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Abstract: Recently Bisphenol A (BPA) is one of the persistent trace hazardous estrogenic contaminants
in the environment, that can trigger a severe threat to humans and environment even at minuscule
concentrations. Thus, this work focused on the synthesis of neat and magnetic biochar (BC) as a
sustainable and inexpensive adsorbent to remove BPA from aqueous environment. Novel magnetic
biochar was efficiently synthesized by utilizing palm kernel shell, using ferric chloride and ferrous
chloride as magnetic medium via chemical co-precipitation technique. In this experimental study,
the influence of operating factors comprising contact time (20–240 min), pH (3.0–12.0), adsorbent
dose (0.2–0.8 g), and starting concentrations of BPA (8.0–150 ppm) were studied in removing BPA
during batch adsorption system using neat biochar and magnetic biochar. It was observed that the
magnetically loaded BC demonstrates superior maximum removal efficiency of BPA with 94.2%, over
the neat biochar. The functional groups (FTIR), Zeta potential, vibrating sample magnetometer (VSM),
surface and textural properties (BET), surface morphology, and mineral constituents (FESEM/EDX),
and chemical composition (XRD) of the adsorbents were examined. The experimental results demon-
strated that the sorption isotherm and kinetics were suitably described by pseudo-second-order
model and Freundlich model, respectively. By studying the adsorption mechanism, it was concluded
that π-π electron acceptor–donor interaction (EAD), hydrophobic interaction, and hydrogen bond
were the principal drives for the adsorption of BPA onto the neat BC and magnetic BC.

Keywords: neat biochar; palm kernel shell; magnetic biochar; adsorption mechanism

1. Introduction

Recently, the safety and quality of drinking water has been problematic owing to
rapid urban development induced by human activities. The upsurge of some micro-
contaminants identified as endocrine disrupting compounds (EDCs) has elicited increasing
concerns over the supply of safe and clean drinking water [1–3]. Particularly, Bisphenol
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A (BPA; 2,2-bis(4-hydroxyphenyl)propane) is an intermediate and highly essential raw
material highly utilized in the manufacture of several polycarbonate plastics and epoxy
resins (plastic component), food cans, polyester fibers, and thermal paper as well as other
materials in industry, thus it frequently emerges in numerous products for daily use, such
as electronic equipment, water-pipes, toys, or paper [4,5]. Globally, BPA is classified among
the most ever-present and most extensively produced synthetic chemical compounds in
manufacturing today, with more than three million tons generated annually [6]. Markedly,
the manufacture and sale of plastics comprising BPA has been prohibited by the Brazilian
government since 2012, owing to its environmental universality, elevated industrial output,
and toxicological consequence, and it has been classified as an important contaminant
in water purification in many regions and nations [7]. Furthermore, exposure to BPA is
through tableware and polycarbonate bottles, including those employed for new-born
formula milk, and by means of epoxy resin coatings inside beverage and food containers,
dental fissure sealants, adhesives, epoxy-based surface coatings, canned goods, household
dust, and printing inks [5,6] and massively released into the water environment [8]. BPA in
plastic containers can hydrolyse and pollute groundwater via landfill leachate [9]. Risen
plastic industries trigger profuse discharge of BPA into the environment and it is detected
in drinking and surface water [10]. More unfortunately, BPA has undesirable ecological
impacts that are associated with dysfunction of the hormone system in animals and humans,
even at very minuscule concentration. Specifically, an estrogenic action of BPA can provoke
cancer [11–13], neurological challenges, diabetes, tumors, obesity, immune effects, heart
disease in humans, damaged reproductive function, disturbance of the normal hormone
functions, and undesired physiological state in animals and humans, biomagnification, and
bioaccumulation through food chain or food web in human beings [14,15]. Besides, the
dysfunction and damages caused by BPA are long-term [16]. Therefore, releasing water-
containing BPA into waterways without adequate treatment poses a damaging impact on
the environment (humans and aquatic) [17]. Owing to the frequent extensive utilization of
BPA-based products by humans with their associated negative impacts on public health
and ecosystem, hence, the removal of BPA became unavoidable. Extensive efforts have
been employed towards extenuating the undesirable effects and environmental hazards by
reducing the contaminants’ concentration using various treatment technologies, including
precipitation, coagulation, activated sludge, biological filter, and constructed wetlands, with
inadequate effect on BPA removal [18–21]. Some relatively advanced treatment techniques,
such as ozonation and advanced oxidation [22,23], Fenton oxidation [24], membrane
technology [25,26], photocatalysis degradation [27], enzymatic degradation [28,29], and
adsorption technique utilizing activated carbon [30–32] exhibit a good BPA removal from
wastewater and drinking water. Yet, the above treatment approaches still have significant
drawbacks, such as high capital and maintenance cost, complex treatment procedures
with increased operating expenses, costly capital expenses (CAPEX), generation of toxic
by-products which hamper their application in developing nations [33]. Noticeably, among
the aforementioned water-treatment approaches, adsorption technique is found more
suitable, environmentally friendly, relatively economical, robust, and simple, and it could
efficiently be employed in large-scale applications devoid of generating by-products in
the environment [34,35]. Adsorption method has attracted wide attention and has been
extensively considered as a promising technology for removing BPA pollutant during
the past two decades, due to its ease of configuration and application, high efficiency,
insensitivity to poisonous compounds, low cost, and comparatively small footprint as
compared to other water-treatment methods [31].

Several adsorbents are available, however, carbon materials have been reported to
perform remarkably owing to their several benefits, such as enormous surface area, su-
perior stability, and outstanding removal efficiency [36]. Activated carbons generated
from biomass wastes are often used as adsorbent during the adsorption process for the
removal of emerging pollutants [37,38], since it can efficiently and rapidly remove BPA
as a result of its abundant surface area as well as adsorptive capacity; but, its preparation
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is highly expensive. Thus, various studies have considered reliable resources, low-cost,
and environment-friendly materials as alternative adsorbents [38,39]. Thus far, traditional
carbonaceous materials, such as BC, activated carbon, graphene oxide together with its
derivates, and carbon nanotubes, have been studied as promising adsorbent materials
for hydrophobic organic pollutants, including pharmaceutical compounds and EDCs [40].
Furthermore, biochar as an adsorbent has porous structure comparable with activated
carbon, which is the most generally utilized and effective sorbent for the removal of various
contaminants from water globally [41].

Biochar, a major pyrogenic by-product obtained from the complete or partial pyrol-
ysis of naturally plenteous biomass under oxygen-deficient conditions [42], has several
macropores, hence it could attain a superior adsorption capacity [43]. More importantly,
BC exhibits superior unique properties, such as augmented surface functional groups,
porous structure, abundant specific surface area, eco-friendly, low-cost, ample inherent
mineral components, high cation exchange capacity, and, notably, is efficient in the removal
of various hydrophobic and hydrophilic organic pollutants owing to its high aromaticity
and hydrophobicity [40,44,45]. These properties have made BC to be the best and most
promising precursor over other adsorbent materials for various contaminants removal.
Synchronically, after pyrolysis, BC can be reapplied to sorb contaminants in water; thus, it
has abundant utilization value [46]. However, the minuscule particle size of BC in addition
to its lower density makes its regeneration, separation, and recovery more problematic after
adsorption, and this could undermine its recycling capacity and industrial applications.
In order to subdue these difficulties, few studies have considered synthesis of magneti-
cally recyclable biochar (magnetic biochar) via the implantation of iron oxide (Fe3O4 and
Fe2O3) [47]. For instance, Lu et al. [48] studied the removal of BPA using N-doped ulva
prolifera (marine macroalgae). Over 90% of BPA was eliminated and the sorption capacity
of 9.19 mg/g was attained within 4 hrs. In another application, Heo et al. [49] synthe-
sized CuZnFe2O4 composite biochar using bamboo to enhance the removal of BPA and
sulfamethoxazole (SMX) from aqueous solution. The adsorption capacity of 263.2 mg/g
was recorded when CZF–biochar adsorbent was applied to remove BPA. It was observed
that the sorption capacity was improved for SMX and BPA when CZF nanomaterials were
impregnated on the surface of biochar. Furthermore, Wang et al. [16] use grapefruit peel
biochar to remove BPA under variable adsorbent dosage, pH, and contact time. The authors
reported that pH has a significant influence on the adsorption of BPA and that almost 100%
BPA removal was achieved at a pH (6).

