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This study highlights the relevance of network-guided controllability analysis as a preci-
sion oncology tool. Target controllability through networks is potentially relevant to can-
cer research for the identification of therapeutic targets. With reference to a recent study 
on multiple phenotypes from 22 osteosarcoma (OS) cell lines characterized both in vitro 
and in vivo, we found that a variety of critical proteins in OS regulation circuits were in 
part phenotype specific and in part shared. To generalize our inference approach and 
match cancer phenotypic heterogeneity, we employed multitype networks and identified 
targets in correspondence with protein sub-complexes. Therefore, we established the 
relevance for diagnostic and therapeutic purposes of inspecting interactive targets, 
namely those enriched by significant connectivity patterns in protein sub-complexes. 
Emerging targets appeared with reference to the OS microenvironment, and relatively 
to small leucine-rich proteoglycan members and D-type cyclins, among other collagen, 
laminin, and keratin proteins. These described were evidences shared across all pheno-
types; instead, specific evidences were provided by critical proteins including IGFBP7 
and PDGFRA in the invasive phenotype, and FGFR3 and THBS1 in the colony forming 
phenotype.

Keywords: osteosarcoma cell lines, multitype networks, target controllability, protein network tomography, tumor 
microenvironment

INtRodUCtIoN

In biological networks, control theory addresses questions such as (a) how we decompose the struc-
ture of a complex network into components to simplify their functional interpretability? (b) Can 
redundant nodes and links be reduced to guarantee better network performance? (c) What are the 
effects of disrupting network connectivity by acting over particular nodes?

It would be useful to find a so-called network skeleton or core serving efficiently general inference 
purposes, possibly with no loss of information. Such skeleton is expected to be significantly smaller 
than the network, while reproducing its characteristic properties. However, what is a priori the most 
informative or essential or reproducible sub-network? In most cases, the answer is empirical. As a 
result, when the network structure changes one can measure the effects by monitoring what can 
be identified as critical hotspots. In an attempt to select subsets of nodes and links, controllability 
may involve the search of a minimum dominating set (MDS) (1). Being a minimal set not unique, 
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this defines an NP-hard problem. Still, sets of the same size may 
differentiate by various node functional states, thus triggering a 
variety of connectivity paths and regulatory circuits.

Extending the application of such concepts to cancer net-
works is very tempting. Here, an assessment of controllability 
of influential nodes would be crucial to ensure that network 
integrity is sought against failures and attacks (2, 3). Key aspects 
in cancer are both monitoring the disease progression and 
evaluating the effects of therapies. However, exerting an effec-
tive control is complicated by the presence of a multitude of 
factors responsible of altering the normal physiological dynam-
ics. When the latter are translated into gene or protein network 
dynamics, we would be interested in knowing what may change 
due to the insurgence of disease-related conditions. In general, 
two consequences may be observed: (a) intra-network state 
transitions, depending, for instance, on mutations affecting 
disease progression and (b) differential network configurations, 
elucidating the variations in connectivity patterns induced, for 
instance, by treatment effects.

Notably, a protein MDS was found enriched in disease, 
involved in regulatory functions and connected to protein com-
plexes, thus legitimating a functional characterization in protein–
protein interaction (PPI) networks (4). An existing categorization 
distinguishes between critical nodes (present in every minimal 
configuration), redundant nodes (never appearing in minimal 
sets), and intermittent nodes (appearing or not in minimal sets). 
Another recent study on large-scale PPI networks has classified 
proteins leading to disease mutations, viruses, and drug targets 
identification (5). Also, functional controllability was explored 
in epigenetically treated osteosarcoma (OS) cancer interactomes, 
and a module of sentinel nodes was identified as highly enriched 
in cancer hallmarks and marginally overlapping with both dif-
ferentially expressed and mutated genes (6).

Here, we have considered experimental data susceptible of 
systems analysis. Specifically, the choice of OS is relevant from 
multiple viewpoints. First, it is a prevalent form of bone cancer 
with a relatively high incidence (second highest, overall) in young 
populations. In particular, metastatic OS shows less chances of 
survival (up to 30%).1 Second, from a genomic perspective, 
genome-wide OS studies have reported correlation between dif-
fuse dysregulated gene expression with genomic aberrations (7). 
Third, focused cancer research has been provided for this cancer, 
delivering a wealth of knowledge in support of clinical studies 
(see EuroBoNet2) (8). These collections of OS cell lines and xeno-
grafts have been analyzed at both genomic and epigenomic levels 
(9–12). Of even greater interest to our study, further extended 
phenotypic characterization results have been proposed by a 
study centered on 22 OS cell lines (13). Among the OS phenotypic 
features that were examined, there were in vivo tumorigenicity 
(Tp or tumorigenic phenoptype) and in  vitro colony-forming 
ability (Cp or colony-forming phenotype), together with inva-
siveness (Ip or invasive phenotype) and proliferation capacity  
(Pp or proliferation phenotype).

1 http://www.cancer.org/cancer/osteosarcoma.
2 http://eurobonet.pathobiology.eu/.

These phenotypes reflect the OS heterogeneity that we here 
investigate through a network inference approach. In particular, 
a multitype network approach seems the most appropriate to 
deal with phenotypic characteristics underlying various tran-
scriptional states and transcriptome–interactome regulation 
circuits involving various bioentities. The understanding of the 
regulation mechanisms is expected to drive the identification of 
novel OS therapeutic targets. However, there are currently no 
consistent results addressing the use and impact of networks for 
the identification of cancer targets. We propose, therefore, a novel 
direction, and Figure 1 provides the main steps of our integrative 
inference approach.

MAteRIALs ANd Methods

Controllability
Controllability of non-linear systems can be structurally approxi-
mated by canonical linear, time-invariant dynamics (14). Formally, 
the following representation holds: dx(t)/dt = Ax(t) + Bu(t), with 
x(t) =  [x1(t),……, xN(t)] capturing the state of a network of N 
nodes at time t; u(t) an input vector of dim ension similar to A; A 
(N × N) describing system wiring by interaction strength between 
components; B (N × M, with M ≤ N) identifying node control-
lability due to external controller. Such system is controllable if 
can be driven from any initial state to any desired final state in 
a finite time. A controllability matrix C (Kalman Matrix) is an 
(N × NM) constant matrix that depends on system parameters 
and is defined as C =  [B, A, A2B,…, AN-1 B]. Theory, following 
(15), says that a dynamical system is controllable if and only if 
it follows the Kalman’s controllability rank condition, i.e., Rank 
(C) = N.

spectral decomposition
Controllability is associated with Spectral decomposition, another 
popular research direction in networks (see the following link for 
a few introductory concepts and a list of general references3). The 
primary aspect is that the steady-state configuration of a system 
or a network is proportional to its principal eigenvector (corre-
sponding to the largest eigenvalue). In general, network eigenval-
ues are denoted by λi computed from the adjacency matrix, i.e., A 
e(λ) = λ e(λ), and ordered from 1 to n in descending order, such 
that λMAX = λ1 ≥ …. ≥ λn forms a complete orthonormal basis.

