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Abstract

Cancer is a complex disease with usually multiple disease mechanisms. Target combination

is a better strategy than a single target in developing cancer therapies. However, target

combinations are generally more difficult to be predicted. Current CRISPR-cas9 technology

enables genome-wide screening for potential targets, but only a handful of genes have been

screend as target combinations. Thus, an effective computational approach for selecting

candidate target combinations is highly desirable. Selected target combinations also need

to be translational between cell lines and cancer patients. We have therefore developed

DSCN (double-target selection guided by CRISPR screening and network), a method

that matches expression levels in patients and gene essentialities in cell lines through spec-

tral-clustered protein-protein interaction (PPI) network. In DSCN, a sub-sampling approach

is developed to model first-target knockdown and its impact on the PPI network, and it also

facilitates the selection of a second target. Our analysis first demonstrated a high correlation

of the DSCN sub-sampling-based gene knockdown model and its predicted differential

gene expressions using observed gene expression in 22 pancreatic cell lines before and

after MAP2K1 and MAP2K2 inhibition (R2 = 0.75). In DSCN algorithm, various scoring

schemes were evaluated. The ‘diffusion-path’ method showed the most significant statistical

power of differentialting known synthetic lethal (SL) versus non-SL gene pairs (P = 0.001) in

pancreatic cancer. The superior performance of DSCN over existing network-based algo-

rithms, such as OptiCon and VIPER, in the selection of target combinations is attributable to

its ability to calculate combinations for any gene pairs, whereas other approaches focus on

the combinations among optimized regulators in the network. DSCN’s computational speed

is also at least ten times fast than that of other methods. Finally, in applying DSCN to predict

target combinations and drug combinations for individual samples (DSCNi), DSCNi showed

high correlation between target combinations predicted and real synergistic combinations

(P = 1e-5) in pancreatic cell lines. In summary, DSCN is a highly effective computational

method for the selection of target combinations.
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Author summary

Cancer therapies require targets to function. Compared to a single target, a target combi-

nation is a better strategy for developing cancer therapies. However, predicting target

combination is more complicated than predicting a single target. Current CRISPR tech-

nology enables whole-genome screening of potential targets. But most of the experiments

have been conducted on a single target (gene) level. To facilitate the discovery of novel tar-

get (combinations), we developed DSCN (double-target selection guided by CRISPR

screening and network) that utilize single target-level CRISPR screening data and expres-

sion profiles for predicting target combinations by connecting cell-line omics-data with

tissue omics-data. DSCN showed great accuracy on different cancer types and superior

performance compared to existing network-based prediction tools. We also introduced

DSCNi derived from DSCN and designed specifically for predicting target combinations

for single-tient patient. Our results showed synergistic target combinations predicted by

DSCNi accurately reflected synergies on drug combination levels. Thus, DSCN and

DSCNi have the potential to be further applied in the clinical personalized medicine

practice.

Introduction

The complexity of cancer is widely recognized, with heterogeneous disease mechanisms

underlying primary, metastatic, and drug-resistant tumors [1,2]. Therefore, translational can-

cer research now focuses on the identification of combinational rather than single targets and

the selection of drug combinations instead of single drugs [3,4]. The clustered regularly inter-

spaced short palindrome repeats (CRISPR)-Cas9 knockout system is a revolutionary gene-

editing tool. By the pooled CRISPR libraries, we can screen thousands of gene expression vari-

ation at one time. A CRISPR-based double knockout (CDKO) system has recently been devel-

oped to effectively screen gene pairs or target combinations by synthetic gRNAs (a short guide

RNA) [5,6]. In this paper, we will use the terms gene pair and target combination interchange-

ably because they represent the same concept. However, screening using the CDKO system is

limited by the number of genes to be screened. For instance, if we screen target combinations

among 100 genes, and each gene has four gRNAs, there will be (4×100)2/2 = 80,000 combina-

tions, a scale that is feasible in a CDKO system. However, across the genome, if we screen tar-

get combinations among 10,000 genes and select only one gRNA per gene, the resulting

10,0002/2 = 50,000,000 combinations will be practically infeasible. Therefore, a computational

approach is needed to rank and select top candidate gene pairs from CDKO system.

There are two notable approaches in druggable target combination selection. OptiCon

(optimal control nodes) [7] and VIPER (virtual inference of protein activity by enriched regu-

lon analysis) [8]. Both approaches primarily utilize gene-expression data to construct a biologi-

cal network, then rank and select druggable target combinations that demonstrate optimal

control of the network. OptiCon takes a protein-protein interaction (PPI) network, a prior

pathway knowledge, and multi-omics data (genomic and transcriptomic) as input. In OptiCon

modelling, it used both signaling transduction and gene regulation information to rank and

select these optimal control nodes (OCNs) as their combination targets among their networks.

These top OCN pairs have the largest control of the network. VIPER [8], another method,

relies on a pre-built mutual information network (i.e. gene regulartory network) using tran-

scriptome data and ARACNE (Algorithm for the Reconstruction of Accurate Cellular
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Networks) information-theoretic algorithm [9]. VIPER infers a set of regulators, i.e. regulons,

in a gene regulatory pathway. In VIPER data analysis, top ranked regulon pairs are selected

based on the the number of their down stream regulated genes. In these two network based

target combination selection algorithms, some top ranked control node pairs from OptiCon or

regulon pairs from VIPER are shown to be synthetic lethal (SL) in validation experiments.

An SL gene pair refers to the loss of two genes that lead to cell death, but cell is still viable if

losing one gene but not the other one. Network based target combination selection approach

SL concept are technically different, but very much connected. Because some of the top ranked

target combinations selected from the network were shown to be SL experimentally, they

become SL discovery tools. In this paper, our proposed DSCN approach (i.e. Double-target

Selection guided by CRISPR screening and Network) is indeed inspired by both network-

based target combination selection approach and SL concept. Firstly, the spectral clustering

and target selection scheme in DSCN is to select genes that have bigger impact on the network.