In Malaysia, the agro-industrial sector generates a substantial volume of biomass solid
wastes, predominantly from palm oil mills which produce the huge expanse of biomass,
including palm kernel shells (PKS), empty fruit bunches, oil palm fibers, and palm oil
mill effluents [50]. Malaysia recorded the largest export of 19.9 million tonnes (mt) from
oil palm biomass residues in 2017 [51]. With the expansion of palm oil production in
Malaysia, the volume of residue generated has correspondingly risen. Approximately
50–70 tonnes of biomass residues could be produced from a hectare of oil palm planta-
tion [52]. Thus, the palm oil industry is presently generating around 50 mt of dry oil
palm residues annually and attain 100 mt per year by 2020 [53]. Notably, PKS has the
maximum commercial consumption value as compared to other oil palm biomass [54].
Besides, the specific characteristics of PKS-BC (palm kernel shell biochar), particularly its
porous structure, enhancement of functional groups, its huge specific surface area, and
improved mineral component, make it suitable for use as adsorbent material [42]. Despite
this huge potential, PKS is considered as biomass waste, generating superfluous waste of
resources and environmental nuisance [55].

There is still a lack of reports on the adsorption of BPA using PKS magnetic BC, as well
as its adsorption mechanism which is yet to be explored and needs to be investigated. In
view of this highlight, PKS biomass waste that is available in huge quantities in Malaysia
was applied as a precursor for the synthesis of magnetic BC as a sustainable and inexpensive
adsorbent for the removal of BPA from aqueous solutions via adsorption procedure.
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Magnetic BC was synthesized using the chemical co-precipitation method. A batch ad-
sorption test was employed to evaluate the maximum adsorption capacity of BC produced
from PKS. The effects of essential factors, in particular contact time, adsorbent dosage,
ionic strength, initial BPA concentration, and pH, on the adsorption of BPA by NBC (neat
biochar) and MBC (magnetic biochar) were studied. The adsorption mechanism of BPA by
synthesized BC was examined together with the analysis of the NBC and MBC, to boost the
study of the adsorption of BPA by NBC and MBC. The adsorption isotherm was stimulated
via Freundlich and Langmuir models. The adsorption kinetics and reusability of the novel
synthesized PKS-BC were also investigated.

2. Materials and Methods
2.1. Materials and Chemicals

All chemicals: Bisphenol A (99% purity) reagent, ferric chloride hexahydrate (FeCl36H2O),
ferrous sulfate heptahydrate (FeSO47H2O), and sodium hydroxide (NaOH) (AR) utilized
in this study were of analytical grade and purchased from Sigma-Aldrich (West Chester,
PA, USA) and applied without additional purification. Distilled water (DW) was utilized
for the preparation of all the aqueous solutions during the entire experiment. The BPA
solution utilized in the experiment was carefully prepared prior to each experiment to
avoid possible microbial degradation. The chemical and physical properties of BPA are
presented in Table 1. The PKS biochar was obtained from AMR Environmental Sdn Bhd,
located at Johor, Bahru, Malaysia.

Table 1. Properties of Bisphenol A (BPA).

Compound Name Lipid-Water Partition
Coefficient (Log Kow)

Molecular Mass
(g/mol.)

Chemical
Structure

Molecular
Formula pKa

Bisphenol A 3.32 228
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2.2. Synthesis of Magnetic Biochar

The impregnation of biochar with magnetite using co-precipitation of ferric and
ferrous salts on carbonaceous materials method was according to the procedure employed
in previous studies [16]. Initially, the PKS-BC sample was grounded and modified using
high energy ball milling (HEBM) for 3 hrs to achieve a nano-sized biochar. The obtained
ball-milled powdered BC was passed through 50–63 µm sieves and washed with distilled
water and ethanol three times. Afterwards, the PKS-BC was oven-dried overnight at 110 ◦C.
The obtained dried BC was collected in a bottle container, sealed, and labelled as NBC
and kept in a desiccator for further use. In the next phase, 8.5 g of the dried PKS-BC was
soaked in a 100 mL of FeCl3 of 0.25 mol·L−1 and 0.125 mol·L−1 of FeSO4 solution and
uniformly mixed via the magnetic stirrer. The mixtures were subjected to heat at 60 ◦C
with constant stirring to ensure that Fe3+ and Fe2+ could saturate into BC and later allowed
to cool to 40 ◦C. Subsequently, 100 mL of 1 mol·L−1 of sodium hydroxide (NaOH) solution
was dropwisely added to the solution and stirred until the pH attained the range of (10–11),
and the colour of the solution transform from brownish green to black. Fe3O4 precipitation
was formed on the surface of carbon materials under this alkaline condition. Upon the
completion of the reaction, the NaOH-impregnated biochar solution was adequately stirred
for 60 min to achieve better dispersion and homogenous mixture. The resultant mixture
was separated by an external magnet and rinsed with distilled water until the solution
pH closed to 7 and then oven-dried at 70 ◦C for 12 h. The final modified BC sample was
grounded and collected into a bottle container, sealed, and labelled as MBC and kept in a
desiccator thereafter.
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2.3. Characterization of Neat and Magnetic Biochar

The magnetic properties and magnetization curve of MBC was determined using a
vibrating sample magnetometer (Lakeshore 7404, Westerville, OH, USA) with an applied
field between −10,000 and 10,000 Oe at room temperature, from American Quantum.

Surface functional groups of the BC samples (before and after modification) were con-
firmed using Fourier transform infrared (FTIR) spectroscopy (Perkin Elmer, 1650 Spectrometer)
within the scanned range of 400 to 4000 cm−1 using the attenuated total reflection method.

The textural properties such as surface area, pore volume, and pore size distribution
of the samples were determined by the standard N2 physisorption procedures using
Micrometrics analyzer (Tristar II Plus model) and determined in line with the Brunauere
Emmentte Teller (BET) technique with degassed temperature of 350 ◦C.

X-ray diffraction (XRD) was used to analyse the phase and chemical composition of
the prepared BC adsorbents at Cu Kα radiation (2θ spectrum = 20–80◦; phase = 0.05◦ 2θ;
time per step = 0.2 s) via X-ray powder diffractometer (Rigaku MiniFlex 600). The composi-
tions and surface morphologies of the samples were detected by field emission scanning
electron microscopy (FESEM, Zeiss ULTRA 55) and energy dispersive spectroscopy (EDS,
Bruker/Quanta 200), Westerville, OH, USA).

Also, the pH of BC was assessed viz: BC was blended with distilled water at (1:10)
mass ratio, agitated magnetically for 30 min, and subsequently kept for 60 min. Afterwards,
the pH of BC was determined by a pH5S Spear pH tester (T531009086, Shanghai, China).

2.4. Analysis of Surface Chemistry of Biochar (pHpzc)

The surface chemistry of neat and magnetically-modified biochar was performed
experimentally using the pH at the point of zero charge according to the procedure of [56]
with slight modifications. Ten samples of varying pH (2.0–11.0) were prepared using a
0.01 M aqueous solution of sodium acetate (C2H3NaO2) as the base electrolyte. The pH
of the solution was adjusted using either 0.1 M of NaOH or 0.1 M HCl aqueous solution.
Then, 0.1 g of magnetic and neat samples of BC were carefully added to each 20 mL of the
prepared solutions in a conical flask placed in a swing agitator at a speed of 120 rpm at
298 K room temperature and stirred for 48 h. Afterwards, the resultant supernatant was
then decanted, and its pH was determined. The value of pHpzc was computed from a plot
of pH of the initial solution against pH of the supernatant [57,58]. Thus, the zeta potentials
of neat biochar (NBC) and magnetic biochar (MBC) were examined via zeta potential
analyzer (Zetasizer Nano Plus 3, Zeta/nano particle analyzer, Malvin, Austin, TX, USA).