In particular, it is important to check whether λ(1) corresponds 
to a localized state or to a delocalized state, which tells how the 
energy is distributed among spectral components. Notably, the 
modularity of the network is linked to such spectrum, and a 
property called participation ratio (PR) allows the quantification 
of the effective number of nodes significantly participating in a 
given eigenvector. When a concentration of such property occurs 
in just a few nodes, localization is observed. PR can be computed 
from the normalized eigenvector, as e e ei

N
i i= / *, with the principal 

eigenvector as the denominator. Under normalization to unit in 
the L2-norm, it holds: PR =

=∑[ ]
,

eii n
4

1
1− .

3 https://en.wikipedia.org/wiki/Spectral_graph_theory.
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FIGURe 1 | Computational and analytical flowchart. Differentially expressed gene (DEG) profiles are reproduced from each osteosarcoma (OS) cell line and 
comprehensive comparative analyses are derived. Venn diagrams show DEGs and DE miRNAs for the different phenotypes here considered: tumorigenic, invasive, 
colony forming, and proliferation. Different types of networks are employed: gene co-expression, miRNA-target, and protein–protein interaction networks, including 
drugs. These are then functionally annotated, including pathways and protein complexes. Deciphering cancer regulation networks suggests the application of 
control concepts. These are hard to implement, but this challenge may be transformed into a sequence of tasks solved with the help of accurately selected fractions 
of nodes and corresponding links describing critical features. This goal corresponds to setting a target control problem, whose solution requires the search for a 
minimum number of driver nodes. In real cancer networks, it is natural to expect that only approximate solutions may hold. Through the identification of targets in 
cancer networks, we can establish the cancer relevance of functional controllability.
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For the scopes of this work, it is of great relevance to compute 
the inverse participation ratio (IPR) (16, 17). This measure offers 
two limiting cases worth high consideration in target control 
situations. A value of 1/n indicates that the components are iden-
tically weighted, while a value of 1 indicates only one component 
is unitary and the rest as zero. In other terms, IPR indicates the 
reciprocal of the number of significantly contributing eigenvec-
tors components. With regard to localization, in the limit of 
n  →  inf, IPR is O(1) (or tends to 1), and thus the eigenvector 
is localized (possibly at few nodes), vice versa the eigenvector is 
delocalized if IPR → 0.

Spectral techniques may identify specific proteins relevant for 
structural and functional network properties [see (18) for protein 
network tomography, or also (19) for related aspects]. Extremal 
eigenvalues are related to dynamical properties of the networks 
(20, 21). The largest eigenvalue in all phenotypes lies below 2 
and the largest eigenvalue observed for Tp network shows the 
highest variance, playing an important role in linear stability and 

synchronization (22). The eigenvalue plots are useful to show the 
best fit for scale-free networks, and such evidence is observed 
in all four phenotypes, indicating that a few of their vertices are 
structurally dominant (Figure S5 in Supplementary Material).

Cell Lines, Profiling, and Mutations
The examined OS cell lines are publicly available from GSE28425 
(13). Also, 19 of 22 different OS cell lines were obtained from 
the resource EuroboNet. Recomputed differentially expressed 
genes (DEGs) could be grouped according to the characteristics 
of the cell lines (listed in Supplementary Material, Table 1). Data 
preprocessing from mRNA expression profiles was performed 
using the Gene Expression module v3.1.7 of Illumina Bead studio 
(v3.1.0.0). The LUMI package (R statistical framework) was used 
for variance stabilizing transformation and quantile normaliza-
tion at the probe level. Intensity values were log-transformed and 
quantile-normalized for miRNA expression data. The fold change 
(FC) of the preprocessed microarray data, defined as ratio of the 
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tAbLe 1 | Top-five differentially expressed genes (DEGs) (Top) and DE miRNAs (Bottom) in osteosarcoma (OS) phenotypes (C-I-P-T).

Reference phenotype Gene symbol log[fold change 
(FC)]

shared 
phenotypes 

Gene symbol Log(FC) shared  
phenotypes

Tumorigenic Vs non-tumorigenic BGN 3.492 I-T IL1A −2.221 P-T
MGP 3.459 T EPB41L3 −2.338 P-T
DKK1 3.034 T NPPB −2.693 C-I-P-T
LOX 2.873 T KRT17 −2.752 C-I-P-T
TM4SF1 2.74 T QPCT −3.081 I-T

Invasive Vs non-invasive DCN 4.197 I-P-T KRT17 −2.945 C-I-P-T
COL1A2 2.963 C-I-P OCIAD2 −2.98 I-T
S100A4 2.775 I IGFBP7 −3.213 I
S100A4 2.602 I COL4A1 −3.37 C-I-P
PDGFRA 2.375 I IER3 −3.959 C-I-P

Colony forming Vs non-colony 
forming

COL1A2 2.895 C-I-P C9orf58 −2.963 I-P
HAPLN1 2.852 C-P LAMA5 −3.015 C-I-P
ALPL 2.832 C COL4A1 −3.126 C-I-P
KYNU 2.572 C-I-P ACTG2 −3.384 C-I-P-T
MAFB 2.431 C-P NPPB −3.389 C-I-P-T

Proliferation Vs non-proliferation COL1A2 2.804 C-I-P KRT17 −2.606 C-I-P-T
MAFB 2.544 C-P COL4A1 −2.643 C-I-P
NDRG1 2.316 P-T LAMA5 −2.962 C-I-P
SNTB1 2.009 P ACTG2 −2.982 C-I-P-T
SPOCK 1.979 I-P-T NPPB −3.046 C-I-P-T

Reference phenotype miRNA symbol Log(FC) shared 
phenotypes

miRNA symbol Log(FC) shared  
phenotypes

Tumorigenic Vs non-tumorigenic hsa-miR-199b-5p 5.6 P-T hsa-miR-133b −2.1 T

hsa-miR-100* 3.66 I-T hsa-miR-449a −2.15 C-I-T
hsa-miR-222 3.6 T hsa-miR-181a-2* −2.38 T
hsa-miR-136 3.34 T hsa-miR-142-3p −2.73 T
hsa-miR-337-5p 3.06 T hsa-miR-15a −3.9 T