Secondly, DSCN utilized CRISRP-Cas9 screening data in characterizing gene specific impact

to cell viability. Then, taking advantage a novel subsequent sub-sampling scheme, DSCN is

designed to select the first target that is highly essential in the network. In the subpopulation in

which the first target is lowly expressed, the second target is selected based on its essentiality

and network topology. In other words, the first target is selected for annihilating most of cells,

and second target is selected is to annihilate the rest of the cells in which the first targets is

lowly expressed (i.e. first target knockdown). Unlike VIPER and OptiCon, DSCN integrates

SL concept into the target combination selection by a sequential selection for two targets.

VIPER and OptiCon did not address the translational connection between cell lines and

tumor samples in selecting target combinations, but DSCN was designed to model this transla-

tion connection. Our ultimate goal is to select targets and/or target combinations for tumor

tissues. Considering the potential difference between cell lines and tumor tissues, it is more

important to identify important molecular subnetworks in tumor tissues than cell lines. There-

fore, our DSC network and clustering analyses are performed on tumor tissue data first. Then,

they are mapped to the cell lines for further target combination selection. On the other hand,

to extend DSCN to predict target combinations for individual samples, a DSCNi tool is devel-

oped here.

Materials and methods

Datasets used in this study

Table 1 lists these data sources used in paper, which include the types of cancer screened, data

platforms and types, and sample numbers. We retrieved gene-expression and -mutation data

for normal tissue and tumor samples for pancreatic and breast cancers from the Gene Expres-

sion Omnibus (GEO) [10,11] and The Cancer Genome Atlas (TCGA) [12] and gene-expres-

sion and -essentiality data from Project Achilles and DepMap [13–15], downloaded PPI data

from STRING [16], extracted drug-target data from DrugBank [17], downloaded synthetic

lethal gene-pair data from the SynlethDB database [18] and drug-sensitivity data from the

DrugComb database [19].

These types of data are organized as sets and utilized in the following ways:

GSE45757 is an independent set used for validating our proposed subsampling scheme. Set

<1,2,3,4,11,12,13> is used as the training set for selecting the optimal scoring method, and the

exploring set for the predicted impact of all target combinations from DSCN. (Table 2). Set

<7,8,9,10,11,12,13> is used for external benchmark of predictions among DSCN and other

methods. Set<1,2,5,6,11,12,13> is used as the exploring set for predicted impact of all target

combinations from DSCNi (Table 3).
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Steps of DSCN algorithm

DSCN algorithm consists of six steps (Fig 1):

Step 1: Network construction

In this step, we construct two integrated function networks, a tissue network Gt and a cell-line

network Gc. Gt consists of a skeleton from the STRING PPI network and edge weights from

gene pair-wise Pearson correlations in tumor samples, and node weights are the fold changes

in gene expression between tumors and normal tissue. A high fold change indicates higher

gene expression in the tumor than in the normal tissue. Assume that there are a total of n

genes (nodes) in Gt. The affinity matrix St denotes the edge weights, and diagonal matrix Dt

denotes the node weights in Eq (1):

Gt ¼ St þ Dt ; St ¼

0 � � � w1n
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Table 1. Datasets used in this study.

Part 1. Multi-omics data

Number Cancer type Data platform Data type Data (n, sample size)

1 Pancreatic cancer cell

lines

Affymetrix U133 2.0 Gene expression GSE36133 (43), GSE46385 (7), GSE21654 (22), GSE17891

(20)

Total sample size = 92

2 CRISPR screening Gene essentiality Project Achilles (v3.3.8)

Total sample size = 26

3 Pancreatic tissue samples Affymetrix U133 2.0 Gene expression (tumor) GSE42952 (33), GSE51978 (2), GSE16515 (36), GSE15471

(39), GSE23952 (3)

Total sample size = 113

4 Affymetrix U133 2.0 Gene expression (normal) GSE46385 (3), GSE16515 (16), GSE15471 (39)

Total sample size = 58

5 Illumina DNA-seq &

RNA-seq

Mutation and gene

expression (tumor)

TCGA ductal and lobular neoplasms (150), adenomas

and adenocarcinomas (29)

6 Illumina RNA-seq Gene expression (normal) Solid tissue adjacent normal (41)

7 Breast cancer tissue

samples

RNA-seq Gene expression(tumor) TCGA triple negative breast cancer sample (115)

8 Gene expression (normal) TCGA triple negative breast cancer sample (163)

9 Breast cancer cell lines Affymetrix U133 2.0 Gene expression GSE36133 (12)

10 CRISPR Screening Gene essentiality Project Achilles (v3.3.8)

Total sample size = 28

Part 2. Databases

Number Data type Database Data

11 Protein-protein

interaction (PPI) network

STRING [16] PPI data in STRING

database for human (v11):

11,609,230 interactions

12 Drug targets DrugBank [32] Food and Drug

Administration (FDA)-

approved drugs and their

associated target proteins:

1,769 gene targets,

13 Synthetic lethal pairs SynlethDB [17] 19,613 synthetic lethal

gene pairs in human

cancer

14 Drug sensitivity data DrugComb[18] Drug synergies among

cell lines on 5,226 drug

pairs (HS578T)

https://doi.org/10.1371/journal.pcbi.1009421.t001
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where wab, a6¼b2(1, n) in St indicates the edge weight (correlation) between genes a and b in

the tissue network; and wi in Dt is the tumor versus normal fold change in the expression of

gene i, i = 1,. . .,n.

Similarly, Gc consists of an identical skeleton from the same STRING PPI network and

edge weights from pair-wise gene correlations in cell-line samples. Unlike Gt, the node weight

of Gc is from CRISPR-Cas9 screening data, which is indicated as the gene essentiality value.

