CR1. The remaining 1758 out of 3787 immune traits consisted of 113 

frequency of immune cell subsets (N = 349), cells expressing functional markers (N = 114 

620) or the mean fluorescence intensity (MFI; N = 789) of functional markers.  115 

 116 

Prolonged immune perturbations after recovery from COVID-19  117 

We aimed to identify immune signatures at steady-state which contribute to severe 118 

COVID-19. However, cohorts with baseline PBMC samples from patients who had not 119 

yet been infected with COVID-19 are not available. Thus, we looked for traits post-120 

recovery and selected those traits for analysis which might be most informative based on 121 

GWAS. COVID-19 induced immune perturbations can persist after viral clearance and 122 

recovery (19, 20). We hypothesized that immune cells could experience different fates 123 

during acute COVID-19 including i) not affected and remaining at baseline, ii) affected 124 

and deviating from healthy individuals only during active viral disease or iii) persistently 125 

affected even after viral clearance. The latter results in delayed normalization back to 126 
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baseline levels. We first aimed to identify these persisting immune perturbations which 127 

may contribute to long-lasting COVID19-related symptoms known as long COVID (19). 128 

To this end, we analyzed PBMC collected after recovery from mild, moderate, severe and 129 

critical COVID-19 (Extended Data Fig. 1 and 2). We focused on the moderate and severe 130 

COVID-19 group as these groups showed the largest time range between symptom onset 131 

and sample collection (Extended Data Fig. 1a; Moderate, 24-129 days; Severe, 16-184 132 

days). We applied two strategies to identify persistently affected immune traits. These 133 

included i) linear regression of immune traits and time between symptom onset and 134 

sample collection, and ii) comparison of samples collected before and after 60 days of 135 

symptom onset using a Wilcoxon test. We opted to abstain from multiple testing correction 136 

in order to avoid the inclusion of marginally significant true positive immune traits (i.e. 137 

immune traits which truly change over time) in our analysis of stable immune traits. The 138 

two strategies showed similar results (Fig. 1b). We assessed the top hits from both 139 

analyses (p<0.001 in at least one analysis, N = 24) to further delineate persistent immune 140 

perturbations in COVID-19 (Fig. 2a). 141 

 142 

The most prominent persisting perturbations occurred within switched (containing 143 

memory B cells and plasmablasts) and memory CD20+IgD-CD38-/+CD27-/+ B cells (Fig. 144 

2a). Switched and naïve B cells did not change in moderate COVID-19 over time but 145 

significantly decreased and increased, respectively, in severe cases (Spearman’s rank 146 

correlation; Naïve: R2 = 0.36, P = 0.002; Switched: R2 = 0.44, P = 4*10-4) to levels 147 

observed in healthy individuals (Fig. 2b). Both naïve and switched B cells did not differ 148 

between study groups (Fig. 2b). Similar dynamics occurred for CD38+HLA-DR- and CD38-149 

HLA-DR- CD4 naïve T cells which showed an increase and decrease, respectively, over 150 

time in the severe COVID-19 group (Spearman’s rank correlation; CD38+HLA-DR- CD4 151 

naïve: R2 = 0.42, P = 5.8*10-4; CD38-HLA-DR- CD4 naïve: R2 = 0.42, P < 6.5*10-4) with 152 

later timepoints reaching levels observed in healthy individuals (Fig. 2c). In addition, 153 

decreased CD38+HLA-DR- and increased CD38-HLA-DR- CD4 naïve T cells occurred in 154 

individuals recovered from severe and critical COVID-19 (Bonferroni-adjusted P-value 155 

range 0.02 – 1.46*10-4) (Fig. 2c).  156 

 157 
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Cross-presenting cDC1s induce potent CD8 T cell responses. Timepoints early after 158 

onset of symptoms had reduced levels of cDC1s in severe COVID-19 cases, but these 159 

increased later to levels observed in healthy individuals, suggesting perturbations of 160 

cDC1s during active COVID-19 (Spearman’s rank correlation; R2 = 0.29, P = 0.0069) (Fig. 161 

2d). We also observed changes in the expression levels of receptors over time (Figs. 2a, 162 

e and f). Basophils expressed reduced levels of CCR3 early after symptom onset while 163 

levels were closer to healthy individuals at later timepoints within the severe COVID-19 164 

group (Spearman’s rank correlation; R2 = 0.46, P = 2.8*10-4) (Fig. 2e). CCR3 expression 165 

was reduced in basophils from severe and critical COVID-19 cases (Bonferroni-adjusted 166 

P-value range 0.01 – 2.11*10-7). Furthermore, CD95 expression decreased over time in 167 

early NK (Spearman’s rank correlation; R2 = 0.26, P = 0.011) and NK2 cells (Spearman’s 168 

rank correlation; R2 = 0.37, P = 0.002) in severe COVID-19 (Fig. 2f). CD95 expression 169 

was significantly elevated in both subsets from critical COVID-19 compared to all other 170 

groups (Bonferroni-adjusted P-value range 0.00965 – 1.43*10-7). In conclusion several 171 

immune traits in severe COVID-19 required prolonged time - up to 100 days after 172 

symptom onset - to reach baseline levels which can be several months which agrees with 173 

previous studies (19, 20). 174 

 175 

Predictive potential of lymphocyte immune traits  176 

Next, we hypothesized that stable immune traits (N = 1365) between symptom onset and 177 

sample collection remained at or returned early to pre-infection baseline. We aimed to 178 

identify differences in these traits between individuals recovered from mild (N = 19) and 179 

moderate (N = 24) COVID-19 (combined and referred to as non-severe group, N = 43) 180 

and severe (N = 25) and critical (N = 30) COVID-19 cases (combined and referred to as 181 

severe group, N = 55). Such differences may give clues about pre-infection immune 182 

signatures which favor the development of severe COVID-19. We identified distinctive 183 

immune features between these two groups using logistic regression (N = 150, FDR-184 

adjusted P-value cut-off < 0.01) as described in the Online methods (Extended Data Fig. 185 

3). Despite substantial improvement, some patients from the severe (N = 6) and critical 186 

(N = 21) COVID-19 group were still hospitalized at sample collection (Extended Data Figs. 187 

1d and e). These samples may bias the analysis due to persistent immune perturbations 188 
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or pathologies; we therefore repeated the analysis and only included individuals which 189 

were discharged prior to or at the day of sample collection (Extended Data Figs. 4a and 190 

b). We obtained similar results with this smaller sample set (Non-severe, N = 43; Severe, 191 

N = 28, FDR-adjusted P-value cut-off < 0.012), compared to all individuals, with highly 192 

correlated P-values between both analyses (Spearman’s rank correlation, R = 0.88, P < 193 

2*10-16) (Extended Data Fig. 4c). In fact, 65 significant hits (FDR-adjusted PALL < 0.01, 194 

FDR-adjusted PNon-hospitalized < 0.012 ) were shared between these two analyses using 195 

either all patients or only non-hospitalized patients at the time of sample collection 196 

(Extended Data Fig. 4d). Only 6 new immune traits were discovered with the non-197 

hospitalized sample set (FDR-adjusted P < 0.012). However, 85 significant immune traits 198 

(FDR-adjusted P < 0.0017) were only discovered when all patients were analyzed. This 199 

may be due to the lower statistical power with the smaller sample set as suggested by 200 

the strong correlation of P-values (Extended Data Fig. 4c). 201 

 202 

We primarily focused our analysis on traits which significantly differed between non-203 

severe and severe COVID-19 cases in both sample sets (all vs. non-hospitalized, N = 65, 204 