Invasive Vs non-invasive hsa-miR-193a-3p 2.94 I hsa-miR-598 −3.2 I
hsa-miR-100* 2.44 I-T hsa-miR-363 −3.44 I
hsa-miR-99a 2.41 I hsa-miR-34a −3.75 I
hsa-miR-193a-5p 2.4 I hsa-miR-146a −4.29 C-I-P
hsa-miR-449a 2.09 C-I-T hsa-miR-135b −5.7 I

Colony forming Vs non-colony 
forming

hsa-miR-449a 2.97 C-I-T hsa-miR-376c −2.67 C-I-P

hsa-miR-545 2.77 C hsa-miR-146a −2.76 C-I-P
hsa-miR-505* 2.57 C hsa-miR-497 −2.82 C
hsa-miR-452 2.47 C-P hsa-miR-124 −2.91 C
hsa-miR-7 2.45 C hsa-miR-155 −5.89 C

Proliferation Vs non-proliferation hsa-miR-199b-5p 3.28 P-T hsa-miR-146a −3.49 C-I-P
hsa-miR-452 2.67 C-P hsa-miR-377 −3.51 P
hsa-miR-34c-5p 2.63 P hsa-miR-155 −3.67 P
hsa-miR-152 2.34 P hsa-miR-376a −3.69 C-P
hsa-miR-886-3p 2.25 P hsa-miR-376c −3.94 P

DEG profiles. (a) Tp state: BGN, encoding a member of the small leucine-rich proteoglycan (SLRP) family of proteins, related to bone growth, muscle development and regeneration, 
and collagen fibril assembly in multiple tissues, and regulating inflammation and innate immunity; MGP, inhibiting bone formation; DKK1, whose overexpression is associated with 
osteolytic bone lesions; LOX, encoding a member of the lysyl oxidase family of proteins with a role in tumor suppression, and crosslink collagen fibers in extracellular matrix (ECM), 
revealing a pre-metastatic niche in bones; TM4SF1, whose encoded protein is member of the tetraspanin family playing a role in the regulation of cell development, activation, 
growth, and motility; IL1A, an interleukin-1 cytokine involved in various immune responses, inflammatory processes, and hematopoiesis; EPB41L3, involved in multiple cancers.  
(b) Ip state: DCN, encoding a member of SLRP, mediating tumor suppression, autophagy, inflammation, and angiogenesis; COL1A2, encoding the pro-alpha 2 chain of type I 
collagen found in most connective tissues; S100A4, part of S100 proteins involved in the regulation of cell cycle progression and differentiation, and implicated in metastasis; 
PDGFRA, encoding a cell surface tyrosine kinase receptor for the platelet-derived growth factor family, with a possible role in tumor progression. (c) Cp state: ALPL, encoding a 
member of the alkaline phosphatase family of proteins, possibly linked to skeletal defects; LAMA5, part of Laminins, a family of ECM glycoproteins major non-collagenous constituent 
of basement membranes, and implicated in cell adhesion, differentiation, migration, and metastasis; ACTG2, involved in cell motility and cytoskeleton maintenance. (d) Pp state: 
NDRG1, member of the N-MYC downregulated gene family involved in stress responses, hormone responses, cell growth, and differentiation, whose encoded protein is necessary 
for p53-mediated caspase activation and apoptosis. DE miRNA profiles. hsa-miR-146a, which regulates inflammation and other innate immune system processes, is DE across 
phenotypes and is known to control cytokine signaling and toll-like receptors by binding to IL1 receptor associated kinase 1 (IRAK1); hsa-mir-199b-5p is highly upregulated in Tp and 
Pp. Also, these two phenotypes share the DE hsa-miR-100 located in chromosome 11, which contains cancer susceptibility loci and is associated with multiple cancers; hsa-miR-
449a, which exerts influence post-transcriptionally in various cancers, presents opposite regulation sign, and recent OS studies showed that when down-expressed, it suppresses 
tumorigenicity (in vivo) and promotes cell apoptosis (in vitro) (23).
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intensities between two groups of cell lines classified into different 
phenotypes (see Table  1), was log-transformed and computed 
with an empirical Bayes method from the packages LIMMA and 
GEO2R in Bioconductor4 (24). The adjusted p-value from the  
T test was then determined; and for multiple test correction, the 
false discovery rate method (FDR) was used (25). A cutoff of 1.5 
was used for selecting DEGs, i.e., log2(FC) ≥1.5 or ≤−1.5. The 
variations and missense mutations for DEGs in each phenotype 
of the OS cell lines were retrieved from the cancer Gene census 
(26), from exome sequencing data of patient diagnosed with 
OS (27), and using three OS cell lines (28). All mutation types 
included in cancer gene census were missense, coding silent, 
and of unknown phenotype; when confirmed somatic, they were 
layered on the DEGs in each OS phenotype. DEGs were then used 
for network reconstructions, each associated with the specifically 
identified phenotype.

Co-expression Networks
The Weighted Gene Co-expression Network Analysis (WGCNA) 
package (29) was used to reconstruct weighted gene co-expres-
sion networks for the DEGs by OS phenotypes and compared 
with normal bone samples. The scale-free property (most nodes 
are weakly connected and dominated by a few highly connected 
hubs) for networks was preserved using optimal β parameter 
during network reconstruction (Figure S1 in Supplementary 
Material). WGCNA computes edge weights on any two connected 
genes on the basis of the so-called topology overlap measure. 
Edge weights with values between 0 and 1 measure the expres-
sion correlation between connected genes and shared neighbor 
genes (cut-off edge weight 0.05). The networks were visualized 
using force directed graph drawing (Cytoscape v3.3). Centrality 
measures were computed using Netanalyzer and Centiscape. Hub 
and essential genes were calculated using degree distribution, 
betweenness centrality (BC), maximal clique centrality, and 
bottleneck nodes. Topological properties are described in the 
glossary (see Supplementary Material).

Network topology and Modularity
Centrality measures allow node or link ranking, and detection of 
intense traffic nodes and cross-linking network paths. Topological 
connectivity informs about the heterogeneity of networks (see 
Supplementary Material). Overlapping modules influencing 
community configurations were detected by ModuLand via local 
maxima search algorithms based on the Gradient Hill method 
(30). Modules were determined through an influence function 
calculated by LinkLand and NodeLand. The overall influence 
of the network is measured on each of its constituting nodes. 
Overlapping modules are identified on the basis of hills on the 
landscape, and each node of the network is assigned to the mod-
ule with different strength.