The gene essentiality value can be generally interpreted as the fold change in cell count before

and after gene knockout. Genes demonstrating smaller fold change are more essential. In this

study, all the essentiality values are log2 transformed. Similarly, Gc is decomposed into affinity

matrix Sc for edge weight and diagonal matrix Dc for node weight in the cell-line network Gc =

Sc+Dc.

Step 2: Construction of Laplacian matrices for the tissue and cell-line

networks

A Laplacian matrix measures all properties of a network, including node weight, edge weight,

and connectivity. In this second step, we construct Laplacian matrices for the tissue network

Gt and the cell-line network Gc as:

L ¼ D � S; ð2Þ

in which D is the diagonal matrix and S, the affinity matrix, defined in Eq (1), and Lt is the

Laplacian matrix for the tissue network and Lc, that for the cell-line network.

Step 3: Spectral clustering for tissue network

We perform spectral clustering only on the Laplacian matrix of the tissue network Lt as:

Table 2. Analysis of overall survival among the nine top-ranked target combinations in pancreatic ductal adenocarcinoma (PDAC). Here IS closes to the lower nega-

tive number is, the more support for synergy to the candidator of pairwise genes.

Gene 1 Gene 2 Impact Score (IS) Log rank P-value Hazard Ratio (HR) HR P-value Pathways

EGLN1 TFRC -255.12 0.02 2.00 0.02 hypoxia, ferroptosis

MAP2K2 TFRC -255.05 0.08 1.60 0.08 MAPK, ferroptosis

HPSE TFRC -255.01 0.19 1.50 0.20 Metabolism, ferroptosis

PPIC TFRC -254.86 0.06 1.80 0.06 Immune system, ferroptosis

FRK TFRC -254.86 0.04 1.80 0.05 Immune system, ferroptosis

EGLN1 COX7C -254.79 0.84 1.10 0.85 Hypoxia, metabolism

XDH TFRC -254.75 0.001 2.40 0.002 Metabolism, ferroptosis

MAP2K2 COX7C -254.72 0.14 0.65 0.15 MAPK, oxidative phosphorylation

FTL TFRC -254.71 0.10 1.60 0.10 ferroptosis, ferroptosis

https://doi.org/10.1371/journal.pcbi.1009421.t002

Table 3. Contingency table between drug- and target-combination synergy.

Type Predicted target-combination

synergy

Predicted target-combination non-

synergy

Drug-combination synergy 2,594 7,097

Drug-combination non-

synergy

0 4,375

https://doi.org/10.1371/journal.pcbi.1009421.t003
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I. Normalize the Laplacian matrix Lt to L0t:

L0t ¼

w1 � � � �
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Fig 1. Overview of double-target selection guided by CRISPR screening and network (DSCN). There are five steps

sequentially for pairewise targets identification in integrated networks of cell line and tissue. Step1. Input data includes

cell line CRISPR gene knock-out data, cell line transcritome data, database STRING PPI network data, tissue

transcriptom data and drug-target data from DrugBank. Step2. Perturbation network is constructed to cell line and

tissue respectively by SCNrank [33]. Cell line network matches to tissue network and then seek the homology network

module by spetral clustering in step 3. By SCNrank [33] target impact scores (IS) scoring, we will identify the first

target in each spetral cluster. Then we sampling both of samples of cell line and tissue, and select those patients whose

first targt gene with significant low expression in step 4. We will repeat steps2-3 to select the second target after the first

target obtained in step 5, while the pairwise target gene IS score is calculated.

https://doi.org/10.1371/journal.pcbi.1009421.g001

PLOS COMPUTATIONAL BIOLOGY DSCN: Double-target selection guided by CRISPR screening and network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009421 August 19, 2022 6 / 20

https://doi.org/10.1371/journal.pcbi.1009421.g001
https://doi.org/10.1371/journal.pcbi.1009421


In the normalized Laplacian matrix L0t, all diagonal elements are positive, and all other ele-

ments are negative. The row sum of non-diagonal elements is equal to its corresponding

diagonal. abs is absolute value.

II. Perform eigen decomposition for matrix L0 to obtain the spectrum E = {λ1, λ2. . .λn}, where

0 = λ1�λ2�� � ��λn, and their corresponding eigenvector.

III. Choose the k smallest non-negative eigenvalues {λi,. . .,λi+k} and their corresponding

eigenvectors, and combine these k eigenvectors into an n×k matrix, H.

IV. In this H eigenvector matrix, each row represents a gene node, and k columns represent

the coordinate values of a gene node. The row vectors in H are used to calculate the

Euclidean distance between a pair of gene nodes. We then perform K-means clustering

for n nodes. To select the number of clusters, K’, to produce a good fit, we calculate Harti-

gan’s number, which measures the quality of clustering results. We select the optimal K’
and constrain it further to less than 10 for practical consideration. This spectral clustering

leads to K’ exclusive clusters (i.e., subnetworks). From the tissue network Gt, subnetworks

gt1; . . . gtK0 are classified.

Step 4: Mapping the tissue/cell-line network and calculating the impact

score of Target 1

The cell-line network Gc is then mapped to the spectral clusters, gt1; . . . gtK0, generated from tis-

sue network Gt in Step 3. Because tissue network Gt and cell-line network Gc share the identical

network structure, i.e., nodes and connections, Gt subnetworks, {gt1; . . . gtK0} are mapped to Gc

subnetworks fgc1
; . . . gcK0g using their common node names and connections.

The target impact score will be calculated based on the cell-line subnetworks fgc1
; . . . gcK0 g. We

focus on all Food and Drug Administration (FDA)-approved drug targets (see Table 1) to calculate

our target score. The impact score of a target 1 (T1) is calculated as the sum of the impact score itself

and its impact on the rest of the genes in the network. Its general form is defined in Eq (4):

ISðT1Þ ¼ SðT1Þ þ
X

i2f1;::;ng
S½NijPaðNiÞ�; ð4Þ

in which, {Ni, i = 1,. . .n} are the gene nodes in the network other than T1, and Pa(Ni) is a set of par-

ent nodes of Ni. In particular, the impact score on Ni depends on its parent nodes, Pa(Ni). Fig 2

illustrates the three different methods of calculating the impact score–the most-probable, random-

walk, and diffusion paths.