FDR-adjusted PALL < 0.01, FDR-adjusted PNon-hospitalized < 0.012) (Extended Data Figs. 3b 205 

and 4b). NK cells are critical for antiviral defense (21) and impaired in severe COVID-19 206 

(22). We discovered several chemokine receptor signatures on NK cells (N = 8) 207 

associated with the development of severe COVID-19, including up-regulated CX3CR1 208 

expression on early NK cells (Fig. 3a) and increased levels of CCR4, CCR9 and CXCR3 209 

on terminal NK cells (Fig. 3b). However, the expression of these molecules by other cell 210 

types were not associated with severity, underscoring the need to perform multiparameter 211 

analysis at the single cell level. 212 

 213 

We also identified several potentially predictive traits (N = 75) within conventional T cells. 214 

Naïve and transitional memory (TM) CD8+ T cells from individuals suffered from severe 215 

and critical COVID-19 expressed higher levels of CCR4 (Bonferroni-adjusted P-value 216 

range 0.03 - 7*10-5). This pattern did not occur on naïve and TM CD4+ T cells (Fig. 3c). 217 

Furthermore, stem cell-like memory (TSCM), central memory (CM) and terminal effector* 218 

(TE*) CD8+ T cells exhibited reduced TIGIT expression in individuals recovered from 219 
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severe and critical COVID-19 (Bonferroni-adjusted P-value range 0.01 - 7.21*10-6) (Fig. 220 

3d). In contrast, naïve CD8+ T cells and MAIT cells expressed similar levels between 221 

study groups or elevated levels of TIGIT in individuals suffered from severe and critical 222 

COVID-19, respectively (Bonferroni-adjusted P-value range 0.04 - 0.004). 223 

 224 

The frequency of MAIT cells was decreased in severe and critical COVID-19 (Extended 225 

Data Fig. 4e) (Bonferroni-adjusted P-value range 3.99*10-4 - 2.96*10-6). Furthermore, 226 

more individuals recovered from severe and critical COVID-19 showed reduced 227 

frequencies of central memory (CM) CD4+ and CD8+ T cells (defined as CD45RA-228 

CCR7+CD27+) (Bonferroni-adjusted P-value range 0.02 - 7.61*10-6) (Extended Data Fig. 229 

4f). In addition, individuals recovered from critical COVID-19 had elevated levels of 230 

activated (defined as CD38+HLA-DR+) CD8+ effector and terminal memory T cells 231 

(Bonferroni-adjusted P-value range 5.46*10-4 - 1.04*10-6) (Fig. 3e). 232 

 233 

We did not identify many B cell traits predictive for COVID-19 severity. However, patients 234 

with severe COVID-19 had lower baseline frequencies of marginal zone (MZ) B cells, 235 

which produce natural IgM mostly targeting bacterial glycans and are considered an early 236 

wave of immune defense (Fig. 3f) (Bonferroni-adjusted P-value range 0.00192 - 1.84*10-237 

4) (23). 238 

 239 

Predictive potential of myeloid immune traits 240 

Innate immune signatures determine the trajectories of disease severity early during 241 

active COVID-19 (24). We assessed several innate immune subsets such as monocytes 242 

and dendritic cells (DCs) in the periphery (25, 26) as well as several critical markers for 243 

stimulation of adaptive immune responses including CD40 and CD86. Individuals 244 

recovered from severe and critical COVID-19 had reduced frequencies of plasmacytoid 245 

DCs (pDCs) and CD14+ DC3s (Bonferroni-adjusted P-value range 0.00226 - 3.71*10-7) 246 

(Fig. 4a).  247 

 248 

The chemokine receptor profile on dendritic cells did not differ substantially between 249 

individuals recovered from non-severe and severe COVID-19. We observed increased 250 
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expression of CX3CR1 on pDCs and cross-presenting cDC1s associated with disease 251 

severity (Bonferroni-adjusted P-value range 0.00301 - 1.83*10-5) (Fig. 4b). Frequency of 252 

monocyte subsets did not differ between groups. However, classical and intermediate 253 

monocytes from individuals recovered from severe COVID-19 had reduced expression of 254 

pro-inflammatory chemokine receptors CCR1 and CCR2 (Bonferroni-adjusted P-value 255 

range 0.04 – 2.07*10-9) (Fig. 4c). In contrast, non-classical pro-inflammatory monocytes 256 

showed no differences of CCR1 and CCR2 expression between COVID-19 severity 257 

groups (Fig. 4c). 258 

 259 

Genome-wide association studies identified IFNAR2 as a risk factor for severe COVID-260 

19 (2, 3). Furthermore, type I interferon response is critical for effective immune 261 

responses against COVID-19 (10, 11, 13, 14). We measured expression of IFNAR2 on 262 

monocytes, dendritic cells and B cells. IFNAR2 expression was lowest on naïve B cells 263 

and highest on pDCs and cDC1s, but expression could be detected on most subsets 264 

including cDC2s, DC3s and monocyte subsets (Fig. 1a). We found increased expression 265 

of IFNAR2 on monocyte and dendritic cell subsets, except for cDC1s and pDCs, in 266 

individuals recovered from severe and critical COVID-19 (Bonferroni-adjusted P-value 267 

range 0.04 - 4.95*10-5) (Figs. 4d and e). In non-myeloid cells, IFNAR2 expression was 268 

elevated in basophils but no substantial change in expression of IFNAR2 occurred in 269 

other non-myeloid cells with disease severity (Figs. 4d and e). IFNAR2 was slightly 270 

reduced in several CD38low memory B cell populations severe and critical COVID-19 (Fig. 271 

4d). However, these CD38low memory B cell subsets were not significantly different 272 

between non-severe and severe COVID-19 group (Extended Data Fig. 3b).  273 

 274 

Unsupervised cluster analysis  275 

Next, we used unsupervised clustering to extend our analysis and identify potential 276 

immune signatures not revealed by our manual gating analysis. We split cells from both 277 

chemokine receptor panels into main lineages based on manual gating and defined 388 278 

clusters using FlowSOM as described in the Online methods (Supplementary Data 8-13 279 

and Supplementary Tables 3 and 4). Subsequently, we excluded persistently perturbed 280 

immune clusters (N = 97) as described for manually defined traits in Figure 1b (Extended 281 
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Data Fig. 5a). Next, we identified distinct immune traits between non-severe and severe 282 

COVID-19 after recovery using logistic regression (Figs. 5a and b). Results with all 283 

samples and with only the non-hospitalized individuals strongly correlated (Spearman’s 284 

rank correlation, R = 0.9, P < 2.2e-16) confirming that hospitalization was not a major 285 

driver (Extended Data Figs. 5b and c).  286 

 287 

We focused on 42 significant clusters (pFDR < 0.01) across all lineages (Figs. 5a and b). 288 

From each chemokine receptor panel (CR1 and CR2) 5 and 6 significant clusters (pFDR < 289 

0.01) resembled innate-like T cells, respectively. Four clusters (clusters 34, 35, 37 and 290 

38) from CR1 and one (cluster 3) from CR2 panel were MAIT cells as defined by T cell 291 

receptor (TCR) V𝛼7.2 and CD161 (Fig. 5c). These clusters were reduced in severe 292 