2.5. Adsorption Experiment

Definite amount of NBC and MBC adsorbents (50.0 mg) and 125.0 mL of BPA solution
were weighed and added to a set of 250 mL; Erlenmeyer conical flasks sealed externally
using aluminium foil to avoid probable photodegradation. The mixture was then placed
on an orbital shaker (HY-8, Shanghai, China) and agitated mechanically at 160 rpm at
room temperature for 24 h to achieve equilibrium condition. Upon the completion of the
agitation process and at pre-specified times, the solution was rapidly removed and filtered
using 0.4-µm membrane and the absorbance of the supernatants were analyzed spectropho-
tometrically at a wavelength of 276 nm using a double beam UV-visible spectrophotometer
(Shimadzu UV-1800, Kyoto, Japan) with a pair of 10 mm matched quartz cells, and the con-
centrations were converted into the established BPA calibration (standard) curve [59,60].

In the single-variable experiment, the effects of adsorbents (BC) doses (0.2–0.8 g;
BPA = 20 ppm), pH range were adjusted by 0.01 mol/L HCl and 0.01 mol/L NaOH solution
(3.0–12.0; BPA = 20 ppm), contact time (20–240 min; BPA = 20 ppm), ionic strength (Na+

concentration: 0, 0.2, 0.4, 0.6, 0.8, and 1.0 mol/L, BPA = 20 ppm); initial BPA concentrations
(8–150 ppm), and reaction temperature (298.15, 318.15, and 338.15 K), on the adsorption of
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BPA by NBC and MBC were studied. The amount of BPA adsorbed on BC adsorbent was
determined using the following Equation (1):

qt =
(CS − Ct)

M
×V (1)

where, Cs and Ct are the starting and residual concentrations of BPA in mg/L, M is the
mass of the adsorbent (g); and V represent the solution volume (L).

For the adsorption thermodynamic tests, 0.5 g of the adsorbent and 100 mL of BPA
solution were added to 250 mL conical flask to study the adsorption thermodynamic of
MBC for BPA. The mixtures were stirred in a temperature-regulated incubator shaker
(Excella E24 Incubator shaker series, USA) at a speed of 150 rpm, pH (6) for 60 min
adsorption time, and the adsorption temperature were varied between (298.15 K–338.15 K).

2.6. Statistical Analysis

For the adsorption experiment, each experimental samples and group were carried
out in triplicate, and the average value of the data was considered. The removal efficiency
of BPA (Re%) and quantity of BPA adsorbed (qe) onto BC adsorbent were determined.

The adsorption isotherms, kinetics (20–240 min), and thermodynamics (298.15, 318.15,
and 338.15 K) were studied. Each test was carried out in triplicate, and the average results
were considered.

2.7. Reusability and Regeneration of MBC

The reusability studies on the prospect of desorbing of BPA compounds from MBC are
indispensable based on environmental and economical perspective, in addition to industrial
applicability [61]. With the purpose of achieving regeneration of MBC, an efficient and
green eluent was considered. The reusability of MBC at the starting BPA concentration of
20 ppm was assessed by rinsing BPA-ladened MBC with 0.1-M NaOH and distilled water
and subjected to ultrasonication, and then followed by oven-drying at 60 ◦C overnight
after magnetic field separation [49]. The MBC was repetitively used five times, and the
values of qe was noted accordingly.

2.8. Adsorption Isotherm

Adsorption isotherm was employed to compute the quantity of adsorbed BPA on
BC based on BPA concentration at a steady temperature. The application is based on
standardizing the amount of BPA adsorbed by the mass of BC adsorbent and this confirms
comparison with Isotherm models.

2.9. Langmuir Adsorption Isotherm

The Langmuir model relies on the assumption that uptake of BPA takes place on a
homogenous surface via monolayer adsorption with no interaction between adsorbed
materials. It also presumes that all sorption sites are ‘correspondingly active’, and the
surface is robustly homogeneous [62]. Principally, the larger values of R2 signify the
significance of the adsorption model for contaminants removal in water. The value of RL
between 0 and 1 implies that the isotherm is advantageous. The isotherm is unsuitable
if RL > 1, linear if RL = 1, irreversible if RL = 0, and favorable if RL lies between 0 to 1.
Arithmetically, the Langmuir isotherm model is denoted in Equation (2):

1
qe

=
1

KLqmax.
· 1
Ce

+
1

qmax.
(2)

where Ce represent BPA concentration at equilibrium (mg/L); qmax.(mg/g) is the maximum
single-layer adsorption capacity of the BC adsorbent, qe (mg/g) is the quantity of BPA
adsorbed; KL (mg/g) represent the Langmuir constant closely related to adsorption capacity
for overall monolayer coverage; the intercept (1/KL), slope (1/qmax.), and qmax. could be
evaluated from a plot of 1/qe versus 1/Ce for BPA adsorption onto NBC and MBC.
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2.10. Freundlich Adsorption Isotherm

Freundlich isotherm model was employed to study the uneven distribution on the
surface of the absorbent, which is heterogeneousness in the adsorption process [63]. The
model indicates that the adsorption energy proportionally declines on the endpoint of the
adsorption centres of an adsorbent [64]. The degree of correlation between adsorption
and solution concentration relies on the adsorption intensity, n. The adsorption conditions
can be chemical (n < 1), favourable physical process (n > 1) and favourable linear (n = 1).
The KF and n are Freundlich constants and were found from the graph as the intersection
and slope, respectively. Scientifically, the Freundlich isotherm model can be described in
Equation (3). The graph of ln qe against ln Ce provide a linear plot with an intercept logKF
and slope 1/n, from which R2, KF and n, can be computed, respectively [65].

log qe = log K f +
1
n

log Ce (3)

3. Results
3.1. Results and Discussion
Characterization and Analysis of Synthesized Biochar Adsorbents

The surface chemistry and morphological characterization of BC sorbents are excellent
indicators of adsorption propensity. Hence, VSM, FTIR, FESEM, EDX, and BET surface
analyses, together with the point of zero charge of the adsorbents (NBC and MBC) were
also evaluated.

3.2. Morphological Analysis of Synthesized Biochar

FESEM analysis was conducted to examine the surface morphology of the BC sam-
ples. The presence of abundant pores were observed on the surface of the BC, which was
substantiated by the FESEM micrographs (Figure 1a–c). Images of NBC, MBC (before and
after adsorption) are described in Figure 1b,c. The FESEM analysis of the MBC (prior to
adsorption and after adsorption) was performed to observe the morphological structure
along with the particle size and size distribution of MBC, as presented in (Figure 1b–e),
respectively. From Figure 1a–c, the images showed the particles obtainable are spheri-
cal in shape with a single uniform aggregate and small non-uniform agglomerates. In
Figure 1a, larger particles with a porous and rougher surface were noticed for NBC. Also,
the particles possess more cleavages with few connected to bulks. Furthermore, it can be
observed from the FESEM micrographs (Figure 1a,b) of NBC and MBC, that the surface
of NBC is relatively coarse and rough since the spherical shaped particles with particle
size more than 28.32 nm were agglomerated and attached to each other and the pore form
is not fully developed. Contrastingly, the surface of MBC is comparatively smooth, with
substantial porous structure than NBC, and the surface is filled with numerous nano-iron
oxide particles. The dispersal of Fe3O4 nanoparticles on the surface of BC is relatively
uniform. The surface of MBC developed shinier and smoother surface after adsorbing BPA
(Figure 1c). The average particle size of MBC prior to adsorption as depicted in Figure 1d
was computed to be 28.32 nm. Conversely, after adsorption of BPA, the average particle
size rose to 46.65 nm as showed in Figure 1e, confirming that the adsorption process was
taking place.