MicroRNA-target and PPI Networks
miRNA-gene target interaction for DE miRNAs (Agilent micro-
array data) was extracted from miRTarBase5 (31) (this contains 

4 https://www.bioconductor.org/.
5 http://mirtarbase.mbc.nctu.edu.tw/.

experimentally, validated miRNA-target interactions). The inter-
actions data sources are 21 independent studies using reporter 
assays, western blots, and CLIP-Seq. We also extracted predictions 
from Target Scan6 (32). It searches 6- to 8-mer sites matching the 
miRNA seed region, with the support of an unbiased confidence 
score called context++ based on 14 features for miRNA targeting 
efficacy. A global human proteome interaction map was collected 
from public databases containing non-redundant, loops exempt, 
experimentally validated undirected physical protein–protein 
binary interactions. The extracted sub-networks for each phe-
notype consisted of known interactions of proteins (up to first 
order) for DEGs.

Functional Annotations: Go, Pathways, 
Protein Complexes
GO annotations for DEGs were computed using GEO2R, using 
Bioconductor R packages for data analysis and transforms. The 
BiNGO plug-in was used for functional characterizations. Both 
FDR and Bonferroni corrections were used for multiple testing, 
the latter for molecular function annotation of the proteins con-
taining variations. Note that pathway interaction cancer-specific 
data were retrieved from the Github repository7 (33) (recently 
integrated in NDEx, the Network Data Exchange database8) 
(34). The protein complexes were retrieved from the CORUM 
database9 (35), which manually annotated resources from 
mammalian organisms. Comprehensive annotations included 
protein complex functions, subunit composition, and cellular 
localization of complexes. Molecular functions are in Data S5 in 
Supplementary Material.

Previous evidence
Both mRNA and miRNA profiles have been identified in Ref. 
(13). For Tp, 354 significant DEGs were found, together with 
two DE miRNAs (miR-199b-5p and miR-100-3p). Further results 
were obtained for Cp, with 35 DEGs and one miRNA (mir-
155-5p), for Ip, with 206 DEGS and two miRNA (miR-135b-5p 
and miR-a46a-5p), and for Pp, with 300 DEGs and 11 miRNAs. 
Functional enrichment from the cell line panel was also provided 
by the authors. Noticing that regulatory circuits are partly shared 
and partly distinctly characterizing OS phenotypes, it is natural 
to consider such complexity from a systems level viewpoint. Of 
interest also the fact that four genes—COL1A2, KYNU, ACTG2, 
and NPPB—were pervasively classified as DEGs. However, none 
of them in general is specific to OS. Special attention deserves 
RUNX2, a member of the RUNX family of transcription factors 
(known master regulators of development) encoding a nuclear 
protein with a Runt sequence-specific DNA-binding domain. 
The protein is essential for osteoblastic differentiation and 
skeletal morphogenesis, for which novel drug targets have been 
recently identified (36).

6 http://www.targetscan.org/vert_71/.
7 https://github.com/NCIP/pathway-interaction-database.
8 http://www.ndexbio.org/.
9 http://mips.helmholtz-muenchen.de/corum/.
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ResULts

transcriptomic states: deG and de 
miRNA Profiling
Among the most altered genes in Table 1, ACTG2, NPPB, and 
KRT17 were significantly down-expressed in all phenotypes 
(Table  1; Data S1 in Supplementary Material). In particular, 
KISS1 is a gene suppressing melanoma (MEL) and breast cancer 
(BC) metastasis, and KRT17 shows up-expression that may 
be related to skin lesions and acts as a promoter of epithelial 
proliferation by regulating immune response. Tp, Ip, and Cp 
states shared molecular functions related to extracellular matrix 
(ECM) structural constituents containing collagen-related 
DEGs. Also the platelet-derived growth factor binding molecular 
function emerges. Phenotype-driven transcriptional states are 
summarized in Table 1 (with annotations). With regard to DE 
miRNAs, most are phenotype specific and very few miRNAs are 
shared (Table  1). Of interest also the convolution between the 
upregulated hsa-miR-138 and MYC through target genes CDK2, 
CTNNB1, NFKB1, E2F4, and ITGA6 implicated in cellular 
processes related to focal adhesion, NFKB- and RB1-signaling 
(37) (Figure  2). MYC oncogene is overexpressed in >70% of 
human cancers and transcriptionally regulating cell cycle, cell 
death, senescence, cell adhesion, angiogenesis, genome stability, 
microenvironment, and metabolism.

Interactomic states: Gene Co-expression 
Networks
By using WCGNA, we reconstructed DEG-driven co-expression 
networks for all OS phenotypes. All co-expression networks 
appear in Figure S2 of the Supplementary Material. For instance, 
in Cp the high co-expression emphasizes functionally related gene 
sets. The network topologies reflect known properties, i.e., scale 
free and small world (see Figure S3 in Supplementary Material). 
Notably, redundant and diverse network configurations embed 
dynamics more difficult to control.

miRNA-target Gene Interaction Networks
All the miRNA-target gene networks appear in Figure S3 of 
Supplementary Materials. We reconstructed the miRNA-target 
gene interactions in each phenotype by only considering DE 
interactors. Tp and Cp present relatively higher clustering 
coefficient (see the glossary in Supplementary Material). This 
indicates that 1st degree node neighbors (dnn) tend to interact 
with each other (see Table 1 in Supplementary Material). Core 
skeletons (see glossary in Supplementary Material) in networks 
were formed by high DEGs in all phenotypes, showing high 
community centrality (CC) values (Data S2 in Supplementary 
Material). Tp genes included: FBXO32 (a muscle atrophy F-Box 
protein); EMP1 (epithelial membrane protein-1) with a role 
in cell–cell interaction and cell proliferation control; CDK4, a 
cyclin-dependent kinase important for G1 phase progression. 
Then, CCND1, which regulates CDK kinases, emerges in the 
other three phenotypes with very high CC (see Data S1 and S2 
in Supplementary Material). Also, the top 10% genes with high 
degree, BC and CC showed gene regulation by miRNAs. The 

high DE tumor suppressor miRNA-449-A inhibits proliferation 
and prevents metastasis, and regulates the co-expressed GAS1 
(putative tumor suppressor) and CDK4. Multiple lowly expressed 
miRNAs regulated genes with fewer interactions: hsa-miR548b 
and hsa-mir342 interacted with DE hubs in the Tp miRNA-gene 
target network.