Most-probable path. The immediate children of T1 are the gene nodes directly connected

to T1, e.g., N4 is the direct child T1 in Fig 2B. In this method, we will count only the immedi-

ate children of T1 in calculating the impact score. Without loss of generality, let ch(T1) be the

set of immediate children of T1. The most probable path of T1 is the one that has the smallest

impact score among ch(T1). Based on the general impact score as calculated in Eq (4), the

most-probable-path impact score is defined in Eq (5):

ISðT1Þ ¼ SðT1Þ þminNi2chðT1ÞS½NijT1�

¼ wT1 þminNi2chðT1ÞðwNi
� wT1;Ni

Þ;
ð5Þ

where wT1 and wNi
indicate their node weights, and wT1;Ni

indicates their edge weight.

Random walk path. The random-walk score is calculated in two steps. Step 1 is a random

walk in the network, in which the random walk has a transition probability of traveling from

PLOS COMPUTATIONAL BIOLOGY DSCN: Double-target selection guided by CRISPR screening and network

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009421 August 19, 2022 7 / 20

https://doi.org/10.1371/journal.pcbi.1009421


one node to another. In Fig 2C, starting from T1, each node Ni is randomly visited. Here we

used normalized edge weight for transition probability as defined in Eq (6):

Pj;i ¼
wj;i

P
x2ewj;x

; ð6Þ

where Pj,i is the transition probability from Nj to Ni, wj,i is the edge weight between them, and

∑x2e wj,x is the sum of all edge weights of Nj. In this Markov process, a node can be visited mul-

tiple times. We set the total number of random-walk steps as 2n, where n is the total number

of nodes in the network.

Then, in Step 2, we defined the parent node as the node that visited Ni first, i.e., Pa(Ni).

Hence, the impact score of T1 becomes:

ISðT1Þ ¼ SðT1Þ þ
P

i2f1;::;ngS½NijPaðNiÞ�

¼ SðT1Þ þ
P

i2f1;::;ngwi � wi;PaðNiÞ
:

ð7Þ

Diffusion path. Starting from T1, each node is visited in a hierarchical order. Therefore,

the parent nodes of a node, Ni, can be from the upper tier, i.e., UpperTier (Ni), or the same tier,

i.e., SameTier (Ni). For instance, in Fig 2D, there are four tiers in the hierarchical structure

starting from T1. The impact of T1 transmits from Tier 1 to Tier 4 in the network. Therefore,

the impact score is defined in Eq (6):

ISðT1Þ ¼ SðT1Þ þ
P

i2f1;::;ngS½NijPaðNiÞ�

¼ SðT1Þ þ
P

i2f1;::;ngf
P

j2UpperTier WijWi þ
P

w2SameTier WiwWig
ð8Þ

These three scoring methods are selected because of the following reasons. Firstly, for a undi-

rected network, the distance between two nodes is defined as their Dijkstra shortest distance,

which is equivalent to the most probable path in our case [20]. Secondly, a weighted and

Fig 2. Network configurations for three methods “most probable path”, “random walk” and “diffusion path” are used to calculate target impact score

(IS). (a) Original network. we use target T1 for example to denote the strategies in (b)-(d), (b) most probable path strategy. (c) random walk strategy. (d)

diffusion path strategy by hierachical tier searching.

https://doi.org/10.1371/journal.pcbi.1009421.g002
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undirected network is also called ‘Markov Random Field’ [21], where Markov property[22]

exists among all nodes. Random Walk based algorithms are frequently used in Markov ran-

dom field [23,24], to mimic the traverse under Markov property: the current step only depends

on the previous step. Thirdly, diffusion method is rather a deterministic approach, in which

the impact of the target is weighted by the correlations among neighboring nodes and gene

essentiality score of the nodes. Starting from the target node, the hierarchical structure of node

tiers is determined from the topology of the network.

Step 5: Subsampling and Target 2 (T2) score and selection

Once T1 is selected, we remove cancer cell lines with higher expression of the T1 than its sam-

ple mean and only keep cell lines with its expression lower than mean.This subsampling

method characterizes the knockdown of the T1. Similarly, we also remove cancer cell lines

with higher T1 essentiality scores than the sample in our subsampling. After the resampling,

we construct the cell-line network Gc as Eq (2) using the subsampled cell-line subsamples. We

follow the same Step 3 in mapping Gc to {gt1; . . . gtK0} and calculate the T2 impact score follow-

ing the same algorithms defined in Step 4. The T2 impact score is then denoted as IS (T2|T1),

because the subsampling and network depend on T1.

Step 6: Calculation of impact score for target combinations

Because T1 and T2 and their impact scores are computed sequentially, the combinational

impact score will consider both sequential orders in Eq (7), in which T16¼T2:

ISðT1;T2Þ ¼ ISðT1Þ þ ISðT2jT1Þ ð9Þ

Tissue cell-line subnetwork similarity measure. We measure the similarity of each

subnetwork pair <gt i; gc i>, i2(1,. . .,K0) between tissue and cell-line using the following

scheme:

I. Normalization of node weight (diagonal)

To make two subnetworks, gt i and gc i, comparable, we normalize the cell-line diagonal

matrix Dc i according to the tissue diagonal matrix Dt i using the following formula:

D0c i ¼

wc;i;1

PJ
j¼1

wt;i;j
PJ

j¼1
wc;i;j

� � � 0

..

. . .
. ..

.