3.3. Elemental Analysis of Synthesized PKS Biochar

For this procedure, 1.0 g of each of the samples (NBC and MBC) was utilized for the
EDX analysis. This test studied different component elements existing in each of the BC
samples. The EDX test performed reveal the elemental compositions and distribution both
in the NBC and MBC. Figure 2 presents the elemental analysis of the NBC and MBC. As
revealed in Figure 2, the existence of peaks matches with the carbon (C), oxygen (O), iron
(Fe), and silicon (Si) elements. The intensity of C peak is greater than O, Si, Al, and Fe,
demonstrating the elevated content of C in NBC (Figure 2a). Also, three peaks displayed at
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0.2, 0.5, and 6.40 keV to substantiate the binding energies of Fe3O4 nanoparticles [66]. The
elemental composition of novel MBC was presented in Table 2 with the mass ratio of C, O,
and Fe was 32.52, 27.23, and 38.14%, respectively.
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Figure 1. FESEM (field emission scanning electron microscopy) images of NBC (a), MBC before adsorption (b), magnetic
biochar after adsorption (c), average particle size distribution before (d), and after adsorption (e).

Table 2. Elemental constituents of magnetic biochar.

Elements C O Si Fe Total

Mass ratio (%) 32.52 27.23 2.11 38.14 100.00
Atom ratio (%) 52.40 32.93 1.45 13.22 100.00

The elements of NBC include C, O, Si, Al, and Fe, while the element observed in MBC
were C, O, Si, and Fe. Noticeably, from Figure 2b,c, the Al element entirely disappeared
after the magnetic modification, and also C, and Si weight components were significantly
reduced. This indicates that chemical reactions occur during the modification. Conversely,
Fe and O weight composition were substantially increased in modified MBC as compared
to NBC. Particularly, the oxidation process considerably influences the obtainability of C
active sites, in addition to the structural reformation of the adsorbent [67]. This indicates
that the oxidation activity of the carbonaceous material justified the reduction in the
weight composition of the trace elements, and also the formation of more acidic oxygen-
containing functional groups on the surface [68]. These processes play a significant role in
the development of more active sites for effectual adsorption process. The mass fraction of
Fe in MBC was 38.14%. The high composition of Fe3O4 further proved the success of the
magnetic modification of BC, which agreed with the FTIR and XRD analysis.
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3.4. BET Surface Area Analysis of Biochar

The nitrogen adsorption isotherm of NBC and MBC is presented in Figure 3. Es-
sentially, the physical factors of BC samples that can influence the adsorptive removal of
organic contaminants comprises of effective surface area, total pore diameter and pore
volume. Surface area properties of the NBC and MBC were assessed via BET analysis. The
BET results illustrate the adsorbate–adsorbent relationships of that adsorbed molecules
which are gathered around on the surface of MBC [69]. The results of effective BET surface
area, pore diameter and pores volume for both NBC and MBC are presented in Table 3.
Noticeably from Table 3, the NBC exhibited a superior surface area of 536.54 m2/g, while
MBC had a surface area of 362.07 m2/g. The decline in the surface area of MBC was
possible since the MBC was comprised of a moderate surface area of Fe3O4 and an elevated
surface area carbonaceous, and superfluous iron (Fe) nanoparticles loading could capture
and clog some of the active sorption sites and pores of the NBC [70,71]. This reduction in
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surface area of MBC composites as compared to NBC has also been reported in previous
studies [72,73]. Similarly, the pore size and pore volume of MBC are higher than that of
NBC, which is better beneficial for the sorption of BPA.
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Table 3. Physico-chemical properties of neat biochar and magnetic biochar.

Materials Pore Diameter (Å) Pore Volume (cm3/g) BET Specific Surface Area (m2/g) pHpzc

NBC 15.516 0.416260 536.5398 4.829

MBC 24.427 0.442203 362.0673 5.612

Similarly, the total pore volume of NBC and MBC found were, respectively, 0.416260 cm3/g,
and 0.442203 cm3/g, while MBC modified by Fe3O4 exhibits a better porosity, and presents
a substantial capacity of pollutant adsorption, while after modification with Fe3O4, the exis-
tence of Fe3O4 between layers of MBC upsurges the heterogeneity of the adsorbent, thereby
resulting in a superior porosity [74]. The impregnation of magnetite on BC has no signifi-
cant influence on the pore-volume, surface area, and mean aperture. Iron-amendment can
either decrease or increase the surface area of an adsorbent and this relies on the initial
surface area value of the adsorbent and the proportions of the Fe3O4 particles [75]. The
infrequent blocking of surface micropores from magnetite groups may also be responsible
for the insignificant reduction in surface area. Thus, the adsorption capacity of modified
biochar material is improved. This finding was further corroborated by the FESEM images
and EDS spectra. Figure 3 displays the N2 adsorption–desorption isotherms of N2 at 77 K
of NBC and MBC. The findings revealed that at moderately high relative pressures, the
adsorption isotherm rose relatively than at relatively low pressures. This implies that
the major adsorption takes place at moderately increased pressures and suggests that the
material is highly porous with a narrow size distribution.

3.5. Magnetic Properties of As-Synthesized Magnetic Biochar

The vibrating sample magnetometer (VSM) procedure was used to determine the hys-
teresis loop at room temperature. Most importantly it is employed to quantify the magnetic
properties of a materials with respect to magnetic field, time, and temperature. Besides,
VSM analysis provides information about whether the magnetization is perpendicular or
parallel to the plane described by the substrate. The hysteresis loop of the synthesized MBC
was obtained by plotting the magnetization (emu/g) against the magnetic field (Oe). Fig-
ure 4 reveals the magnetic hysteresis loops used to analyze the magnetic properties of MBC.
As illustrated in the loop observed in Figure 4, the magnetization sharply increased with
the decrease of the mass ration of BC. The curve signified distinctive super-paramagnetic
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properties. The synthesized MBC exhibited magnetization M values of 6.4882 emu/g
which revealed that the magnetization of MBC can be altered by the mass ration of BC:
magnetite (Fe3O4) nanoparticles. The super-paramagnetic properties was triggered by
the alteration of BC with magnetite (Fe3O4) nano-particles, which could ensure the MBC
can be readily recovered from the suspended solution through external magnetic field,
which makes the replicated use of the MBC in the actual wastewater purification system
viable [72]. Thus, novel MBC was easily detached using an external magnetic field, as
illustrated by the inset. The result of magnetization obtained in this study is consistent
with previous studies reported from [76–78].
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3.6. XRD Analysis of Synthesized Biochar

X-ray diffraction analysis of a material describe the size and the nature of the planes of
the synthesized material. The crystalline structures of NBC and MBC were analyzed using
XRD as indicated in Figure 5. XRD is an efficient technique to verify the presence of Fe3O4
in the synthesized MBC [79]. Figure 5 reveals the XRD patterns of both NBC and MBC.
The diffraction spectra of the synthesized BC samples showed the existence of magnetite
(Fe3O4). The diffraction peaks at 2θ of 30.044◦, 36.66◦, 36.57◦, 42.45◦, 57.26◦, 61.54◦, and
62.76◦ are indexed to the (200), (016), (220), (232), and (040) hkL planes, respectively,
which correspond satisfactorily with the database of Fe3O4 standard card Inorganic Crystal
Structure Database (ICSD No. 98-007-7864) with a space group of P12/c1 and lattice
parameter (a = b = c) of 28.644 Å and confirms the signature peaks of a hexagonal unit cell
Fe3O4, respectively. No impurity peak is observed in the XRD pattern, which indicates that
the Fe3O4 particles are highly crystalline hexagonal spinel structure. As observed from
the spectra, all the diffraction peaks are designated to the magnetic hexagonal structure.
There are no other peaks associated with another material detected from the XRD result,
which confirmed that the nano-magnetite is pure magnetite (Fe3O4). The XRD spectra
of Fe3O4 in this study is analogous to other studies from [80,81], and both Fe3O4 and BC
patterns were overlapped in a XRD spectra of MBC, demonstrating successful synthesis of
MBC composite.
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3.7. Analysis of Functional Group