Note that miR-342-3p interacts with FBXO32, NDRG1, 
CAMK2N1, and RGS4, involved in cellular activation and 
communication, immune system, kinases, etc. The essential 
genes CCND1, CDK6, and GFRA1 formed the Ip core skeleton 
network sharing a multitude of miRNA interactions. The highly 
overexpressed hsa-miR-182, frequently amplified in MEL and 
experimentally known to promote metastasis and migratory 
potential, co-regulated the co-expressed CDK4 and CCND2, 
with the down-expressed GFRA1 and with the over-expressed 
NPTX1 and PDGFRA (involved in developmental cellular 
processes). In Cp state, high DE miRNAs such as miRNA-449-A 
also showed interaction with the hub connectors CCND1 and 
TXNIP (encoding a thioredoxin-binding protein member of the 
alpha arrestin protein family that regulates redox signaling, and 
possibly a tumor suppressor). Also, hsa-miR-630 interacts with 
the DE CTHRC1, a known positive regulator of osteoblastic bone 
formation. The DEGs IGFBP5, CLDN1, and ALDH1A3 were 
found regulated by hsa-mir-1224-5p, along with other miRNAs 
such as hsa-miR-603, sharing interaction with hub genes CCND1, 
KYNU, and WISP1.

In Pp state, the top 10% essential connector genes (GFRA1, 
TXNIP, CCND1, and CCND2) of the core skeleton shared 
many miRNA interactions. CCND1 and TXNIP genes were 
regulated by the miR520 family (miR-520c-3p, miR-520d-3p, 
miR-520a-3p, miR-520e, miR-186), which reduces secretion of 
pro-inflammatory cytokines by NF-κB signaling inhibition. The 
other regulator miR-186 is known to suppress cellular prolif-
eration, and miR-423-5p is known for autophagy regulation in 
cancer cells. The top DE miRNA, over-expressed hsa-miR-449a, 
hsa-miR-542-3p, hsa-miR199a-3p, and down-expressed hsa-miR-
338-3p, mir142-3p, miR28-5p, have strong role in proliferation 
in multiple cancers, including OS via their target genes. Also, 
hsa-miR-182 is known to interact with DEGs (NDRG1, NPTX2, 
CCND2, RRAGA, and GFRA1), targets in cellular proliferation.

PPI Networks
Those associated with DEGs in each phenotype were extracted 
from non-redundant experimentally evidenced and curated sets 
of seed proteins in the human proteome. In Tp, proteins of the 
COL family (COL6A1, COL6A2, and COL6A3) appear, likewise 
Cathepsin (CTSB), interacting with PLAU and SLP1, and show-
ing involvement in cellular processes related to collagen catabolic 
processes. In Cp, the majority of PPIs are involved also in cell 
migration and motility. In Ip, multicellular organismal develop-
ment emerged. Finally, the biological processes involved in Pp 
interactions are related to ECM binding (complete annotations 
appear in Tables S2A–D in Supplementary Material). In each phe-
notype, the DEG-proteins showed few interactions and variation 
(Table S3 in Supplementary Material). As anticipated earlier, we 
also considered PPI networks expanded to their first order dnn 
(see Supplementary Material).
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PPI—miRNA Networks
The networks composed of interactions among DEG-related 
proteins and miRNA targets were reconstructed. The Tp state 
revealed limited heterogeneity, with a multitude of low DE miR-
NAs regulating proteins, namely the connector hub BCAS4 along 
with FBXO32, ADM, and CDK4 (Figure S4 in Supplementary 
Material). The down-expressed hsa-mir-512-3p regulated the 
over-expressed connector hub BCAS4, and NDRG1, a metastasis 

suppressor. The latter, along with ITGA11 and GAS1 proteins, 
plays a role in degradation of ECM and growth suppression and 
interacts with the highly DE hsa-mir-449a. Notably, the DE hsa-
miR-142-p regulates SDC4, promoting LOX-dependent cross-
linking of collagen, and providing bone health. The same miRNA 
then regulates IL1A, known to influence PLAU with regard to can-
cer invasion and metastasis. PLAU interacts with the highly over-
expressed tumor suppressor hsa-miR-193-3p. Note that multiple 
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miRNAs from the 14q32 locus associated with increased OS risk 
were DE wide interactors. Namely, FBXO32 interacts with the 
over-expressed hsa-miR-431, the down-expressed hsa-miR-144 
and hsa-miR-377, and other lowly expressed miRNAs from other 
loci. Then, hsa-miR-494, hsa-miR-665, and hsa-miR-765 regulate 
PPP2R2B whose protein exerts negative control on cell growth 
and division. Also, its promoter methylation determines resist-
ance to treatment with mTOR inhibitors. Finally, it contains mis-
sense mutations in OS patients. Another interaction is between 
hsa-miR-144 and PHLDA1, which has missense mutations and 
whose protein shows anti-apoptotic effects of insulin-like growth 
factor-1.

In Ip state, the connector hub protein PDGFRA is regulated by 
multiple miRNAs, including the over-expressed hsa-miR-491-5p, 
hsa-miR-182, hsa-miR-298, and the down-expressed hsa-miR-
140-5p (42) (see Figure 3). The hsa-mir-491 family is known to 
function in epithelial to mesenchymal transition and to influence 
cellular invasion and proliferation. The down-expressed hsa-
miR-298 interacts with the connector hub CCND1. COL4A1 and 
COL1A2 proteins, with unknown type mutations, are regulated by 
the DE hsa-miR-767-5p, showing functions related to oncogenic 
processes. Hsa-miR-153 showed regulation of STMN2 protein 
having missense mutation (Table S3 in Supplementary Material). 
In Cp state, hsa-miR-139-5p, hsa-miR144, hsa-miR217, and 
hsa-miR-615-3p regulate the FBN1 protein containing missense 
mutation. The highly down-expressed hsa miR-139-5p shows 
anti-oncogenic and anti-metastatic effects, and is suggested to 
be a potent cancer biomarker (43). The down-expressed FARP1 
protein (Figure 4) (critical node in PPI–miRNA network) inter-
acts with the over-expressed hsa-miR182, which plays pivotal role 
in carcinogenesis. Importantly, FARP1 interacts with the lowly 
down-expressed hsa-miR-874, responsible for suppression of 
HDAC1 expression and enhanced Runx2 transcriptional activa-
tion during recovery of bone loss.