0 � � �
wc;i;j

PJ
j¼1

wt;i;j
PJ

j¼1
wc;i;j

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

; ð10Þ

in which wc,i,j denotes the node weight j2(1,J) in the cell-line subnetwork, and wt,i,j, that in

the tissue subnetwork. J is the total number of nodes in gc i and gt i.

II. Normalization of edge weight

The Laplacian matrices for each subnetwork pair, <gt i; gc i>, i2(1, K0), are defined similarly

as Eq (3): Lt i ¼ Dt i � St i and Lc i ¼ D0c i � Sc i. After node-weight normalization, trace (Lc i)

= trace (Lt i). Then, their edge weights (non-diagonal elements) are normalized accordingly
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using the formula:

L00 ¼

w1 � � �
w1Jabsðw1Þ
PJ

j¼1
absðw1jÞ

..

. . .
. ..

.

wJ1absðw1Þ
PJ

j¼1
absðwJjÞ

� � � wJ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

: ð11Þ

Until this step, all edges (non-diagonal elements) in both Laplacian matrices, L00t i and L00c i,
acquired node features during normalization. We keep the original directions (positive or

negative) of node weights and edge weights for the following distance calculation.

III. Distance calculation

For two corresponding subnetworks gt i and gc i in tissue and cell-line, we calculate the dis-

tance using their normalized Laplacian matrices L00t i and L00c i:

Distanceðgt i; gc iÞ ¼
XJ

j¼1

XJ

l¼1
ðL00t iðj; lÞ � L00c iðj; lÞÞ

2; l 6¼ j; ð12Þ

where L0 0(i,j) i6¼j indicates the edge weight between nodes l and j in a given Laplacian

matrix, and ðL00t iði; jÞ � L00c iði; jÞÞ
2 indicate the Euclidean distance between the same edges

in two Laplacian matrices.

Construction of a DSCN algorithm for an individual cancer cell-line sample (DSCNi).

We apply DSCNi algorithm for scoring target combinations in a single cancer cell line for a

single patient. Very similar to DSCN, in building up Gc, DSCNi relies on a set of expression

profiles for a cancer cell line to calculate the edge weights (i.e., correlations) between gene

nodes. However, unlike DSCN, DSCNi uses a cell-line-specific essentiality score for node

weights. Its impact score calculation for T1, IS(T1), follows exactly from Steps 1, 2, 3, and 4.

In modeling the knockdown of T1 in the subsampling in Step 5, we maintain the same T1 sub-

sampling as DSCN, i.e., we remove samples with higher expression of T1 than its sample

mean. However, we will keep the same essentiality score for this individual cancer cell-line

sample to calculate the Target 2 impact score. We calculate the final combination target impact

score similarly as in DSCN, such that it has a comparable meaning to that calculated from

DSCN.

Analysis of association between drug- and target-combination synergy. The Bliss score

[25] measures the synergistic effect of a drug combination, i.e., the effect of the drug combina-

tion on cell viability rather than the additive effects of its two component drugs. A two-drug

combination is considered synergistic if its Bliss score exceeds 0.12 [26]. On the other hand,

the target combination is predicted to be synergistic if the impact score of two target is smaller

than the additive score of two individual targets, as in Eq (13), in which the impact scores of IS
(T1, T2), IS(T1) and IS(T2) are calculated by (9) and (8). (Note: the impact score usually takes

the negative value. The smaller, the more impactful).

ISðT1;T2Þ < ISðT1Þ þ ISðT2Þ ð13Þ

In this section, we will define an association analysis between drug-combination scores and

target-combination synergy scores. Consider a cancer cell line screened by a set of drug combi-

nations, and these drug combinations can be categorized as either synergistic or non-
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synergistic based on their Bliss scores. Then, for each drug combination, we identify all its

two-target combinations, calculate their synergy scores, and classify the drug combinations as

either synergistic or not as in Eq (13). In a 2 by 2 contingency table, the rows are drug synergy

(Y/N), and columns are target synergy (Y/N). For each drug combination, all counts of target-

combination synergy and non-synergy are added to the corresponding row with respect to

drug-combination synergy or non-synergy. The association between drug- and target-combi-

nation synergy is tested using a Chi-square test.

Results

Validation of the subsampling scheme for determining the impact of

target-gene knockdown in the DSCN algorithm

In the DSCN algorithm, we designed our subsampling method (Step 5) to model the impact of

Target 1 knockdown in the cancer cell line. To demonstrate the validity of this sampling

scheme, we identified a GEO dataset, GSE45757, that provided transcriptome profiles across

22 pancreatic cell lines before and after MAP2K1 and MAP2K2 inhibition. Our analysis

focused on 1,301 neighbor genes of MAP2K1 and MAP2K2 in the PPI network. Using the sub-

sampling approach, we calculated the log-fold changes in these 1,301 genes between groups

with either high or low expression of MAP2K1 and MAP2K2 group, which represent the pre-

dicted impact of Target 1 knockdown in the subsampling scheme. On the other hand, the

observed log-fold changes in these 1,301 gene expressions were calculated during MAP2K1

and MAP2K2 inhibition. Fig 3 shows a strong correlation, R2 = 0.75, between the predicted

and observed fold changes among these 1,301 neighbor genes of MAP2K1 and MAP2K2. The

findings of this analysis strongly support subsampling as a valid model for determining the

impact of target-gene knockdown.