COVID-19 (Bonferroni-adjusted P-value range 0.04 – 3.71*10-7) (Fig. 5d) matching the 293 

overall decreased frequency of MAIT cells (Extended Data Fig. 4e). V𝛿2V𝛾9 T cell 294 

clusters 20 and 25 from CR2 panel were expanded in severe and critical COVID-19 295 

(Bonferroni-adjusted P-value range 0.00564 – 6.39*10-8) and characterized by CCR9, 296 

CXCR3 and TIGIT expression (Fig. 5d). In contrast V𝛿2V𝛾9 T cell cluster 24 expressed 297 

higher levels of CCR4 and CCR8 but lacked CXCR3 and TIGIT (Fig. 5d).  298 

 299 

Within myeloid cells, CD123+CD5- pDCs (CR1: 24, CR2: 28) and CD123+CD5+ pre-DCs 300 

(CR1: 28, CR2: 29) were significantly reduced (Bonferroni-adjusted P-value range 0.04 – 301 

4.11*10-6) in individuals recovered from severe and critical COVID-19. These cells were 302 

characterized by expression of CD38, CCR5 and high levels of CXCR3. CCR1, CCR2 303 

and IFNAR2 were expressed at higher levels on pDCs while co-stimulatory CD86 was 304 

lower and CD40 expression was lacking on both. CD14- DC3s (CR1: 22; CR2: 21) and 305 

CD14+ DC3s (CR1: 11) differ between individuals recovered from non-severe and severe 306 

COVID-19 (Figs. 6a and b) in agreement with our manual analysis (Fig. 4a and Extended 307 

Data Fig. 3).  308 

 309 

We further examined myeloid cells from mild and severe COVID-19 cases using tSNE. 310 

Clusters shown in Figure 6a exhibited reduced density on the tSNE map in severe cases 311 

(Fig. 6c and Supplementary Data 9). We analyzed the relationship between the subsets 312 
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identified in panels CR1 and CR2 which showed high overlap suggesting the identification 313 

of similar populations with both panels (Fig. 6d).  314 

 315 

Overall, unsupervised analysis reveals similar immune subsets which differ between 316 

individuals recovered from non-severe and severe COVID-19 compared to the manually 317 

defined subsets. However, the unsupervised analysis enabled more detailed insights into 318 

the unique expression patterns of chemokine receptors and other functional molecules 319 

on these subsets.    320 
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Discussion 321 

 322 

We lack mechanistic insights into how pre-infection immune signatures contribute to the 323 

development of life-threatening COVID-19. GWAS identified several genes associated 324 

with COVID-19 severity (2, 3). The most predictive genes encode for pro-inflammatory 325 

chemokines such as CCR2, CCR3, CXCR6 and XCR1 and molecules from the type I 326 

interferon pathway including IFNAR2 (2, 3). However, these GWAS associations do not 327 

indicate potential mechanisms (e.g., altered expression of CCRs on subsets of 328 

leukocytes). Thus, immunological studies such as immunophenotyping are needed to 329 

better understand the mechanisms by which these immune traits impact disease severity. 330 

In addition, most studies focused on finding distinctive immune signatures during active 331 

severe COVID-19 (14, 15, 22, 24, 27, 28). Here, we hypothesized that pre-infection 332 

immune signatures determine the trajectories of COVID-19 severity. Thus, we measured 333 

the immune composition using high-dimensional flow cytometry in peripheral blood of 334 

individuals recovered from mild, moderate, severe and critical COVID-19 to identify 335 

immune signatures associated with COVID-19 severity. After pathogen clearance the 336 

human immune system rapidly reverts to steady-state with a composition comparable 337 

prior to infection (29). Therefore, samples taken after recovery from COVID-19 reflect the 338 

immune system at steady-state and are comparable to pre-infection. Thus, our study 339 

provides potential immune mechanisms at the earliest events of COVID-19 which 340 

determine the trajectory of disease severity.  341 

 342 

Our study identifies several distinct chemokine receptor signatures between individuals 343 

recovered from non-severe (mild/moderate) and severe (severe/critical) COVID-19. 344 

Chemokine receptors are important for protective immune responses against viral 345 

infections such as West Nile Virus and Influenza (30, 31) and their expression is altered 346 

in severe COVID-19 (24, 27). In our study, individuals recovered from severe COVID-19 347 

had increased expression of lung-homing chemokine receptors CCR4, CXCR3 and 348 

CX3CR1 on NK cell subsets (Figs. 3a and b). These receptors result in exacerbated lung 349 

inflammation and impaired immune responses against viruses (32-34). In addition, NK 350 

cells can facilitate inflammation during viral infections (35). Thus, increased baseline 351 
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expression of lung-homing chemokine receptors on NK cells may facilitate NK cell 352 

migration and exacerbate lung inflammation in COVID-19. We also identified elevated 353 

CCR4 levels on transitional memory CD4+ and CD8+ T cells in these individuals (Fig. 3c) 354 

highlighting that enhanced homing of T cells to the lung might exacerbate COVID-19. 355 

 356 

In contrast, individuals recovered from mild and moderate COVID-19 expressed higher 357 

levels of TIGIT (Fig. 3d). TIGIT expression prevents immune pathologies of viral infections 358 

in mice and reduces lung damage in influenza infection (36). Thus, increased levels of 359 

TIGIT might play a protective role against severe lung damage and consequently the 360 

development of life-threatening COVID-19. 361 

 362 

Furthermore, we observed reduced expression of CCR1 and CCR2 on monocyte subsets 363 

from individuals recovered from severe COVID-19 (Fig. 4c). CCR2 can play a protective 364 

role in the early phase of mouse-adapted SARS-CoV2 infection (37). Similarly, CCR1 and 365 

CCR2 knock-out mice exhibited exacerbated immune pathologies in SARS-CoV (38). 366 

These studies and our results suggest a protective role of CCR1 and CCR2 in early 367 

immune responses against coronaviruses. Both CCR1 and CCR2 interact with pro-368 

inflammatory chemokines which are upregulated in the lungs of severe COVID-19 369 

patients (27). Thus, altered expression of CCR1 and CCR2 at steady state might 370 

influence the severity of COVID-19. 371 

 372 

Type I interferon is crucial for antiviral immune responses and orchestrates the induction 373 

of chemokines and pro-inflammatory cytokines (10, 13). We observed reduced levels of 374 

pDCs, the main source of type I interferon during viral infections (18). Thus, reduced 375 

frequencies of pDCs at baseline may contribute to the impaired or delayed type I 376 

interferon response in severe COVID-19 (14, 15). Similar delayed type I interferon 377 

responses occur in SARS and MERS and are associated with worse disease outcome 378 

(39-41). Therefore, dysregulated and delayed type I interferon response can be 379 

detrimental for the host in coronavirus infections.  380 

 381 



 

  Page 15 of 42 

On the contrary, we observed increased expression of IFNAR2 on basophils and myeloid 382 

cells but not on B cells and pDCs in individuals recovered from severe COVID-19 (Fig. 383 

5d). This is in contradiction with inferences from a recent study which combined GWAS 384 

and bulk transcriptomics and identified reduced expression of IFNAR2 in lung and whole 385 

blood as a risk factor for severe COVID-19 (2). In contrast to bulk transcriptomics, we 386 

show at the single-cell level that IFNAR2 is only affected on certain blood immune cell 387 

populations in individuals recovered from severe COVID-19. Notably, we measured 388 