The surface functional groups are the central chemical variable of BC material that
influence the BPA adsorption. FTIR spectroscopy was employed to substantiate the modifi-
cation process and acquire the information on the existence of different functional groups
on the surface of the material [82]. The spectrum results and various bands in the spectra
signifying vibration of functional groups were illustrated in Figure 6 for NBC and MBC,
respectively. During the Fe3+/Fe2+/NaOH process, the surface of the char aids the nu-
cleation of iron oxide precipitation. As indicated in Figure 6, the existence of functional
groups of –COOH and –OH group are responsible for the binding of the iron oxide and
iron hydroxide particles in the solution, and then bonded to the char [83]. This could be
symbolized as char-O-FexOy (Fe3O4/Fe2O3). In this context, the bold ‘O’ was initially a
hydroxyl group on the surface and signify a chemical bond between iron oxide particle
and the char phases. This bonding may conceivably be combined with some mechanical
interlocking between H-bonding (such as between Fe–OH at the metal oxide surface with
C–OH of the char surfaces) and phases in addition to some columbic interfaces. These
interactions could strongly bind magnetic iron oxide to the BC materials [84].
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Also, as indicated in Figure 6 of the FTIR spectra, there are limited peaks that surfaced
for both NBC and MBC. The peaks at 2834, and 2878 cm−1 were distinctive peaks of
the C-H bond [82]. Similarly, the peak at 1081 cm−1 was the C-O stretching vibration
in the composition of carbohydrate, polysaccharide, or aromatic ether. The peaks close
to 1578 and 1579 cm−1 were the stretching vibration peaks of C=C, C-H, and of C=O
on the aromatic ring [85]. The results go along with the BC characteristics that not only
contain porous structure but also abundant active adsorption sites for BPA removal [86].
Besides, a noticeable peak at 652 cm−1 was observed for MBC, which correspond to the
typical stretching peak of Fe-O [87]. This indicated that the Fe3O4 nanoparticles have been
efficaciously loaded on the surface of BC as revealed by the FESEM results. The spectra
results revealed that magnetic alteration improved the varieties and number of functional
groups of the BC, which may influence the adsorption of BPA.

3.8. Determination of Electrokinetic Charge (pHpzc) of Biochar

pHpzc is the pH at which the net surface charge on the surface of an adsorbent is zero.
It is a critical variable in examining the efficacy of the adsorption systems. When the pH is
greater than the pHpzc, the adsorbent surface acquires negative charge, hence repelling or
attracting organic contaminants, in line with their cationic or anionic functional groups [88].
The point of zero charges was investigated to describe the surface chemistry of MBC and
NBC. The values of point of zero charge (pHpzc) of neat and MBC in relation to the solution
pH were computed and displayed in Figure 7. According to Figure 7, the pHpzc at the point
where the change in pH (initial pH-final pH) equal to zero for the MBC and NBC were 5.61
and 4.81, respectively. It is observed that the pHpzc of MBC (5.61) is higher than that of NBC
(4.81). This increase may be due to the introduction of iron oxides (Fe3O4) on the surface of
NBC [89]. Hence, higher pHpzc is more beneficial for the adsorption of BPA anions, which
are often existed in acidic solution [90]. The zeta potential of all samples steadily reduced
with rising pH indicating more net negative surface charge at elevated pH. Similarly, the
zeta potential of both NBC and MBC was both positive and negative within the whole
pH range studied (2–11) as can be seen from Figure 7. Evidently, both MBC and NBC are
positively charged when the pH is lower than 6.0. Once the pH is increase, the surface
charge of the two biochar materials swiftly transformed from positive to negative. As pH
consistently increase, the surface charges of both NBC and MBC risen and, noticeably, the
zeta potential of NBC and MBC were −28.56 mV and −22.47 mV, which shows that both
biochar samples were negatively charged (see Figure 7). Though, the surface of NBC is
slightly more negatively charged, and the electrostatic attraction between the negatively
charged NBC and HBPA improves the adsorption. This finding is in good agreement with
previous studies [16,91].

Polymers 2021, 13, 3781 14 of 31 
 

 

shows that both biochar samples were negatively charged (see Figure 7). Though, the sur-

face of NBC is slightly more negatively charged, and the electrostatic attraction between 

the negatively charged NBC and HBPA improves the adsorption. This finding is in good 

agreement with previous studies [16,91]. 

 

Figure 7. Zeta potential of NBC and MBC at different pH. 

3.9. Influence of Working Conditions on the Adsorption of BPA 

The operating variables for instance contact time, solution pH, adsorbent dosage, 

ionic strength, BPA concentration, and other variables can influence the surface properties 

of the adsorbent surface and its BPA binding ability [88,92]. Hence, a batch adsorption test 

was carried out on the as-synthesized BC adsorbents to study the influence of these oper-

ating variables on the adsorption capacity and removal efficiency for BPA uptake. 

3.10. Effect of pH on BPA Adsorption 

The pH is one of the main parameters that control the removal of compounds present 

in aqueous environment using solid adsorbents. The solution pH is among the most es-

sential variables that determine the elimination of various compounds existing in aqueous 

environment utilizing solid adsorbent materials and the optimization of adsorption pro-

cess. The effect of pH on adsorption was reliant on the target contaminants and nature of 

absorbent [42]. It influences not only the speciation of the adsorbate, but also the level of 

ionization and adsorbent surface charge [90,93,94]. Accordingly, most of the investiga-

tions involved in contaminants adsorption onto BC strongly considered the effect of solu-

tion pH. To investigate the influence of different solution pH upon adsorption of BPA on 

the surface of NBC and MBC, the tests were performed in the pH range of 3.0–12.0, BPA 

concentration 20 ppm, adsorbent dose 0.5 g, and temperature 20 °C, and the results were 

illustrated in Figure 8a. As indicated in the figure, the sorption of BPA by NBC and MBC 

is clearly pH reliant. The highest adsorption capacity of NBC to BPA take place at pH (3.0), 

which is attributable to the development of electron receiver-giver interaction (ERG) be-

tween BPA and NBC, together with a robust hydrogen bond [95,96]. When pH rose from 

6.0 to 7.0, the adsorption capacity of NBC to BPA slightly increased further, since BPA 

starts to moderately dissociate, and BPA in the solution is no more in molecular form, 

nevertheless few HBPA- still occurs. The electrostatic attraction between NBC and HBPA- 

enhances the adsorption process due to the positively charged surface of NBC. Further 

Figure 7. Zeta potential of NBC and MBC at different pH.



Polymers 2021, 13, 3781 14 of 30

3.9. Influence of Working Conditions on the Adsorption of BPA

The operating variables for instance contact time, solution pH, adsorbent dosage, ionic
strength, BPA concentration, and other variables can influence the surface properties of the
adsorbent surface and its BPA binding ability [88,92]. Hence, a batch adsorption test was
carried out on the as-synthesized BC adsorbents to study the influence of these operating
variables on the adsorption capacity and removal efficiency for BPA uptake.

3.10. Effect of pH on BPA Adsorption

The pH is one of the main parameters that control the removal of compounds present
in aqueous environment using solid adsorbents. The solution pH is among the most
essential variables that determine the elimination of various compounds existing in aqueous
environment utilizing solid adsorbent materials and the optimization of adsorption process.
The effect of pH on adsorption was reliant on the target contaminants and nature of
absorbent [42]. It influences not only the speciation of the adsorbate, but also the level of
ionization and adsorbent surface charge [90,93,94]. Accordingly, most of the investigations
involved in contaminants adsorption onto BC strongly considered the effect of solution pH.
To investigate the influence of different solution pH upon adsorption of BPA on the surface
of NBC and MBC, the tests were performed in the pH range of 3.0–12.0, BPA concentration
20 ppm, adsorbent dose 0.5 g, and temperature 20 ◦C, and the results were illustrated in
Figure 8a. As indicated in the figure, the sorption of BPA by NBC and MBC is clearly
pH reliant. The highest adsorption capacity of NBC to BPA take place at pH (3.0), which
is attributable to the development of electron receiver-giver interaction (ERG) between
BPA and NBC, together with a robust hydrogen bond [95,96]. When pH rose from 6.0 to
7.0, the adsorption capacity of NBC to BPA slightly increased further, since BPA starts to
moderately dissociate, and BPA in the solution is no more in molecular form, nevertheless
few HBPA− still occurs. The electrostatic attraction between NBC and HBPA− enhances
the adsorption process due to the positively charged surface of NBC. Further surge in pH
led to a subsequent reduction in the adsorption capacity of NBC to BPA, owing to weakness
in the interaction of the hydrogen bonding and π-π electron receiver–giver(ERG) between
BPA and NBC when the solution pH is higher than the BPA acid dissociation constant [97].
Conversely, the adsorption capacity of BPA by MBC rose initially and after that it declined
with the upsurge of pH greater than 6.0, which implied that the adsorption of BPA on BC
was largely dependent on the solution pH of the system. Thus, the considerable rise in
BPA adsorption on MBC between pH 3.0–6.0 was possibly attributed to the electrostatic
interaction between the positively charged HBPA+ species and negatively charged surface
of MBC in the solution. The surface of MBC may develop positively charged at low pH
because of the protonation reaction (H+