Fig 3. Correlation between the predicted and observed log-fold changes in gene expression among MAP2K1 and MAP2K2

neighbor genes in the protein-protein interaction (PPI) network.

https://doi.org/10.1371/journal.pcbi.1009421.g003
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Comparison of impact scores of target combinations using known

synthetic lethal gene pairs in pancreatic cancers

We proposed three different scoring schemes to model the impact of target-gene knockdown

on the network–those of the most probable, random-walk, and diffusion paths. In addition,

the impact score can be calculated based on either the global or local PPI network (Fig 4). The

local PPI network is the product of spectral clustering of the whole genome PPI network

(global network). To compare the performance of these impact scores, we used the 23 reported

synthetic lethal pancreatic gene pairs in SynlethDB as benchmarks. We compared impact

scores between them and the other 164 gene pairs, which were derived from 21 unique genes

among the 23 SL gene pairs. We constructed a tissue-function network using 153 tumor and

58 normal expression profiles of the pancreas from the GEO database (Table 1) and a cell-line

function network using CRISPR screening data of 26 pancreatic cell lines from Project Achilles

and 92 pancreatic tumor cell-line expression profiles from the GEO database (Table 1). All

expression profiles are generated by Affymetrix U1332.0 microarray.

Smaller impact scores indicated the stronger impact of the gene knockdown on the net-

work. Calculation of the impact scores using the local network generated from spectral cluster-

ing revealed a significant difference in diffusion-path-based impact scores (IS) between

synthetic and non-synthetic lethal gene pairs (P-values) as well as lower impact scores of syn-

thetic than non-synthetic lethal gene pairs. We observed the same trends with the other two

impact scoring schemes, the most probable and random-walk paths, i.e., lower IS score in the

synthetic than non-synthetic lethal gene pairs that were not statistically significant.

Calculation of the impact scores using the global network and diffusion-path scoring

scheme also yielded lower diffusion impact scores in the synthetic than non-synthetic gene

pairs, though the differences were not statistically significant. The scores of the most probable

and random-walk paths, on the other hand, showed the reverse direction between synthetic

and non-synthetic gene pairs. We, therefore, believe that using the diffusion path and local net-

works, evaluation of the target-combination impact score is an ideal approach in selecting syn-

thetic lethal gene pairs (Fig 4).

Fig 4. Comparison of target-combination impact scores using synthetic versus non-synthetic lethal gene pairs in pancreatic cancer. The three methods for

calculating target impact score–the most-probable, random-walk, and diffusion paths are defined in Fig 2. The target impact scores (IS) are calculated from

either the global protein-protein interaction (PPI) network (global) or the local PPI network (local).

https://doi.org/10.1371/journal.pcbi.1009421.g004
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Compare the selection of target combinations among DSCN, OptiCon, and

VIPER

We compared the performance of DSCN with that of two existing algorithms for the selection

of target combinations–OptiCon and VIPER. Both of these use transcriptome profiles to select

combination targets, and their top target combinations are master regulators of synergy that

have optimal control of their corresponding networks. OptiCon requires tumor transcriptome

profiles and corresponding mutation data as input to infer master regulators and predict syn-

ergies among them, whereas VIPER uses transcriptome profiles from both tumor and normal

samples to select regulons and infers synergies among the regulons. Because the pancreas

microarray expression profile used in the previous section has no corresponding mutation

information, we utilized pancreatic expression profiles in TCGA to construct a tissue function

network. We used 179 pancreatic tumor expression profiles along with their mutation data

and 41 adjacent normal expression profiles (Table 1). We also used expression profiles of 92

pancreatic tumor cell lines from GEO and CRISPR-screening data of 26 pancreatic cell lines

from Project Achilles (Table 1). Together, these data served for benchmark comparison of the

performance of the three algorithms.

There are 14,066 overlapped genes (among tissue, cell-lines and STRING PPI network) as

pancreatic cancer input in DSCN. Those genes create 14,066�14,065/2 gene pairs. Among

these gene pairs, 37,275 are predicted to be SL in DSCN, i.e. their combination impact score is

smaller than the sum of individual scores. There are 12,821 SL pairs within SynlethDB for all

cancer types. Among them, only 79 SL pairs are pancreatic cancer specific. Among these 79

pairs, 23 correspond to FDA approved drug targets. SynlethDB evidence for these 79 pancre-

atic cancer SL gene pairs are based on experiments curated from literature, not from computa-

tional prediction. Hence, these 79 gene pairs are served as our bench marks in methods’

comparison.

In pancreatic cancer, DSCN predicted 37,275 synergistic target combinations, OptiCon,

2,778, and VIPER, 191. After mapping them onto 79 pancreatic cancer SL gene pairs, DSCN

predicted 78 as SL. Hence the sensitivity is 78/79 = 0.99%. For 6,083 random combinations

that were set as non-SL, DSCN predicts 5880 as negative. The specificity is 5880/6162 = 0.95.

Of these 79, their predicted IS scores showed a 0.34 Spearman correlation with their Syn-

lethDB score (P< 0.01), and the predicted IS scores were significantly lower than that of 6,162

random combinations on the t-test (P = 0.05). However, none of 79 pancreatic cancer SL gene

pairs were predicted by OptiCon and VIPER.

These benchmark comparison analyses were performed on Indiana University’s supercom-

puter, ‘Carbonate’ [27]. DSCN completed its search of target combinations on the single cen-

tral processing unit core in 12 hours, a significantly faster speed than those using OptiCon

(320 hours) and VIPER (141 hours). Breakdown of major steps among three methods and

their theoretical time complexities can be found in S3 Fig. DSCN completed its search of target

combinations on the single central processing unit core in 12 hours, a significantly faster speed

than those using OptiCon (320 hours) and VIPER (141 hours). This might be due to the time

complexity of the three methods. In worst-case scenario, when the whole transcriptome net-

work cannot be clustered into a subnetwork, the time complexity of DSCN can be described as

O = (N3 þ 2 � T
2

� �
N
2

� �
M
2

� �
), where N is the number of genes, T is the number of drug targets,

and M is the number of samples. VIPER consists of two steps one is generating a mutual infor-

mation network, which has a O = (N3+N2M2) time complexity. And there is no report on the

time complexity of its second step. VIPER required permutation of 1,000 times of all samples

to generate null model; thus we speculated that this might cause exceptionally high time com-

plexity. OptiCon didn’t provide time complexity on three steps but judging from the source
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code, we speculated that Bayesian network models are applied on each subnetworks thus,

searching the optimal structure would generate very high time complexity. The comparison

results see S1 Table.