Finally, 17 DE miRNAs regulate thrombospondin 1 (THBS1), 
a connector hub in the Cp miRNA-PPI network, also regulated 
by hsa-miR-139-5p and hsa-miR-144, along with the highly 
over-expressed hsa-miR-491-5P, known to induce apoptosis 
and inhibition of AKT and MAPK, and leading to accumula-
tion of the dephosphorylated BCL2L11 protein involved 
in anti- or pro-apoptotic regulation. Another interactor of 
THBS1 is COL4A1, a provincial hub interacting with numer-
ous miRNAs and the high over-expressed hsa-miR-542-5p, 
promoting tumorigenesis and poor prognosis. In Pp state, 
provincial hubs appear (Figure S5 in Supplementary Material). 
CCND1 and CCND2 proteins interacting with MAFB show 
shared regulation by hsa-miR-503, a miRNA responsible for 
repression of cellular proliferation in fibroblasts (44). Multiple 
miRNA regulating each of these proteins were shared by also 
by GFRA1, the provincial hub TXNIP and then NDRG1. The 
highly over-expressed has-mir-449a and down-expressed 
hsa-mir-512-3p regulate TXNIP along with CCND1, GAS1, 
ITGA11, and NDRG1, and hsa-mir-512-3p increases the cel-
lular proliferation and migration ability. The protein EEF1A1, 
containing missense mutation in OS patients, shows interaction 
with hsa-miR-342-3p, known to regulate variety of oncogenic 

processes, including cellular proliferation in different cancers. 
The OS phenotypes shared 32 cancer-related pathways (Table 
S4 in Supplementary Material) and comprised DEG-driven 
proteins either distinctly or jointly distributed.

effects of Controllability on Networks
While Figure 5 described the classification of nodes in multitype 
networks, critical nodes have the highest presence in Pp state 
(Figure 6). With gene–gene co-expression networks, fewer criti-
cal nodes are in Tp and Cp states compared with Ip and Pp states. 
With gene–miRNA interaction networks, Pp state reveals many 
critical nodes, whereas Ip state contained none. Most miRNAs 
were classified as type 1 redundant nodes in all cell lines (Data S3 
in Supplementary Material).

The critical nodes in multilayer OS networks were differenti-
ated. Critical links in gene–gene co-expression networks revealed 
critical nodes in Tp state (FBXO32 and FLJ10154) and Ip state 
(OCIAD2, SLC2A3, COL1A2, NNMT, and GAS1), showing 
interaction with other non-critical nodes, whereas Cp state 
showed interaction among critical nodes WISP1 and TNNT1, 
especially. Pp state showed rich interactions among critical 
nodes, say NINJ2 that interacts with MAFB, CCND2, and with 
EPB41L3; then TMEM200A interacting with IL1A (interactions 
with non-critical nodes appear). With gene–miRNA interaction 
networks, Tp state showed critical links containing critical nodes 
interacting with non-critical nodes, whereas Ip and Cp states 
contained miRNAs in critical links. miRNAs miR-183, mir155, 
miR-590-3p, miR-499-3p, miR-497, and miR-637 present critical 
interactions in Ip state that regulate important genes, similar to 
Cp state where mir-630 regulates CTHRC1 and miR149 interacts 
with C8orf55. In Pp state, critical links include critical node IL1A 
interaction with non-critical MAGEA10; then, the non-critical 
DE DCN interacts with FAM20C, and miR-630 shows regulation 
relative to CTHRC1.

With PPI-miRNA networks, Ip and Cp states are showed in 
Figures  3 and 4, respectively. Instead, the Tp state contained 
miRNAs (hsa-miR-186 and more) interacting with non-critical 
genes along with critical genes, such as FHL2, COL6A2, and 
NDRG1. In Pp state, only the critical node CKB showed 
interaction with kRT81 and the DE miR-375 regulates highly 
DE NPPB genes (critical interactions). The miRNAs miR-153, 
mir-342-3p, and miR-139-5p regulated STMN2, EEF1A2, and 
DTX3, respectively. NDRG1, critical multilayer network node 
involved in stress responses, cell growth, differentiation, and 
metabolic pathway, is also critical for Tp and Pp states in first 
order PPIN. FBXO32 is critical in Tp gene–gene and gene–
miRNA networks. Multilayer OS critical nodes, such as TGM 
(Tp state), KRT8 and COL4A1 (Ip state), KRT8 (Cp state), and 
CKB and COL4A1 (Pp state) (Figure 6) are also identified as 
critical nodes in corresponding PPIN first order networks (Data 
S3 in Supplementary Material), but with interactions lower than 
average degree. Redundant nodes in first-order PPIN across all 
phenotypes were peripheral. Serpin1, KRT18, and GAS1 (criti-
cal node in Ip state) are among the many hub nodes in different 
layers of biological networks and are regulated by a multitude 
of DE miRNAs.
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FIGURe 3 | Continued

Protein Complexes
Critical nodes in multilayer networks participate in the selected 
protein complexes (Figure S5 and Data S4 in Supplementary 
Material). Notably, these refer to interactions with the tumor 
microenvironment (TME) of relevance for cancer progression 
toward metastasis. TME is known to contain distinct cell types, 

part of ECM-related macromolecules. We found that 48% of criti-
cal nodes in Tp and Pp PPI constituted complexes, while Ip and 
Cp ones reached 55.9 and 56.8% (Figure 6). Specifically, interact-
ing critical nodes were identified in Ip protein sub-complexes: (i) 
LAMA5 encoding a laminin alpha chain (laminin is a family of 
ECM glycoproteins), implicated in cell adhesion, differentiation, 
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migration, and metastasis; (ii) KRT8, member of the type II 
keratin family, and contributing to cellular structural integrity 
and cellular differentiation. (iii) DCN, encoding a protein of the 
small leucine-rich proteoglycan (SLRP) family (collagen fibril 
assembly) that binds to multiple cell surface receptors, influences 
tumor suppression by stimulating autophagy and inflammation 
and inhibiting angiogenesis and tumorigenesis (45–47); (iv) 
BGN, encoding a SLRP protein, also regulating inflammation and 
innate immunity; (v) COL4A1, a subunit of the type IV collagen 
playing a role in angiogenesis; (vi) IGFBP7, coding for an insulin 
growth factor binding protein (cell adhesion, cellular senescence, 
and autophagy); (vii) PDGFRA, encoding a cell surface tyrosine 
kinase receptor (tumor progression); and (viii) CCND1 (and 
CCND2), cell cycle regulatory proteins or D-type cyclins promot-
ing cell cycle progression from G1 to S phase by binding to and 
activating the cyclin-dependent kinases CDK4 and CDK6. By 
aberrantly contributing to proliferation of cancer cells in a wide 
variety of human cancers, these kinases represent biomarkers 
and pharmacological targets in view of anticancer therapeutics 
(48, 49).