IFNAR2 only on B cells, basophils and myeloid cells and can therefore not determine 389 

whether its expression is downregulated in other blood cell types. The dichotomy between 390 

reduced pDC frequencies and elevated IFNAR2 expression on myeloid cells is puzzling. 391 

However, interaction between type I interferon and its receptor results in endocytosis (42) 392 

and it is therefore possible that constitutively expressed type I interferon might regulate 393 

IFNAR2 expression at steady-state (43). Nevertheless, the increased levels of IFNAR2 394 

might potentiate the responsiveness of myeloid cells to type I interferon and thus drive 395 

exacerbated inflammation.  396 

 397 

Most immune perturbations caused by COVID-19 disappear within 60 days post-infection, 398 

but some immune perturbations persist for weeks after viral clearance (19, 20). In our 399 

study, the majority of immune traits were at baseline in recovered patients (Fig. 1b). 400 

Nonetheless, we identified several immune traits which did not fully return to baseline 401 

even weeks after symptom onset (Figs. 1b and 2). Most of these long-term perturbations 402 

occurred in severe COVID-19, likely due to increased immune activation (24), and 403 

affected mainly B and T cells (Fig 2). The half-life of peripheral lymphocytes is longer 404 

compared to myeloid cells. Models suggest that peripheral dendritic cells and monocytes 405 

are replenished every few days (44-46) while turnover of memory and naïve T cells can 406 

be in the order of several weeks (47) and years (48), respectively. Thus, the prolonged 407 

immune cell half-life might interfere with the replacement of impaired lymphocytes after 408 

COVID-19 infection. Furthermore, naïve T cells are maintained by homeostatic 409 

proliferation while thymic output declines in aging (48) which might contribute to sustained 410 

immune perturbations.  411 

 412 
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 413 

In summary, we identified several single cell-based immune signatures associated with 414 

the development of severe COVID-19 outcome. We specifically identified components of 415 

innate immunity, NK cells and innate-like T cells which are important for the earliest 416 

events in orchestrating efficient immune responses and in the clearance of other 417 

pathogens potentially worsening the disease outcome. Our data support current clinical 418 

efforts to modulate immune cell trafficking using chemokine receptor inhibitors or 419 

administration of interferon to treat severe COVID-19 patients (27, 49-51). 420 

  421 
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Online Methods 422 

 423 

Detailed information of buffers and cell culture media is listed in Supplementary Table 5 424 

and staining reagents are listed in Supplementary Table 2.  425 

 426 

Samples 427 

PBMC samples from 173 healthy individuals enrolled as part of the VRC clinical trial 428 

program served as control group. Convalescent samples from individuals recovered from 429 

mild and moderate COVID-19 were collected at the NIH (Mild, N = 14; Moderate, N = 10) 430 

and Evergreen in Washington State (Mild, N = 5; Moderate, N = 14). In addition, PBMCs 431 

from individuals recovered from severe (N = 25) and critical (N = 30) COVID-19 were 432 

obtained from Washington University. Distinction between severe and critical cases was 433 

based on required ventilation. All individuals from the mild and moderate group resolved 434 

symptoms by the time of sample collection while all individuals from the severe and critical 435 

groups showed at least substantial improvement of symptoms. Information about time 436 

between symptom onset and sample collection was unavailable for two samples from the 437 

mild COVID-19 group. Detailed demographics are shown in Extended Data Figs. 1 and 438 

2. Informed consent was obtained from individuals in compliance with IRB procedures. 439 

Peripheral blood mononuclear cells (PBMCs) were purified using density gradient 440 

centrifugation and cryopreserved in 10% DMSO in liquid nitrogen. 441 

 442 

Flow cytometry 443 

Staining reagent cocktails were prepared in staining buffer (RPMI without phenol red and 444 

4% HINCS) containing Brilliant Buffer Plus (1:5 diluted) and TrueStain Monocyte Blocker 445 

(5µl/100µl). Antibody cocktails were tested on irrelevant PBMC sample to validate 446 

completeness prior to sample processing. After successful validation of staining reagent 447 

cocktails, PBMCs were thawed in RPMI containing 10% fetal bovine serum, 100 IU/ml 448 

Penicillin, 100µg/ml Streptomycin and 292µg/ml L-Glutamine (referred to as R10) 449 

containing 50U/ml Benzonase using a tube adaptor to facilitate and standardize the 450 

thawing process as described (52). Cells were washed once with 5ml R10 and transferred 451 

to a V-bottom, 96-well plate (Corning). After two washes with 200µl PBS, cells were 452 
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stained in 100µl fixable Live/Dead Blue viability dye containing human BD Fc receptor 453 

block (5µl/100µl) for 20 minutes at room temperature protected from light. Afterwards, 454 

cells were distributed into two 96-V bottom plates and stained with 50µl of either B 455 

cell/myeloid cell (BDC) or T cell/NK cell (TNK) backbone staining mix for 30 minutes at 456 

room temperature. Samples were subsequently distributed into two wells and stained with 457 

either chemokine receptor panel 1 (CR1) or 2 (CR2) for 30 minutes at room temperature. 458 

Subsequently, we washed cells three times with 250ul staining buffer followed by fixation 459 

with 0.5% paraformaldehyde in PBS overnight at 4C. Cells were acquired the next day 460 

with a FACSymphony (BD Biosciences) cytometer. Detailed instrument configuration is 461 

described elsewhere (53). Initial centrifugation for thawing was performed at 700g for 462 

5min and all subsequent centrifugation steps were done at 860g for 3min. 463 

Samples were processed in two batches and samples from the different cohorts/study 464 

groups were equally distributed across the two experiments to mitigate potential issues 465 

with batch effects. PBMCs from the same blood draw and batch from a healthy individual 466 

was measured in both experiments to assess reproducibility. 467 

 468 

Data analysis 469 

Irregular events and outliers in the raw data were determined and excluded using R-470 

implemented (R version 4.0.0) FlowAI (version 1.18.5) (54). Subsequently, correction for 471 

spectral overlap (compensation) was performed in FlowJo 10.1.7 (BD Biosciences) using 472 

single-stained beads. A new set of fcs files only containing viable, high-quality (based on 473 

FlowAI) cells was generated for subsequent analysis of immune cell traits with FlowJo 474 

10.1.7. For the BDC-CR1 panel, gates from two donors required adjustments due to slight 475 

signal shifts caused by irregularities in data acquisition which were not detected by 476 

FlowAI. Otherwise, identical gates were used across all samples and batches. Markers 477 

were divided in two groups based on their purpose to either define immune cell subsets 478 

or functional markers/characteristics (Supplementary Table 1). Three different 479 

parameters were extracted for subsequent analysis, namely frequency of immune cell 480 

populations, frequency of cells expressing functional markers and mean fluorescence 481 

signal. Biologically relevant expression was assessed and immune traits with insufficient 482 
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frequencies or irrelevant expression patterns were manually excluded which resulted in 483 

1758 out of 3787 manually defined immune traits. 484 

 485 

For tSNE and FlowSOM analysis, CD4+ T cells and CD8+ T cells (both gated from 486 

CD3+CD4+V𝛾9-V𝛿1-V𝛿2-CD1d:PBS57- conventional T cells), B cells (HLA-DR+CD20+), 487 

myeloid cells (HLA-DR+CD20-), innate-like T cells (NKT cells, MAIT cells and cells 488 

positive for TCR-𝛾 or -𝛿 reagents) and NK cells/innate lymphoid cells (CD3-HLA-DR-) 489 

were separately concatenated from the two chemokine receptor panels CR1 and CR2. 490 