Top-ranked target combinations and their associations with overall

survival in patients with pancreatic cancer

We used expression profiles of tissues and cell lines from the GEO database (Table 1) to con-

struct function networks and predict impact scores. Our dataset consisted of expression pro-

files of 153 tumors and 58 normal pancreas samples from GEO, CRISPR screening data of 26

pancreatic cell lines from Project Achilles, and 92 pancreatic tumor cell-line expression pro-

files from the GEO database. This yielded 14,066 overlapped genes.

In this analysis, we focused on 1,437 drug targets of all FDA-approved drugs in DrugBank

and calculated their possible target combinations. Most interestingly, all genes in the top 230

target combinations are within the same subnetwork–the PDAC tissue subnetwork (S1 Fig)

and cell-line subnetwork (S2 Fig). S2 Table includes the full list of genes in the subnetwork.

Table 2 displays the nine top-ranked target combinations and their annotations. Their

Kaplan-Meier curves (Fig 5) are generated using TCGA PDAC clinical annotations from the

Gene Expression Profiling Interactive Analysis (GEPIA) database [28]. Patient samples are cat-

egorized into two groups based on a target combination in which both genes are expressed

either above (i.e., high-2) or below their means (i.e., low-2). Using log-rank test and Cox pro-

portional hazard model to analyze the association between the expression of a target combina-

tion (high-2 versus low-2) and overall survival of patients with PDAC, we observed significant

survival difference (P< 0.05, Table 2) of three of the nine top-ranked target combination

comparisons, (EGLN1, TRFC), (FRK, TRFC), and (XDH, TRFC), their overall survival was

worse for patients with high expression of these two genes than those with low expression.

Interestingly, seven of the top nine target combinations include transferrin receptor

(TFRC), which encodes a surface receptor responsible for cellular iron intake. High expression

of TFRC in PDAC and its strong association with PDAC growth and survival have been

reported [29]. Recent studies suggest several key pathways of ferroptosis induction, including

mitogen-activated protein kinases (MAPK) and reactive oxygen species (Ros) pathways [30].

Hence, targeting upstream genes (e.g., MAP2K2, EGLN2) along with downstream genes (e.g.,

TFRC, FTL) might lead to a synergistic effect.

Performance of DSCNi in predicting drug synergy in cancer cell lines

DSCNi predicts target combinations for individual patients using gene-expression and -essen-

tiality profiles. In this study, we assessed whether DSCNi predicted any association between

target- and drug-combination synergy at each individual cell-line level. DrugComb [18] is a

comprehensive database that incorporates information regarding the synergy of drug combi-

nations from numerous well-known projects, such as the National Cancer Institute (NCI)-60

[31] for Human Tumor Cell Lines Screen. Because DrugComb includes only one PDAC cell

line with five associated combinational drug treatments, we decided to use the cell-line data of

triple-negative breast cancer (TNBC). We used 115 TNBC expression profiles from TCGA to

generate edge weights in the tissue-function network, 12 TNBC cell lines from the Cancer Cell

Line Encyclopedia (CCLE) database [32] to generate edge weights for the cell-line function

network, and CRISPR screening data of the TNBC cell line “HS578T” from Project Achilles to

generate node weights in the cell-line function network. Among all TNBC cell lines, HS578T

has the largest number (N = 5,226) of drug-combination screening data in the DrugComb

database, and our focus on drugs with known targets in DrugBank led to screening data for
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1,031 drug combinations in the HS578T cell line. In turn, these drug combinations correspond

with 14,066 target combinations in our network model (S3 Table).

To measure the association between predicted synthetic lethal pairs and synergistic drug

combinations, we constructed a 2 by 2 contingency table (Table 3), in which rows correspond

Fig 5. Kaplan-Meier curves for the nine top-ranked target combinations (a)-(i). Kaplan-Meier curves and other survival statistics for (a) < EGLN1, TRFC>,

(b)< MAP2K2, TRFC>, (c)<HPSE, TRFC>, (d)< PPIC, TRFC>, (e)< FRK, TRFC>, (f)< EGLN1, COX7C>, (g)< XDH, TRFC>, (h)<MAP2K2,

COX7C>, and (i)< FTL, TRFC>. Y-axis indicates survival probability while X-axis indicates months. The blue line in each plot indicates low expression of the

two gene groups, and the red line, high expression.

https://doi.org/10.1371/journal.pcbi.1009421.g005
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with drug-combination synergy (Y/N), and columns, with target-combination synergy (Y/N).

Among synergistic drug combinations, synergy is predicted in 2,594 of their corresponding

target combinations with DSCNi, but not in the other 7,097. Neither is synergy predicted in

any of the other non-synergistic drug combinations in iDSCN. The P-value of the chi-squared

test is 0.00001, and the odds ratio is 1,599. This is strong evidence of the greater likelihood that

synergistic drug combinations have synergistic target combinations.

Discussion

Our new DSCN method, double target selection guided by CRISPR screening and network,

uses both cancer tissue and cell-line models to discover and rank target combinations, and it

has several unique features and advantages in comparison with existing methods of selecting

combination targets.

For the first time, DSCN uses a subsampling approach that characterizes the knockdown of

the first target and models its impact on all the other genes. To demonstrate the validity of this

assumption, we studied a set of transcriptome profiles across 22 pancreatic cell lines before

and after MAP2K1 and MAP2K2 inhibition. Among 1,301 neighbor genes of MAP2K1 and

MAP2K2 in the PPI network, our analysis revealed a high correlation of observed log-fold

changes in these genes before and after MAP2K1 and MAP2K2 inhibition with log-fold

changes calculated from the sub-sampling approach, R2 = 0.75.