In the Cp network, distinct critical nodes are identified in 
(i) KRT17 (keratin), regulating epithelial cell growth (tissue 
repair) and stimulating Akt/mTOR pathway; (ii) FGFR3, 
encoding a member of the fibroblast growth factor receptor 
family, and interacting with fibroblast growth factors, and 
ultimately influencing mitogenesis and differentiation; (iii) 
THBS1, which encodes an adhesive glycoprotein that mediates 
cell-to-cell and cell-to-matrix interactions, active in platelet 
aggregation, angiogenesis, and tumorigenesis. The PPP2CA 
protein, a known tumor suppressor, is a pervasive critical node, 
also at first order PPIN level. The cAMP-dependent protein 
kinase catalytic subunit alpha complex containing critical 
nodes is shared between Tp, Cp, and Pp states, whereas the 
CD44 antigen-related complex is shared between Tp, Ip, and 
Pp states. Numerous proteins complexes containing critical 
nodes specifically characterize the Tp state: ERBB1 (EGFR), 
MMP14, and PLAUR; the Ip state: IKKB and RASA; the Cp 
State: GATAD2B, ACTB, ACTG1, NDUFA8, PPP2R2A, and 
SOS1; and the Pp state: CKB, RHOA, and AP2B1. In particular, 
GATAD2B and ACTB form the LARC complex. No interactions 

among proteins having missense mutations in OS were found 
in protein complexes.

eigen-decomposition Results
The IPR measure (see Materials and Methods) for lowest non-
zero eigenvalues in PPI-miRNA network were twofold higher 
for Tp (IPR =  1.7) as compared with Pp (IPR =  0.7). The IPR 
for the lowest non-zero eigenvalue in Ip and Cp networks was 
1.4 and 1.19, respectively. The lowest non-zero eigenvalues that 
were observed for Pp network indicate presence of strong com-
munities (i.e., nodes with fewer connections between groups than 
within groups and behaving nearly as disconnected components 
and resulting in non-zero eigenvalues). The eigenvectors are also 
associated with the lowest non-zero eigenvalues, still with higher 
IPR (Figure S5 in Supplementary Material).

The eigenvector scatterplots of Figure 3 with the five largest 
eigenvalues, and referred to the seed interacting proteins and 
critical nodes in Ip PPI complexes, showed variable bar length, 
i.e., eigenvector component values not concentrated in a single 
state but distributed among multiple energy states. Higher values 
appear for eigenvector component referred to the ALDH1A1 
and the RBP1 proteins, interacting with DEG proteins (encircled 
in blue, C row) in the fifth largest eigenvalue χ5. The Tp and Pp 
plots for eigenvector components (Figure S4A in Supplementary 
Material; Figure  4B) demonstrate similar pattern for principal 
eigenvalue. The critical nodes identified in PPI-miRNA networks 
show extremal values (high negative or positive) for some of the 
interacting proteins in Tp; this appears in the eigenvector plots 
for lowest non-zero eigenvalues (Figure S5 in Supplementary 
Material). In Ip, the critical nodes CCND1, CCND2, and CDK6 
participating in the B.3 complex showed eigenvector compo-
nents approaching 0.2 for each node, suggesting delocalization. 
The other connected cluster containing critical node PDGFRA 
participating in the B.2 complex, along with critical node TGFBI, 
showed eigenvector component localized around zero. In Cp, 
the connected component contains critical nodes TGM2 and 
LAMA5 linked to another critical node THBS1 participating in 
many important complexes (Data S4 in Supplementary Material), 
and showing very localized eigenvector component. The con-
nected component of seed proteins in Tp also includes the FHL 
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family of proteins participating in complexes, and the critical 
protein TGM2, which interacts with ACTG2 while participating 
in different complexes. Pp contained only the LAMA5 protein 
involved in complexes.

Figures 3 and 4 refer to examples of protein complexes consid-
ered as possible candidate targets and retrieved from miRNA-PPIN 

configurations. The eigenvalues plotted with the IPR, which 
quantifies the number of states for a particle, and the eigenvector 
components (nodes, proteins) localization, or delocalization help 
to emphasize the target potential. High localization is equivalent 
to IPR telling that the distribution is concentrated on a few nodes/
proteins. Lack of concentration indicates that a set of interacting 

FIGURe 4 | Continued
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seed proteins for the top-5 eigenvalues. The first eigenvector values depend on principal eigenvalues. Red dots denote critical nodes in first order PPIN networks 
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proteins, participating to a sub-complex, may better identify a 
potential composite target. Specifically, pieces of evidence for a 
couple of phenotypes are proposed (other pieces of evidences 
are in Figure S4A in Supplementary Material; Figure 4B). The 

local context of a node in terms of interconnectivity patterns is 
relevant, therefore, to identify the potential of the candidate target 
beyond the individual node, thus identifying a composite target 
that can elucidate the functional relevance of the node itself based 
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on the other interacting nodes. The presence of identified critical 
nodes in target sub-complexes brings additional value, as this 
means improved wide-spectrum controllability.

drug Interactions, Repositioning, and 
Repurposing
Drug repositioning involves discovery of new roles for drugs, 
especially those with high failure rate and long-term develop-
ment. Our phenotype-driven networks embedding critical nodes 
may gain further relevance when associated drugs are considered 
(Figure 7). The comprehensive resource here used is drug–gene 
interaction database (50, 51), with drug–gene interaction 
data from 15 different resources (52, 53). In the Ip drug-target 
network, the well-known Tamoxifen shows interaction with 
the CCND1 protein participating in complexes with CCND2 
and CDK6 and also share interactions with other drugs, namely 
LEE011 (ribociclib), and LY2835219 (abemaciclib), both CDK4/6 
inhibitors. Considering then the target PDGFRA (overexpressed 
in Ip), a drug compound of interest is lenvatinib (multiple kinase 
inhibitor), then regorafenib (multikinase inhibitor targeting 
angiogenesis, stromal/microenvironment and oncogenesis), 
and also nintedanib (small molecule tyrosine-kinase inhibitor, 
targeting VEGFR and FGFR). Inhibition of PDGF receptor sign-
aling (with antibodies or DNA aptamers) has proven useful for 
treating cancer patients, leading to the development of different 
types of antagonists of its signaling, such as binders targeting 
the receptors and preventing their activation or promoting 
their degradation, and low molecular inhibitors of the receptor 
kinases. In the Cp network (bottom panel), AKR1B1 (member of 
the aldo/keto reductase superfamily, which consists of more than 
40 known enzymes and proteins) showed interaction with many 
drugs, likewise FGFR3 (member of the fibroblast growth factor 
receptor family) emerged to be second reactive protein interact-
ing with other cancer treatment drugs. Also, THBS1 appears (an 
adhesive glycoprotein mediating cell-to-cell and cell-to-matrix 
interactions, and involved in platelet aggregation, angiogenesis, 
and tumorigenesis), but with no drug interactors.