The same individuals were included as described for the manual gating analysis, with the 491 

exception that we excluded the two samples from the BDC-CR1 panel data which had 492 

slight signal shifts as described above. Subsequently, dye aggregates were removed by 493 

manual gating to avoid artefacts. The cleaned events were exported as new fcs files and 494 

used for R-implemented tSNE (version 0.15) and FlowSOM (version 1.20.0). For 495 

FlowSOM, 40 clusters were defined for CD4+ and CD8+ T cells and 30 clusters for all 496 

other immune subsets. For clustering, markers used to initially define and extract these 497 

immune subsets were excluded from the clustering analysis (Supplementary Table 3). 498 

We excluded these markers to avoid parsing of background signal or uniform expression 499 

into artificial subpopulations (55). Clusters with unusual expression pattern occurred likely 500 

because of residual immune cell contaminations and were removed from downstream 501 

analysis (Supplementary Table 4). Raw data output from FlowSOM and tSNE analysis 502 

are visualized in Supplementary Data 8-13. Subsequent analysis was performed with 503 

remaining 388 FlowSOM clusters (B cells, N=60; myeloid cells, N=60; innate-like T cells, 504 

N=78; conventional CD4 T cells, N=76; conventional CD8 T cells, N=76; and NK cells, 505 

N=38). For tSNE, 50000 cells (27583 cells for innate-like T cells and 25000 for NK cells) 506 

from each severity group were concatenated prior to tSNE analysis (perplexity = 30, theta 507 

= 0.5, 5000 iterations) in order to maintain priority for tSNE computation equal among 508 

patient groups. Fewer cells were used for TSNE in the case of innate-like T cells due to 509 

limited numbers of cells in the critical COVID-19 group (total 27583 cells from all patients). 510 

We expected lower diversity of NK cell subsets and therefore used 25000 cells per study 511 

group for tSNE. 512 

 513 
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 514 

Statistical analysis 515 

 516 

Exclusion of individuals  517 

Samples with considerable number of missing manually defined immune trait values were 518 

excluded using the missCompare (version 1.0.3) package in R. A cut-off of 10% was 519 

applied (i.e. samples with more than 10% missing values were excluded). Two individuals 520 

were excluded based on missingness of values for immune traits. None of the immune 521 

traits were excluded based on missingness (Cut-off of 80% missing values). For 522 

FlowSOM analysis, same samples were used according to the missingness analysis on 523 

manually defined traits. Of note, the FlowSOM model was trained on all samples 524 

irrespective of missingness to ensure maximum number of cells per study group to train 525 

the FlowSOM model. 526 

 527 

Assessment of long-term immune perturbations 528 

We distinguished immune traits which were affected by long-term immune perturbations 529 

or at steady-state within moderate and severe COVID-19 group. We focused on these 530 

two study groups because they span across the longest period between symptom onset 531 

and sample collection enabling the most precise analysis of long-term immune 532 

trajectories after symptom onset (Extended Data Fig. 1a). Of note, age correlated with 533 

hospitalization length in severe but not critical cases and was significantly shorter in 534 

severe COVID-19 cases (Extended Data Figs. 1b and c). We used linear regression 535 

between rank-normalized immune traits derived from both unsupervised clustering and 536 

manual analysis and length of time in days between symptom onset and sample 537 

collection. In addition, we compared immune traits in samples with less or more than 60 538 

days between symptom onset and sample collection using Wilcoxon signed-rank test. 539 

Long-term perturbated traits were defined as manually defined immune traits with 540 

unadjusted P < 0.001 in at least one of the analyses (N = 24).  541 

 542 

Identification of immune traits predictive for COVID-19 severity 543 
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Immune traits and FlowSOM clusters with unadjusted P > 0.05 in both analyses described 544 

above (linear regression and Wilcoxon signed-rank test) were defined as stable immune 545 

traits at steady-state (1365 manually defined immune traits and 291 FlowSOM clusters) 546 

and were used to predict immune signatures associated with the development of severe 547 

COVID-19. We rank-normalized the data and used logistic regression between 548 

mild/moderate (group non-severe) and severe/critical (group severe) cases and corrected 549 

for age and experiment (batch). P-values were adjusted using Benjamini-Hochberg false 550 

discovery rate (56) and adjusted P-values < 0.05 were considered statistically significant.  551 

 552 

 553 

 554 

 555 

 556 

 557 

 558 

 559 
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Figure 1: Expression of functional markers and temporal dynamics of immune 898 

traits in COVID-19 899 

a) Expression of chemokine receptors, CD40, CD86, IFNAR2, CD39 and TIGIT (rows) on 900 

immune cell populations (columns) is depicted. Median of mean fluorescence intensities 901 

(MFI) derived from 173 healthy individuals is visualized by min-max normalized color 902 

gradient. Dot size corresponds to median percentage of cells expressing these markers. 903 

Missing dots indicate that marker was not measured. 904 

b) Immune traits (N = 1779) at baseline or affected by long-term perturbations were 905 

distinguished in individuals recovered from moderate (left) and severe (right) COVID-19 906 

cases. A combination of I) linear regression analysis between immune traits and days 907 

between symptom onset and sample collection and II) comparison of samples collected 908 

before and after 60 days of symptom onset using a Wilcoxon test was used as described 909 

in Online methods. Plot shows unadjusted -log10 P-values from both analyses. Dot size 910 

increases with significance from Wilcoxon test. Trait types are colored (Frequency of 911 

immune subset in blue, Frequency of expressing functional marker in orange and MFI 912 

values in green). Red line highlights threshold for unadjusted significance (P = 0.05). 913 
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Figure 2: Long-term perturbations of immune traits in COVID-19 916 

a) Top immune traits affected by long-term perturbations are depicted. Traits are derived 917 

from analysis in Figure 1b and selected for P-value <0.001 in one of both analysis (linear 918 

regression and/or Wilcoxon test). Bars pointing to the left and right are derived from linear 919 

regression and Wilcoxon test, respectively, and are colored based on trait type 920 

(Frequency of immune subset in blue, Frequency of expressing functional marker in 921 

orange and MFI values in green). Colored bar on the left depicts severity group from 922 

which the significant trait is derived. R2 and slope from linear regression are shown as 923 

colored bars on the right. Values in the right bar are slope values from linear regression. 924 

Red and black dashed lines show P-value cut-off of 0.001 and 0.05, respectively. 925 

b) Frequencies of switched (top row) and naïve (bottom row) B cells of total B cells are 926 

shown. Plot on the left shows frequencies as boxplots for healthy subjects (grey) and 927 

individuals recovered from mild (purple), moderate (burgundy), severe (orange) or critical 928 

COVID-19 (yellow). The two plots on the right show the frequency of cells as a function 929 

of time between symptom onset and sample collection for individuals recovered from 930 

moderate and severe COVID-19. Far right plot shows the distribution of the traits in 173 931 

healthy individuals. Similar to Fig. 2b, dynamics of c) CD38+HLA-DR- (left) and CD38-932 

HLA-DR- of CD4 naïve T cells (right), d) frequencies of cDC1s of total DCs, e) CCR3 MFI 933 

of basophils and f) CD95 MFI of early NK and NK2 cells are shown. 934 

Age-corrected residuals from linear regression were used for statistical analysis. For 935 

comparison between groups, one-way ANOVA was used on residuals to test for overall 936 

significant difference prior to Wilcoxon test with Bonferroni correction. Second and third 937 

plot show dot plots with linear regression (red line) and 95% confidence interval for 938 

individuals recovered from moderate and severe COVID-19, respectively. * P < 0.05, ** 939 