(aq) + −ROH(surf) ↔−ROH2+
(surf)) on the surface

of MBC [98]. When the solution pH is increased, a negatively charged surface of MBC with
plentiful active biding sites emerge owing to deprotonation reaction (OH−(aq) +−ROH(surf)
↔ H2O + –RO−(surf)) on the surface of MBC. Hence, the enhanced BPA adsorption by MBC
at pH 3.0–6.0 was not only controlled by the electrostatic interaction mechanism [99], but
possibly caused by the surface reduction/complexation of BPA species onto MBC, and
the decline of BPA adsorption at pH >6.0 following the repulsion interaction between
negatively charged MBC and dissociated bisphenolate anions (BPA2− and HBPA−) species.
The maximum adsorption capacity take place at pH of 6.0.
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Figure 8. Effect of solution pH (a), and ionic strength (b) on the adsorption of BPA by NBC and MBC.
(BPA concentration: 20 ppm; contact time: 60 min; biochar dose: 0.5 g; and temperature: 293.15 K).

3.11. Effect of Ionic Strength on BPA Adsorption

Generally, the water body comprises such a complex system that salts and organic
contaminants frequently coexist in wastewater which may influence the removal of the
contaminants. Hence, the profile of ionic strength influence on BPA adsorption by the as-
synthesized BC was also investigated using 0–1.0 mol/L NaCl, BPA concentration 20 ppm,
and the experimental findings are presented in Figure 8b. Initially, it could be noticed in
Figure 8b, the increase in NaCl concentration led to a decline in the adsorption capacity of
NBC to BPA and later a rise. Noticeably, the surge in high ionic strength (Na+ concentration)
considerably increased the adsorption capacity of BPA to MBC (Figure 8b). The BPA
adsorption capacity of BC increased when the Na+ concentration rose from 0 to 1.0 mol/L.
Analogously, Zhou et al. [100], found that the upsurge in ionic strength with various ionic
species (CaCl2 or NaCl) yielded increase in the adsorption capacity of BPA when peat was
applied as an adsorbent. Similarly, erstwhile study has also reported that the increased
ionic strength could improve the adsorption of organic contaminants into carbonaceous
adsorbents, such as BC, owing to the screening effect of the surface charge generated by
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the addition of salt [101]. The BPA adsorption capacity by BC adsorbents rose steadily with
the increase in the NaCl concentration. The plausible explanations for this surge could be
due to the penetration of ions into the diffusion dual layer around NBC and MBC surfaces
and lessen the repulsion between the adsorbents, thereby stimulating the squeezing-out
effect (i.e., nanoparticle aggregation), which caused a decline in the adsorption capacity
of BPA [102], enhanced activity coefficient of hydrophobic organic contaminants, which
leads to a salting-out effect (reduction in solubility), and, therefore, was favorable to
the adsorption of BPA [103]. Thus, the decreased adsorption capacity when the NaCl
concentration is at 0.2 mol./L might be caused by the competition between BPA and the
low concentration of salt solution for the accessible active sites of adsorbents, corroborating
that the squeezing-out effect was stronger than the salting-out effect. Conversely, as the
NaCl concentration increases, the adsorption capacity enhanced evidently, suggesting that
the salting-out effect improved unceasingly [104].

3.12. Effects of Biochar Dose on the Removal of BPA

Adsorbent dosage (AD) is an important parameter in an adsorption process. It controls
the adsorbate–adsorbent equilibrium of the adsorption procedure. The removal efficiency
based on the adsorbent dosage was studied at other test conditions, BPA concentration
20 ppm, varying dosages (0.2–0.8 g), pH 6.0, contact time (60 min), and adsorption tem-
perature 20 ◦C. The influence of BC dose on the adsorption of BPA by NBC and MBC
is illustrated in Figure 9. The removal rate of BPA enhanced with the rise in BC dose.
When BC dosage was 0.2 g, the removal efficiencies of BPA by NBC and MBC were 48.45%
and 60.0%, respectively. Similarly, when the BC dose rose to 0.5 g, the removal efficiency
substantially rose to 85.97% and 94.2%, respectively. The increased removal rate is be-
cause of the augmented BC, which also expands the operational specific surface area of
adsorption, together with increase in the active pore (binding) site of adsorption [105]. This
outstanding adsorption performance was attributable to the presence of plentiful active
sites and various interactions between BC adsorbent and BPA, specifically ion exchange
and complexation electrostatic interaction. Afterward, further increase in BC dosage has
no influence on the removal rate. This is because surplus adsorbent overlaps the effective
active sites on BC and competes for limited solutes [42].
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3.13. Effects of Initial Concentration and Contact Time on the Removal of BPA

The influence of initial BPA concentration and contact time on the adsorption of BPA
from aqueous solution was investigated. The experiments were performed in the presence
of a constant dose of adsorbent (0.5 g) of BC at room temperature, at pH (6.0) with various
initial concentrations of BPA in the stock solution varied between 8.0 to 150.0 ppm, at
different time intervals up to 240 min. The result of effect of initial concentration on BPA
removal is presented in Figure 10. The initial concentration offers the stimulating force
required to overcome the mass transfer wall between the adsorbate and the adsorbent
media [106]. Thus, a higher initial concentration may enhance the efficacy of the adsorp-
tion process. Evidently, BPA removal is lower at a small concentration due to smaller
amount of adsorbates in the solution to dominate active sites on the adsorbent and the
amount of BPA adsorbed rises with the upsurge in BPA concentration. Thus, increase in
initial BPA concentration, led to gradual rise in the removal efficiency of BPA, since the
increased BPA concentration can improve the adsorption drive between the solute and the
adsorbent [107,108]. The rise in the concentration of BPA conforms with an increase in BPA
removal as shown in Figure 9. When equilibrium is attained, the adsorbent turns out to be
saturated. This result is in line with previous study reported by Wang and Zhang [16].
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Figure 10. Effects of initial BPA concentrations on the removal efficiency under varying initial con-
centrations (8–150 ppm) at constant pH (6.0), dosage (0.5 g), and varying contact times (20–240 min).

The test conditions evaluating the influence of contact time on the adsorption of
BPA at the test conditions, BPA concentration 20 ppm, adsorbent dosage 0.5, and pH 6.0.
Similarly, the result of the effects of contact time on the adsorption capacity and the removal
efficiency are illustrated in Figure 11. Noticeably, more than 93% of BPA became adsorbed
in about 60 min. For contact time beyond 60 min, the per cent removal of BPA remains
stable, because the active sorption sites have been saturated on the adsorbent surface.
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Figure 11. Effects of contact time (20–240 min) on the per cent removal of BPA, at 0.5 g dosage, BPA
concentration 20 ppm, temperature (293.15 K), and pH (6.0).

3.14. BPA Sorption Isotherm Study

Sorption isotherm models are indispensable for recognizing the mechanisms of the
adsorption process based on fundamental characteristics and numerical derivations. Also,
the isothermal models are used to study the interrelatedness between the adsorbate and
the adsorbent. The Freundlich and Langmuir isotherm models are normally employed and
were fitted to the adsorption experimental data. The Freundlich isotherm is appropriate to
both multilayer and monolayer adsorption and assumes that the adsorbates are adsorbed
onto the heterogeneous surface of an adsorbent [109]. The Langmuir isotherm assumes
monolayer adsorption on a uniform surface with a limited amount of adsorption sites [110].