dIsCUssIoN

Despite inspiring much of the initial network literature, reverse 
engineering revealed limitations for dynamical biological systems. 
These need extended sensitivity tests for assessing parameter 
inferability (54). Two recent changes occurred: model systems 
have started to include enormous data volumes (big data), lead-
ing network inference approaches to unprecedented sophistica-
tion (multilayer networks). Generalizations such as reciprocal 
engineering (the interactome scaffold connecting pieces of 
experimental evidence and determining the target pathways), 
and forward engineering (pathway modulation used to analyze 
downstream phenotypes) (55). More importantly, controllability 
has emerged as a paradigmatic example of research direction with 
almost ubiquitous applications.

Multiple phenotypically differentiated OS cell lines may 
clarify target relationships. Our inference approach is centered 
on networks. One aim was to exert control on targets, single 
and composite ones, with the latter benchmarked to protein 

complexes. Pooling together heterogeneous evidenced data cre-
ates the premises for the analysis of systemic regulation dynamics 
of difficult replicability or interpretability. Deciphering such 
complexity requires multi-type networks. Because nodes and links 
represent genes, miRNAs, proteins, transcription factors, etc., the 
corresponding associative dynamics have relevance depending 
on their integrability. As a result, the identified OS targets were 
characterized by critical proteins, individually relevant or inter-
acting in sub-complexes. Examples were offered by SLRP proteins 
and D-type cyclins, but distinct effects were also emerging from 
IGFBP7 and PDGFRA, critical proteins in invasive conditions, 
and from FGFR3 and THBS1, appearing in colony-forming 
phenotype. Collagen, laminin, and keratin proteins were shared 
across phenotypes.

It is clearly relevant the emergence of TME due to these 
identified targets. We stress the fact that the evidenced targets are 
connected, which suggests that multidrug targeted approaches 
may be particularly indicated. Such multiplicity of targets across 
OS phenotypes increases the overall complexity, but naturally 
reflects the role played by TME in this disease, and also justifies 
the ongoing phase I/II trials as important steps for more critical 
assessment of TME in OS pathogenesis (56).

We have then observed a few other specific aspects: (A) from 
the same reference system of pan-cancer cell lines, results depend 
on the computational tools used for the analysis. For instance, 
profiling the data discriminates among many measurements and 
their bio-annotations, all subjected to various degree of strin-
gency to establish significance. But profiling is not sufficient, and 
calls for further inference shifting from the analysis of signatures 
of individual bioentities to the analysis of modules of connected 
bioentities; (B) shared and distinct features emerging at pheno-
type levels may vary quite substantially, while receiving influence 
from the adopted measurement system, and the best way to put 
forth causative instead of confounding effects is to evaluate pieces 
of evidence at a systems level and to exploit the embedded metrics 
to leverage their possible linkages; (C) networks are naturally dif-
ferentiated, depending on data characteristics (OS phenotypes, in 
our study), but also on the object of investigation, targets in our 
case. Starting from the topological properties, we achieved accu-
rate analyses through controllability and spectral concepts, so far 
widely unexplored, but with potential toward target discovery.

In dynamical systems, steady-state network configurations are 
usually considered to be proportional to the principal eigenvector 
corresponding to the largest eigenvalue. The residual eigenvectors 
refer to non-steady-state conditions, addressing system disequi-
librium. Network modularity reflects the eigenvector properties, 
and allows measurement, for instance, through the PR, which 
quantifies the effective number of network nodes representing 
significant eigenvector components. In scale-free networks, such 
components tend to be localized in a few well-connected nodes. 
Correspondingly, the IPR indicates the reciprocal of the number 
of eigenvector components offering a significant contribution, 
thus measuring the localization degree of a particular eigenvec-
tor. A recent application of network controllability for a large-
scale study aimed at identifying disease genes and drug targets 
(5). Differently classified nodes allowed to assess distinct func-
tional and regulatory roles. Controllability pinpointed hotspots 
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(“fragile nodes”) informative about state transitions from health 
to disease. Critical controllability was examined both structur-
ally (PPIN) and functionally (transcriptome) in large-scale 
integrated systems, associating critical nodes and drug targets 
(57). We reconciled these characteristics by proposing novel 
strategies to identify a variety of targets within OS phenotypic 
heterogeneity. Especially, exerting control on composite targets 
might lead to improved drug repositioning or repurposing10 with 
cost-effectiveness advantages for cancer therapy.
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measures of DEGs in Pp (proliferation Vs non-proliferating cell lines).
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co-expression networks. Hubs in gene–gene co-expression networks. Sheet 2: 
Controllability status of nodes: 0 = critical, 1 = redundant, 2 = ordinary in type 
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sUPPLeMeNtARY dAtA s3 | sheet 1: Classification type I nodes in multitype 
networks for all OS phenotypes. Sheet 2: Fraction of nodes and links in multitype 
networks for all OS phenotypes. Sheet 3: (A) Critical nodes computed in gene–
gene co-expression, miRNA-target gene interaction, PPI-miRNA and PPI first 
order interaction networks. (B) Number of critical nodes in first order and number 
of critical nodes present in protein complexes from the CORUM database. Sheet 
4: Information related to critical nodes identified in PPI first order network having 
differential expression in other OS phenotypes. Sheet 5: Classification of type I 
links in multitype networks for all OS phenotypes.

sUPPLeMeNtARY dAtA s4 | sheet 1: Details of seed proteins corresponding 
to DE genes participating in experimentally determined protein complexes 
stored in CORUM database. Sheet 2: Details of proteins (gene symbol, Uniprot 
id) participation in complexes experimentally determined in different organisms 
(systems) stored in CORUM database. Sheet 3: Detailed information on the 
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specific to OS phenotype-first order PPIN. Sheet 4: Information of complete list 
of complexes present in CORUM. Gray shaded cells contain complexes with 
involvement of c-MYC protein.

sUPPLeMeNtARY dAtA s5 | sheet 1: Molecular functions of top-10 
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