P < 0.01, *** P < 0.001, **** P < 0.0001 940 

 941 

 942 
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Figure 3: Potential immune features at baseline predicting COVID-19 severity 945 

a) Flow cytometry data (left) depicts CX3CR1 expression on early NK cells from an 946 

individual recovered from mild (top) and severe (bottom) COVID-19. Quantification of 947 

mean fluorescence intensity (MFI) of CX3CR1 on early NK cells is shown as boxplot for 948 

all study groups.  949 

b) Flow cytometry dot plots on top row (left and middle plot) depicts expression of CCR4 950 

and CCR9 for a mild and severe COVID-19 case. Histogram overlay shows CXCR3 951 

expression for the same cell subset and donors. MFI values for the same receptors are 952 

shown as boxplots for all groups (bottom row). 953 

c) Flow cytometry plot depicts expression of CCR4 on CD4+ naïve (top row), CD4+ 954 

transitional memory (TM, second row), CD8+ naïve (third row) and CD8+ TM (bottom row) 955 

T cells from an individual recovered from mild (left column) or severe (right column) 956 

COVID-19. Quantification of these subsets in all study groups are shown as boxplots 957 

(right). 958 

d) Flow cytometry plot depicts TIGIT expression on CD8+ naïve (top row), CD8+ stem-cell 959 

like memory (TSCM, second row), CD8+ central memory (CM, third row), CD8+ terminal 960 

effector* (TE*, fourth row) T cells and MAIT cells (bottom row) from an individual 961 

recovered from mild (left column) and severe (right column) COVID-19. Quantification of 962 

these subsets in all study groups are shown as boxplots (right). 963 

e) Flow cytometry data (left) depicts CD38 and HLA-DR expression on CD8 effector (EM; 964 

top) and terminal (TM; bottom) memory T cells from an individual recovered from mild 965 

(left) and critical (right) COVID-19. The gate defines CD38+HLA-DR+ activated T cells. 966 

Quantification of these subsets in all study groups are shown as boxplots (right). 967 

f) Flow cytometry example data (left) for gating of marginal zone (MZ) B cells from total 968 

B cells in an individual recovered from mild and severe COVID-19 is shown. Boxplot 969 

(right) shows frequencies of MZ B cells of total B cells in all study groups. 970 

Residuals from linear regression between immune trait and age were used to calculate 971 

statistics on age-corrected data. ANOVA with subsequent Wilcoxon test and Bonferroni 972 

correction on residuals was performed for statistics highlighted in boxplots. * P < 0.05, ** 973 

P < 0.01, *** P < 0.001, **** P < 0.0001 974 

 975 
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Figure 4: Innate immune signatures predict COVID-19 severity 978 

a) Example flow cytometry data for frequencies of pDCs from myeloid cells and 979 

inflammatory CD14+ DC3s of total DC3s is shown from an individual recovered from mild 980 

(top) and critical (bottom) COVID-19. Corresponding enumeration for all subjects based 981 

on study group are shown as boxplots (right). Precise delineation of pDCs is shown in 982 

Supplementary Data 1. 983 

b) Mean fluorescence intensity (MFI) of CX3CR1 on cDC1s (left) and pDCs (right) is 984 

shown for all study groups as boxplot (top row). Example flow cytometry data for CX3CR1 985 

signal (red peak) on cDC1s (first column) and pDCs (second column) is shown as 986 

histogram for an individual recovered from mild (top row) and severe (bottom row) 987 

COVID-19. B cells (grey) and Monocytes (blue) are overlaid as reference populations 988 

known to lack and express CX3CR1, respectively. Numbers in histogram plots highlight 989 

MFI. 990 

c) Flow cytometry data (left) depicts CCR1 and CCR2 expression on classical (top), 991 

intermediate (middle) and non-classical (bottom) monocytes from a patient recovered 992 

from mild (left column) and critical (right column) COVID-19. Boxplots (right) show MFI 993 

values of CCR1 (first column) and CCR2 (second column) on the same monocyte 994 

populations for all study groups. 995 

d) Expression of IFNAR2 from an individual recovered from mild (red) and severe (blue) 996 

COVID-19 is shown as overlaid histogram (left) for classical monocytes (top), CD14+ 997 

DC3s (second row), pDCs (third row) and naïve B cells (bottom). Plot on the right depicts 998 

fold change of median IFNAR2 expression of each disease severity group compared to 999 

median IFNAR2 expression of healthy individuals on all defined myeloid (top) and non-1000 

myeloid (bottom) subsets. 1001 

e) Boxplots show IFNAR2 MFI for all study groups for classical monocytes, CD14+ DC3s, 1002 

pDCs and naïve B cells. 1003 

Residuals from linear regression between immune trait and age were used to calculate 1004 

statistics on age-corrected data. ANOVA with subsequent Wilcoxon test and Bonferroni 1005 

correction on residuals was performed for statistics highlighted in boxplots. * P < 0.05, ** 1006 

P < 0.01, *** P < 0.001, **** P < 0.00011007 
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Figure 5: Unsupervised analysis of immune system in individuals recovered from 1014 

non-severe and severe COVID-19 1015 

a) FDR-adjusted -log10 P-values of FlowSOM clusters (N = 55) which differ significantly 1016 

(P < 0.05) between individuals recovered from non-severe (mild/moderate) and severe 1017 

(severe/critical) COVID-19 are shown. Bars are colored based on lineage (B cells, purple; 1018 

CD4 T cells, orange; CD8 T cells, red; innate-like T cells, green; myeloid cells, blue; NK 1019 

cells, pink). Bar on the left indicates whether traits originate from chemokine receptor 1020 

panel 1 (CR1, grey) or 2 (CR2, black).  1021 

b) Volcano plots show FDR-adjusted -log10 P-values and log2 fold change derived from 1022 

comparison of FlowSOM clusters between individuals recovered from non-severe and 1023 

severe COVID-19 cases. Main lineages are depicted in separated plots and contain 1024 

FlowSOM clusters from both panels CR1 (circle) and CR2 (triangle). Data point size 1025 

corresponds to -log10 P-values and color indicates log2 fold change.  1026 

c) Heatmap depicts normalized median fluorescence intensity (MFI) values for lineage, 1027 

differentiation and functional markers from top significant innate-like T cell clusters (Fig. 1028 

5a, P < 0.01). Values derived from CR1 (top) and CR2 (bottom) panels are separated. 1029 

Heatmaps on the right highlight expression of markers specific for CR1 and CR2 panels 1030 

including chemokine receptors, co-stimulatory markers and IFNAR2. Values are 1031 

normalized based on trimmed 1-99% percentile values. Complete heatmaps for all innate-1032 

like T cell clusters are shown in Supplementary Data 12. 1033 

d) Frequencies for same clusters described in Figure 5c are shown as boxplots based on 1034 

study group. Values are log10( + 1) transformed and plotted on linear scale. 1035 

Logistic regression with correction for age and experiment batch was used to identify 1036 

significant clusters between non-severe and severe COVID-19. Only FlowSOM clusters 1037 

(N = 291) which did not show temporal changes within moderate and severe COVID-19 1038 

cases are shown as described in the Online methods section and results (Extended Data 1039 

Fig. 5a). Residuals from linear regression between immune trait and age were used to 1040 

calculate statistics on age-corrected data. ANOVA with subsequent Wilcoxon test and 1041 