The Langmuir isotherm model presumes that every molecule has a stable adsorption
enthalpy and activation energy and signifies homogeneous adsorption. Correspondingly,
the Freundlich isotherm model is experimental and regards the surface to be heteroge-
neous [111]. Two regular isotherm models were applied to fit the BPA adsorption isotherms
on the as-synthesised BC (Figures 12 and 13). The models were employed to better inves-
tigate the BPA adsorption mechanism and performance. The fitting data are illustrated
in Figures 12 and 13, and the applicable fitting parameters of these models were summa-
rized in Table 3. The BPA adsorption experimental data were fitted to the Freundlich and
Langmuir isotherm models with Origin 8.0.

The fitting of the experimental data into the isotherm models illustrates the adsorption
process by the correlation coefficient R2 and constants. To accomplish this, log qe is plotted
against log Ce based on the linear form of the Freundlich model (Figure 12) [112]. For the
Langmuir model linear expression, 1/qe versus 1/Ce is plotted (Figure 13) [113,114]. The
computed qmax values of the Langmuir model from the graph of 1/qe against 1/Ce was
lower than the qe values from the experiments (see Table 4), indicating that the experimental
adsorption data fit this model. However, the R2 value of Langmuir is lower than that of the
Freundlich model.

The variables revealed that the Freundlich model (R2 = 0.88964–0.9195) offers a supe-
rior fit to the data than the Langmuir model (R2 = 0.7535–0.85608), as showed by the linear
regression values. Additionally, the heterogeneity coefficient (1/n) of the two BC falls
above 1 (1/n >1), which implied satisfactory physical adsorption process [115]. This trend
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was also corroborated by several studies [116,117] using BC synthesized from eucalyptus
forest residues, sugarcane bagasse, castor meal, water hyacinth, green pericarp of coconut,
and MBC to remove various contaminants. Hence, BC generated from various biomasses
at different temperatures were observed to have various adsorption mechanisms and ad-
sorption abilities [118]. In this work, BPA adsorption onto NBC and MBC was excellently
fit using the Freundlich model in the determination of the efficacy of NBC and MBC for the
removal of BPA, which demonstrates that the adsorption take place as a heterogeneous
surface multilayer. A synopsis of the isotherm variables is presented in Table 4.
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Table 4. Adsorption Isotherms variables.

Adsorbents Freundlich Model Langmuir Model

1/n KF(L·mg−1) R2* qmax(mg/g) KL(L·mg−1) RL R2**
NBC 1.02974 9.718964 0.88964 5.438033607 3.95207 0.00509 0.7535
MBC 1.05679 11.62947 0.9195 4.72701489 4.01652 0.005 0.85608

Note: 1/n, KF, and R2* were computed from a plot of logqe versus logCe (Equation (5)), while KL, qmax, and R2** were calculated by
plotting 1/qe against 1/Ce (Equation (4)), respectively, using the data from Figures 10 and 11.

3.15. BPA Adsorption Kinetic Studies

Kinetic study offers essential information on the mechanism of adsorption and in-
fluencing mechanism of adsorption process as either chemical reaction or mass transfer
to attain optimal working conditions for industrial scale [119]. With a view to examine
the kinetic mechanism triggering BPA adsorption, experimental data were fitted to the
pseudo-first order (PFO) [120] and pseudo-second order (PSO) [121] linearized models
using Equations (4) and (5), respectively:

ln(qe − qt) = ln(lnqe − K1 t) (4)

1
qt

=
1

K2qe2 ×
1
t
+

1
qe

(5)

where qt and qe are the amounts of BPA adsorbed at time t and equilibrium, respectively
(mg/g), t is the contact time (min), and K1 and K2 are the rate constants of the PFO and PSO
kinetic models, respectively (1/min). In batch process, sorption kinetics is described by
different models based on adsorption equilibrium including the PSO (pseudo-first order)
and PSO (pseudo-second order) kinetic models. In this context, it is used to model the
kinetics of the adsorption of BPA onto BC.

Figure 14a,b illustrates the graphs of (ln(qe − qt) against time) and (time/qt against
time) for the pseudo-first order and pseudo-second order kinetic models, respectively. The
computed variables and the experimental data of the two models are presented in Table 5.
Noticeably the coefficient of correlation value (R2 = 0.9937) for the PSO model is of better
linearity and higher in comparison with the PFO (R2 =0.8515) for BPA adsorption, which
was also noticed for a similar compound (sulfamethoxazole) adsorption by functionalized
BC [122]. Similarly, the computed qe (mg/g) for the PSO model is close to the experimental
qe value (see Table 5). Hence, PSO model satisfactorily fits better the experimental results
than the PFO kinetic model. The PSO kinetic model suggests that the chemisorption can be
regarded as a rate-controlling phase during the adsorption procedure [3,123]. Similarly,
the chemisorption takes place via electron-exchange or sharing between BPA and BC [124].
The elevated rate constants of the PSO model for BPA can be attributed to rapid interaction
with the active adsorption sites of MBC. This finding agrees with previous studies on
the BPA adsorption on the following adsorbents: algal BC [48], magnetic CuZnFe2O4–BC
composite [125], modified organo-montmorillonites [126].

Table 5. Kinetic study result for BPA adsorption.

Kinetic Models Parameters Value Linear Regression

PSO
1
qt

= 1
K2qe2 × 1

t +
1
qe

where K2 is rate constant (g·mg−1·min−1)

K2 (g·mg−1·min−1) 0.005289

y = 1.556 + 0.0583xComp. qe (mg/g) 47.15266
Exp. qe (mg/g) 37.75

R2 0.99376

PFO

ln(qe − qt) = ln(qe) − K1t

K1 (min−1) 3.50 × 10−6

y = 0.00383 + 8.4xComp. qe (mg/g) 12.003837
Exp. qe (mg/g) 37.75

R2 0.8515

NB: PSO is pseudo-second order; PFO is pseudo-first order.
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3.16. Adsorption Thermodynamics

Thermodynamic studies are employed to decipher any reaction in a better approach
and reveals whether the adsorption process is an intended process or a spontaneous
process [127]. It also indicates the influence of temperature on the adsorption process.
Generally, exothermal and endothermal sorption processes are the two common processes.
If the sorption declines with increasing temperature, it implies the exothermal sorption pro-
cess whereas if the sorption increases with rising temperature, it signifies that the sorption
is an endothermal process. In this study, the temperature influence on BPA adsorption onto
MBC was studied by performing adsorption tests at varying temperatures, viz., 298.15,
318.15, and 338.15 K, at optimum pH (6.0) and adsorbent dosage 0.5 g, respectively. The
thermodynamic variables such as enthalpy change (∆H◦), standard Gibb’s free energy
change (∆G◦), and change in entropy (∆S◦), were computed and summarized in Table 6
using the following equations:

∆GO = −RT ln KL (6)

KL =
qe

Ce
(7)

∆S
◦
= ∆H

◦ − ∆G
◦
/T (8)

where R is the gas constant (8.314 J/mol−1K−1), qe is the adsorption capacity (mg/g), Ce is
the equilibrium concentration (mg/L) and T is the actual temperature (K). The y-intercept
and the slope of the linear fit following a plot of ln KL versus 1/T were employed to
calculate the values of ∆H◦ and ∆S◦ via the Van’t Hoff plot (Figure 15).

Table 6. Computed thermodynamic variables for BPA adsorption on MBC at varying temperature.