DSCN also differs from all other methods by focusing on the overlapped functional net-

work between cancer tissues and cell lines and further matching the differential gene expres-

sion in the tissue to gene essentialities in the cell line. This framework for the selection of

target combinations is highly translational and practical. We investigated a number of scoring

schemes for calculating impact scores, including the most-probable paths, random-walk paths,

and diffusion paths, and we studied whether the global network and spectrum clustering-

based local network lead to different calculations of impact scores. Using tumor samples of

pancreatic cancer and cell-line samples and known synthetic lethal data in SynlethDB, we

showed statistically significantly lower impact scores of target combinations in synthetic lethal

gene pairs than other target pairs utilizing a diffusion-path approach on the local network.

This analysis clearly demonstrates the validity of our proposed algorithm for calculating the

impact scores of target combinations that reflect synthetic lethality.

Furthermore, DSCN is broadly defined for every target and target combination, unlike

existing network-based target selection algorithms, such as OptiCon or VIPER, that are limited

by their initial step in the selection of single targets (i.e., master regulators). This advantage of

DSCN is demonstrated in the analysis of overlap among the top-ranked target pairs between

DSCN, Opticon, and VIPER and synthetic lethal target pairs reported in the analysis of pan-

creatic cancer data in SynlethDB. DSCN identified 79 overlapped synthetic lethal target combi-

nations, whereas OptiCon and VIPER showed zero overlaps. In addition, three of these top

nine predicted synergistic target combinations in pancreatic cancer show statistically signifi-

cant association with overall survival in patients with pancreatic cancer, and all three contain

the TRFC gene, which encodes a surface receptor for cellular iron intake. Hence, the targeting

of upstream genes (e.g., MAP2K2, EGLN2) along with downstream genes (e.g., FTL) might

lead to a synergistic effect.

One caveat of our statistical association analysis between SL gene pairs and overall survival

is its limited scope. We wanted to validate the SL gene pairs using clinical data, and attempt to

correlate four combinations of high/low gene expressions between two genes with patient sur-

vival outcome. However, due to many high correlations among genes, small sample size

quickly became a major problem when we created four groups of patients based on high/low
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gene expression between two genes. Consequently, we decide to compare one group that have

low expression in both genes to the rest of the patients in overall survival. Although this com-

parison was not as ideal as a an SL validation, it at least indicates that at least knockout two

genes have statistical and clinical significant effect on patient outcome.

SCNrank approach [33] is a single gene selection algorithm that we developed a couple of

years ago. Both SCNrank and DSCN algorithms use the same types of omics-data as input,

both algorithms do spectral clustering to a functional network; and both algorithms score the

impact for target genes. However, DSCN generates the whole genome functional network. In

DSCN, each gene can be either over-expressed or down-regulated in tumor versus normal

expression. SCNrank, on the other hand, generated functional network that only contains

nodes (genes) that are over-expressed. DSCN scores target 1 at first and scores target 2 given

target 1 after. The sum of two scores will be the score for each combination. SCNrank only

scores single target and do not have subsampling scheme.

In this paper, we investigated two relevant but different concepts, drug- and target-combi-

nation synergy, hypothesizing the greater likelihood of synergistic than non-synergistic drug

combinations to target more synergistic target combinations. Using DSCNi, a model derived

from DSCN for the prediction of target combinations for individual patients, we showed the

truth of our hypothesis using triple-negative breast-cancer tissue and cell-line data. Based on

1,031 drug combination screening data in HS578T, a TNBC cell line, and its corresponding

14,067 DSCNi-predicted target combination synergy scores, we showed the 1,599-fold higher

odds of synergistic than non-synergistic drug combinations to predict synergistic target com-

binations (P = 0.00001).

At the end, we state how our proposed DSCN and other network based target combination

approaches can be utilized in cancer research. There is no doubt that these approaches can dis-

cover SL gene pairs. The SL concept itself has nothing to do with the normal cells or cancer

cells. The application of SL to cancer research is to identify functional somatic mutations in a

SL gene in cancer cell, while apply a drug to inhibit the other SL gene. This strategy would kill

cancer cell, but not normal cells. DSCN approach will help us in identifying and validating

these SL gene pairs in cell lines. Then, using patient genomics data, we shall further investigate

whether one of the SL genes have functional mutations, while the one gene remains active.

This will create an potential therapeutic drug target.

Supporting information

S1 Fig. Description: Subnetwork of TFRC from functional tissue network of PDAC. Dots

and lines indicate genes and their interactions in protein-protein interaction network. Red

dots: over-expressed genes in tumor versus normal samples. Blue dots: Down-regulated genes

in tumor versus normal samples. Red lines: positive correlations between two genes on tumor

tissue expression level. Blue lines: negative correlations between two genes on expression level.

(TIF)

S2 Fig. Description: Subnetwork of TFRC from functional cell-line network of PDAC.

Dots and lines indicate genes and their interactions in protein-protein interaction network.

Red dots: genes with positive essentiality (knock-out result in reduced cell survival). Blue dots:

genes with negative essentiality (knock-out result in increased cell survival). Red lines: positive

correlations between two genes on tumor cell-line expression level. Blue lines: negative corre-

lations between two genes on expression level.

(TIF)
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S3 Fig. Description: A demonstration of mapping tissue subnetworks to cell-line subnet-

works.

(TIF)

S1 Table. Description: Breakdown of computational steps and their time complexities of

three methods.

(DOCX)

S2 Table. Description: Subnetwork SL members in TFRB tissue (stable 2.1) and cell lines

(stable 2.2).

(XLSX)

S3 Table. Description: Pairwise genes (matching drugs) with synthetic lethylity prediction

Impact Score (IS) score in TCGA triple nettive braest cancer(TNBC) by DSCN algorithm

calculation. IS score is compared with database DrugComb and SynlethDB real SL score data.

Here, we includes 1437 drugs which all targets could cover.

(XLSX)
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