Bonferroni correction on residuals was performed for statistics highlighted in boxplots. * 1042 

P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 1043 
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Figure 6: Myeloid cell populations from FlowSOM analysis as potential predictor 1046 

for disease outcome 1047 

a) Frequencies (log10 +1) of myeloid cell clusters among top hits (P < 0.01) described in 1048 

Figure 5a are shown for CR1 (top row) and CR2 panel (bottom row). Values are log10( + 1049 

1) transformed and plotted on linear scale. Residuals from linear regression between 1050 

immune trait and age were used to calculate statistics on age-corrected data. ANOVA 1051 

with subsequent Wilcoxon test and Bonferroni correction on residuals was performed for 1052 

statistics highlighted in boxplots. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 1053 

b) Heatmaps showing normalized median fluorescence intensity (MFI) values for clusters 1054 

described in Figure 6a are shown. Heatmaps on the left show markers used to delineate 1055 

immune cell subsets. On the right, heatmaps depict CR panel-specific markers. Values 1056 

are normalized based on trimmed 1-99% percentile values. 1057 

c) tSNE plots with myeloid cells from individuals recovered from mild (left column) or 1058 

severe (right column) COVID-19 are shown. Data from panels CR1 and CR2 are shown 1059 

in the top and bottom row, respectively. Each plot contains 50’000 subsampled myeloid 1060 

cells (gating shown in Supplementary Data 1). Dots are colored based on FlowSOM 1061 

cluster annotation and full data is shown in Supplementary Data 9. Clusters described in 1062 

Figs. 6a and b are annotated and highlighted. 1063 

d) Spearman analysis of normalized MFI values between clusters described in Figure 6a 1064 

is shown in order to estimate the phenotypic overlap between CR1 and CR2 panel. 1065 

Heatmap depicts Spearman correlation coefficient. 1066 

 1067 

 1068 

 1069 

 1070 
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Extended Data Figure 1: Cohorts and timing of sample collection 24 

a) Distribution of days between symptom onset and sample collection is shown as 25 

histograms and boxplots for individuals recovered from mild, moderate, severe and 26 

critical COVID-19 cases. Individuals are highlighted as dots within boxplot. Red dashed 27 

line indicates 60 days cutoff which was used for analysis shown in Figures 1b and 2a 28 

and Extended Data Figure 5a. Information about time between symptom onset and 29 

sample collection was unavailable for two samples from the mild COVID-19 group.  30 

b) Linear regression between length of hospitalization in days and age is shown for 31 

severe and critical COVID-19 cases. 32 

c) Boxplot shows length of hospitalization in days for severe and critical COVID-19 33 

cases. Wilcoxon test was performed to determine significant difference between severe 34 

and critical COVID-19 cases.  35 

d)  Length of hospitalization in days (x-axis) is shown as triangle and circles highlight 36 

length in days between symptom onset and sample collection. Donors are depicted in 37 

rows (y-axis). Symbols from hospitalized individuals are connected by colored bar. Blue 38 

or red bars highlight if length of hospitalization is shorter or longer, respectively. COVID-39 

19 study groups based on severity are shown separately. 40 

e) Length of hospitalization (grey bar), admission to ICU (red symbol) and sample 41 

collection (blue symbol) based on days from symptom onset is shown for severe and 42 

critical COVID-19 cases. Death is indicated by cross. 43 
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 44 

  
Healthy Mild Moderate 

Severe (no 
ventilation) 

Critical 
(ventilation) 

Samples (N) 173 19 24 25 30 

Age median (IQR) 50 (36-60) 39 (33.5-49) 50.5 (32-59) 64 (51-69) 64.5 (57.5-72.75) 

Age range 18-70 26-59 22-77 37-86 43-86 

Gender (F/M) 76 / 97 7 / 12 13 / 11 9 / 16 11 / 18* 

Median days between symptom 
onset and sample collection (IQR) 

NA 40 (34-57) 
45.5 (34.75-

78.25) 
77 (34-94) 33 (25.5-48.5) 

Range days between symptom 
onset and sample collection 

NA 28-78 24-129 16-184 15-113 

Hospitalized (N) NA 1 5 23 30 

Median days hospitalized (IQR) NA 2 5 (4-6) 7 (3.5-23.5) 28 (21-46) 

Range days hospitalized NA 2 2-8 1-32 5-125 

ICU (N) NA NA NA 8 30 

 45 

* Gender information not available for one individual. 46 

 47 

 48 

Extended Data Figure 2: Demographics summary 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 
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Extended Data Figure 3: Comparison of individuals recovered from non-severe and 62 

severe COVID-19 63 

a) Volcano plot shows comparison of individuals recovered from non-severe 64 

(mild/moderate) and severe (severe/critical) COVID-19. P-values were obtained from 65 

logistic regression, included correction for age and experiment and were corrected for 66 

multiple testing using Benjamini-Hochberg false discovery rate. Log2 fold change was 67 

calculated based on the mean of immune traits within non-severe and severe COVID-19 68 

cases. P-values are shown as -log10. 69 

b) Bar graph shows FDR-adjusted -log10 P-values for significant immune traits with P < 70 

0.01 derived from Extended Data Figure 3a. Bars are colored based on log2 fold change 71 

and split based on decrease (top) or increase (bottom) in individuals recovered from 72 

severe COVID-19. Bar on the left indicates trait type. 73 

 74 

 75 
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Extended Data Figure 4: Comparison of analysis between all and non-hospitalized 79 

individuals at time of sample collection 80 

a) Volcano plot shows comparison of individuals recovered from non-severe 81 

(mild/moderate) and severe (severe/critical) COVID-19. Only individuals not hospitalized 82 

or discharged at day of sample collection are included. P-values were obtained from 83 

logistic regression, included correction for age and experiment and were corrected for 84 

multiple testing using Benjamini-Hochberg false discovery rate. Log2 fold change was 85 

calculated based on the mean of immune traits within non-severe and severe COVID-19 86 

cases. P-values are shown as -log10. 87 

b) Bar graph shows FDR-adjusted -log10 P-values for immune traits significantly 88 

different between non-severe and severe COVID-19 cases (cut-off for P-value < 0.012). 89 

Plot is similar to Extended Data Figure 3b but depicts P-values obtained with only 90 

individuals not hospitalized or released at day of sample collection. Bar on the left 91 

indicates the immune trait type. Color of bars indicate log2 fold change between non-92 

severe and severe COVID-19 cases calculated as the ratio between the mean of 93 

immune traits between the two severity groups. 94 

c) Comparison of stable immune traits between non-severe and severe COVID-19 95 

cases including either all individuals (x-axis) or only individuals not hospitalized or 96 

released at day of sample collection (y-axis) is shown. Plot shows FDR-adjusted -log10 97 

P-values for manually gated immune traits (N = 801). P-values were obtained by logistic 98 

regression and corrected for age and experiment batch. Size of symbols is based on -99 

log10 P-values from analysis including all individuals. Color depicts the type of trait.  100 

d) Venn graph depicts overlap of immune traits which differed between non-severe and 101 

severe COVID-19 group obtained from analysis including all (red circle, traits from 102 

Extended Data Fig. 3b) or only non-hospitalized individuals (blue circle, traits from 103 