Adsorbate Temperature (K) lnKL ∆G◦ (kJ·mol−1) ∆H◦ (kJ·mol−1) ∆S◦ (J·mol·K−1)

BPA
298.15 0.526093278 −1.304090065 51.22768066 176.1349999
318.15 1.803593997 −4.770684859
338.15 2.971634746 −8.354391819
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As the sorption temperature rises, the values of ∆G◦ turn out to be more negative,
which implies that BPA is better effectively adsorbed to MBC at elevated temperatures.
The negative ∆G◦ indicate that all adsorption processes were spontaneous [128]. The
positive ∆H◦ (51.23 kJ·mol−1) indicated that the interaction between BPA and MBC was
an endothermic process which possibly attributed to the competitive dissolution of BPA
in aqueous solution [129]. The positive ∆S◦ and negative ∆G0 values suggested the
spontaneity of the adsorption process. The higher positive ∆S◦ (176.13 J·mol−1·K−1) as
indicated in Table 5, further demonstrate increasing randomness at the adsorbate-adsorbent
interface as a result of free water molecules [130]. Thus, the determined positive ∆S◦ and
negative ∆G◦ values at experimented temperatures substantiated the BPA adsorption on
MBC and indicated the spontaneity of the sorption process, besides the entropy effect
should be the primary leading force for the adsorption of BPA on MBC [131].

3.17. Investigation of Biochar Regeneration and Reusability

Recyclability of the adsorbents is strongly essential to preserve process costs down
and for the industrial-scale application. Five phases of adsorption–desorption tests were
undertaken to examine the reusability of the as-synthesized MBC in accordance with
previously adopted experimental procedure [125]. The MBC was repetitively applied five
times, and the qe values were recorded, as illustrated in Figure 16. The result indicated
that qe was slightly reduced during the adsorption–desorption experiment. Upon the
completion of five cycles of reusability test, the removal efficiency of BPA only reduced by
12.85% as compared with the first cycle. The slight reduction in adsorption capacity during
multiple adsorption–desorption tests, was due to the partial desorption of BPA in MBC
surface, competitive available sorption sites, loss of solid in solution, and the elution of
iron oxide nanoparticles and energetic substances on MBC surface [49,132]. This reveals
that the MBC could be an effectual, economical, and environmental benign adsorbent with
superior re-usability, which can be practically applied in BPA removal procedures. The
recyclability test reveals that MBC can be applied repeatedly in wastewater purification as
an efficient adsorbent.

Table 7 presents the comparison of specific surface area characteristics, adsorption
capacity of BPA, and the magnetic intensity of the synthesized MBC material in the current
study in comparison with various studies.
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Figure 16. Regeneration of magnetic biochar for BPA removal. Experimental conditions: m = 0.5 g;
[BPA] = 20 ppm; and temperature (293.15 K).

Table 7. Comparison of specific surface area, magnetic strength, and adsorption capacity of BPA on different adsorbents
from previous literature with current study.

Adsorbents Surface Area
(m2/g)

Magnetic
Strength (emu/g) Regeneration (%) Adsorption

Capacity (mg/g) Reference

ulva prolifera (marine
macroalgae) 25.43 ND ND 84.19 [48]

pomelo peel 889.8 ND ND 26.25 [133]
magnetic composite

sepiolite NA 14.1 NA 36.30 [134]

bamboo 61.5 37.6 and 32.6 7.6 and 8.2 263.2 [125]
sewage sludge

wheat straw 65.03 ND 196.91 [135]
dried pineapple 84.89 12.83 34.93 101.16 [47]

corn straw 313.88 14.5 ND 46.90 [111]
local reed biomass 154.79 ND ND 9.92 [136]

grapefruit peel 20.732 30.60 20 229.19 [16]
magnetic biochar palm

kernel shell 362.0673 6.4882 12.85 37.64 Current study

NA = Not Available; ND = Not determined.

Though few studies reported higher adsorption capacity than the current study de-
spite their low surface area as indicated in Table 7, this is because previous studies have
described the performance of MBC to be significantly influenced by the nature of auxiliary
and raw materials, starting contaminant concentration, pyrolysis temperature, competitive
anions, nature of modifier, reaction temperature, sorption time, and various synthesis meth-
ods [86,136,137]. As highlighted in Table 7, the maximum adsorption capacity recorded
in the current study is comparable and in line with previous studies using different BC
adsorbents. Hence, it can be inferred that the MBC synthesized from palm kernel shell
is a promising, efficient, and essential precursor (adsorbent) for the removal of BPA from
aqueous environment. The sorption capacity recorded from the current study using mag-
netic PKS-BC could be stems from highly developed pore structure, superfluous surface
area, smaller pore size, considerable surface functional group, high sorptive capacity, and
super paramagnetism. It is noteworthy that studies on the adsorption of BPA onto MBC
synthesized in-house from palm kernel shell biomass is still very limited. Besides, the
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adsorbent demonstrated superior regeneration efficacy, and the resultant MBC could be
reclaimed numerous times.

3.18. Controlling Mechanism for BPA Removal

The schematic diagram of mechanisms of adsorption of BPA (adsorbate) onto as-
synthesized NBC and MBC is depicted in Figure 17. The average pore size of the as-
synthesized BC falls below 50 nm, indicating mesoporous. Also, BPA molecules can
penetrate the pores of the as-synthesized BC via pore filling. As stated earlier, the adsorp-
tion capacity of NBC and MBC to BPA is largely influenced by pH. In acidic environments,
the phenolic hydroxyl groups in the chemical structure of BPA protonate, and thereby
producing electrostatic repulsion with the positively charged surfaces of both NBC and
MBC. Also, since BC adsorbent comprises carbon, silicon, iron, and oxygen groups, these
elements C, Si, Fe, and O groups are vastly electronegative because of the sufficiency of
available lone pair of electrons, which exhibits binding capabilities toward the BPA as
indicated in Figure 2. The carboxyl, hydroxyl, carbonyl, and amine functional groups (as
identified in Figure 5) facilitate the affinity of BPA molecules and their adsorption on the
surface of BC. Such sorption mechanism is an electron giver–receiver type according to
the unbalanced electrons’ supply between BPA compound and the BC functional groups.
The hydroxyl functional group (−OH) on the BC’s surface also develops potent hydrogen
bonds with the C-H and −OH on the molecular composition of BPA. Also, the C=O and
−COOH acidic functional groups of the as-synthesized BC can serves as electron receivers,
producing π-π electron giver–receiver interactions (EGR) with BPA. In alkaline environ-
ments, the surface of MBC becomes negatively charged, which retains the electrostatic
repulsion with the dissociated BPA2− and HBPA−, whereas NBC acts oppositely. Similarly,
the π-π electron giver-receiver interaction (EGR), as well as hydrogen bonds between
BPA and as-synthesized BC, would be severely weakened, thereby making it hard for BC
to adsorb BPA. Since, BPA exhibits robust hydrophobicity and can be intermixed with
the hydrophobic site on NBC and MBC surfaces. Hence, a hydrophobic interaction is
correspondingly a central influential force for the adsorption of BPA onto NBC and MBC.
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4. Conclusions

In this work, a novel magnetic palm kernel shell biochar was efficiently synthesized
via magnetic modification and applied to remove BPA from aqueous solution. The re-
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sults of VSM, XRD, FTIR, BET, FESEM/EDX, and Zeta potential revealed that the Fe3O4
nanoparticles was effectually engrafted on the surface of biochar. The experimental find-
ings demonstrated the adsorption isotherm could be better fitted by Freundlich model,
whereas the adsorption kinetic data was controlled by pseudo-second order model. The
as-synthesized BC also demonstrated a good magnetic strength for facile recovery, superior
recyclability, high selectivity, and eco-friendly. It was noticed that BPA removal is greatly
influenced by adsorbent dose, pH, and contact time. The BPA adsorption does increases
with reduction of pH, with a maximum adsorption at pH 6 for MBC. Thermodynamic
study revealed that BPA adsorption on MBC is endothermic process and spontaneous due
to +∆H and −∆G, respectively. The principal mechanisms for BPA adsorption on the pre-
pared BC comprised of electrostatic interactions (π-π electron acceptor– donor interactions),
hydrophobic interaction, and H-bonding. Therefore, it can be deduced from this study that
novel MBC is efficient and practical for the removal of BPA from aqueous solution with
benefit of being sustainable, and abundantly available.
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