Extended Data Fig. 4b).  104 

e) Example flow cytometry data and gating of MAIT cells is shown (left) for one donor 105 

recovered from mild and severe COVID-19. Boxplot (right) shows frequency of MAIT cells 106 

per group. More detailed gating information is shown in Supplementary Data 3. 107 

f) Boxplots show frequencies of CD4 (top) and CD8 (bottom) central memory (CM) cells 108 

of conventional CD4 and CD8 T cells, respectively, from all study groups. 109 
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Extended Data Figure 5: Dynamics of FlowSOM clusters in COVID-19 112 

a) FlowSOM clusters affected by long-term perturbations were identified in individuals 113 

recovered from moderate (top) or severe COVID-19 (bottom) either by linear regression 114 

of cluster frequency and days between symptom onset and sample collection or 115 

Wilcoxon analysis of cluster frequency between early and late timepoints (cut-off >60 116 

days between symptom onset and sample collection). -log10 P-values from both 117 

analyses are shown for All 388 FlowSOM clusters. P-value cutoff of 0.05 is shown by 118 

red line. Symbols are colored based on lineage and shaped based on CR1 (circle) or 119 

CR2 (triangle) panel. Symbol size is according to -log10 P-value from Wilcoxon 120 

analysis.  121 

b) Graph shows FDR-adjusted -log10 P-values derived from comparison of stable 122 

FlowSOM cluster (N = 291) frequencies between individuals recovered from non-severe 123 

and severe COVID-19. Analyses included either all individuals (x-axis) and only 124 

individuals not hospitalized or released at day of sample collection (y-axis). P-values 125 

were obtained by logistic regression correcting for age and experiment batch. Symbols 126 

are colored based on lineage and shape corresponds to CR1 or CR2 panel. Symbol 127 

size is based on FDR-adjusted -log10 P-value derived from analysis with all individuals. 128 

c) Venn graph shows overlap of significant FlowSOM clusters between individuals 129 

recovered from non-severe and severe COVID-19 from analysis including either all 130 

individuals (red circle) or only individuals not hospitalized or released at day of sample 131 

collection (blue circle). 132 

 133 

 134 
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Extended Data Figure 6: Expression pattern of significant innate-like T cell 138 

clusters between non-severe and severe COVID-19 139 

Expression (logicle-transformed fluorescence signal) of markers from CR1 (A) and CR2 140 

(B) panel for innate-like T cell clusters are shown as overlaid histograms. T cell clusters 141 

are described in Figure 5c and d and are significantly different between individuals 142 

recovered from non-severe and severe COVID-19. All remaining clusters within innate-143 

like T cells are depicted in grey and labeled as “Rest” as a reference population. 144 

 145 

 146 

 147 
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Extended Data Figure 7: Expression pattern of significant myeloid cell clusters 151 

between non-severe and severe COVID-19 152 

Expression (logicle-transformed fluorescence signal) of markers from CR1 (A) and CR2 153 

(B) panel for myeloid cell clusters are shown as overlaid histograms. Myeloid cell 154 

clusters are described in Figure 6 and are significantly different between individuals 155 

recovered from non-severe and severe COVID-19. All remaining clusters within myeloid 156 

cells are depicted in grey and labeled as “Rest” as a reference population. 157 

 158 
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Supplementary Data 1: Gating of myeloid cells (Monocytes/Dendritic cells) 28 
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 31 

 32 

 33 

Supplementary Data 2: Gating of B cell subsets 34 

Gating of a) B cell subsets and b) CD11c+ B cells within memory B cell subsets 35 

(Intermediate memory, IM; Resting memory, RM; Activated memory, AM; Tissue-like 36 

memory, TLM) of CD38- (top row) and CD38+ (bottom row) memory B cells is depicted.37 
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 39 

 40 

 41 

 42 

Supplementary Data 3: Gating of innate-like and conventional T cell subsets and 43 

NK cells 44 

a) Definition of CD3- and CD3+ cells is shown. b) Gating of NK cells and innate 45 

lymphoid cells (ILCs) is depicted. HLA-DR expressing cells were excluded prior to 46 
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defining NK cells based on CD56 and CD16. We further removed residual 47 

contaminating cells within CD56-CD16- cells based on CD4 and CD8 prior to defining 48 

CD127 expressing ILCs and subsets of ILCs based on CD27 and CD161 expression. c) 49 

Definition of unconventional and conventional T cells is shown after excluding residual 50 

myeloid cells based on SSC-A and expression of HLA-DR. d) Definition of CD4+ and 51 

CD8+ T cell memory subsets is depicted. f) We further defined subsets from CD4-CD8- 52 

double-negative (DN) and CD4+CD8+ double-positive (DP) T cells based on expression 53 

of CD27 and CD45RA.  54 
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Supplementary Data 4: Gating conventional T cell subsets based on CD38, HLA-56 

DR, CD56 and CD161 57 

Definition of subsets within conventional CD4+ and CD8+ naïve and memory T cell 58 

populations based on a) CD38 and HLA-DR or b) CD56 and CD161 expression.59 
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 61 

 62 

Supplementary Data 5: Gating of several differentiation stages within innate-like T 63 

cell subsets 64 

 65 
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Supplementary Data 6: Expression of chemokine receptors 69 

Shown is the expression of chemokine receptors on all main lineages/immune subsets 70 

as overlaid histograms. Data derives from one healthy donor. 71 

 72 
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Supplementary Data 7: Expression of functional receptors 75 

Shown is the expression of functional receptors on main lineages/immune subsets as 76 

overlaid histograms. Markers are panel specific. Markers only measured with the a) B 77 

cell/myeloid cell or b) T cell/NK cell panel backbone are shown as highlighted in 78 

supplementary table 2. Data derives from one healthy donor. 79 



  Page 13 of 19 

 80 

 81 

 82 

 83 

Supplementary Data 8: FlowSOM analysis for B cells 84 

Heatmaps show per-measurement normalized median fluorescence intensity based on 85 

trimmed 1-99% percentile values for each FlowSOM cluster (rows). Only markers 86 

included in clustering (columns) are sown. Bar on left shows coloring of each FlowSOM 87 

cluster and FlowSOM clusters were clustered based on similarity of MFI values using 88 

hierarchical clustering (indicated by dendrogram and gap between rows). Bar graph in 89 
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the middle shows the frequency of each cluster and bar graph on the right the 90 

composition of each cluster based on manual gating annotation. Heatmaps for panels a) 91 

CR1 and b) CR2 are shown. c) tSNE plots for CR1 (top) and CR2 (bottom) panel are 92 

shown delineated based on COVID-19 severity group. Dots are colored based on 93 

FlowSOM cluster annotation. Each tSNE plot contains 50’000 randomly subsampled 94 

cells and not equally distributed across each individual sample.  95 

 96 
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 98 

Supplementary Data 9: FlowSOM analysis for myeloid cells 99 

Same as Supplementary Data 8. 100 

 101 
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Supplementary Data 10: FlowSOM analysis for CD4 T cells 104 

Same as Supplementary Data 8. 105 

 106 
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Supplementary Data 11: FlowSOM analysis for CD8 T cells 109 

Same as Supplementary Data 8. 110 
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 112 

Supplementary Data 12: FlowSOM analysis for innate-like T cells 113 

Same as Supplementary Data 8. From each group 27583 cells were included for tSNE 114 

computation. 115 

 116 

 117 

 118 
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Supplementary Data 13: FlowSOM analysis for NK cells 121 

Same as Supplementary Data 8. From each group 25000 cells were included for tSNE 122 

computation. 123 

 124 

 125 
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