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Abstract

Objectives: Hospitalized patients with severe obesity require adapted hospital

management. The aim of this study was to evaluate a machine learning model to

predict in‐hospital mortality among this population.

Methods: Data of unselected consecutive emergency department admissions of

hospitalized patients with severe obesity (BMI ≥ 40 kg/m2) was analyzed. Data was

retrieved from five hospitals from the Mount Sinai health system, New York. The

study time frame was between January 2011 and December 2019. Data was used to

train a gradient‐boosting machine learning model to identify in‐hospital mortality.

The model was trained and evaluated based on the data from four hospitals and

externally validated on held‐out data from the fifth hospital.

Results: A total of 14,078 hospital admissions of inpatients with severe obesity were

included. The in‐hospital mortality rate was 297/14,078 (2.1%). In univariate anal-

ysis, albumin (area under the curve [AUC] = 0.77), blood urea nitrogen (AUC = 0.76),

acuity level (AUC = 0.73), lactate (AUC = 0.72), and chief complaint (AUC = 0.72)
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were the best single predictors. For Youden’s index, the model had a sensitivity of

0.77 (95% CI: 0.67–0.86) with a false positive rate of 1:9.

Conclusion: A machine learning model trained on clinical measures provides proof

of concept performance in predicting mortality in patients with severe obesity. This

implies that such models may help to adopt specific decision support tools for this

population.
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1 | INTRODUCTION

A high percentage of patients admitted to the hospital for general

medical conditions are diagnosed with obesity.1 These patients differ

in age and comorbidities from hospitalized patients with non‐
clinically severe obesity.2 Additionally, patients with obesity have

different adaptive biological, physiological, and immunological

mechanisms to cope up with illnesses.3,4

The association between BMI and in‐hospital mortality is con-

flicting and not straightforward. Several studies have demonstrated

that in‐hospital mortality is lower among patients with obesity. This

has been termed as “the obesity paradox”.5‐7 On the contrary, several

studies have shown that obesity elevates death risk.8,9 It has been

suggested that mortality is characterized by a U‐ or J‐shaped curve,

whereby patients at the extreme ends of weight have worse survival

rates.10,11 In the current COVID‐19 pandemic, the mortality risk is

higher for hospitalized patients with severe obesity.12 Thus, hospi-

talized patients with severe obesity represent a complex population

in which mortality prediction is challenging. Predictive models for

hospitalized patients with severe obesity are at risk for possible

deterioration may be beneficial.

In the last few years, artificial intelligence research has

rapidly advanced. The use of machine learning has had a signifi-

cant impact on the health system.13‐15 The wealth of medical

data, stored in electronic health records, has enabled the use of

cutting‐edge big data technologies. Such technologies can be used

to build decision support tools. Models for in‐hospital mortality

have been applied to several chronic and acute diseases. Exam-

ples include chronic heart failure, myocardial infarction, and acute

kidney disease.16‐19 In the emergency department (ED) setting,

models were also developed for the prediction of different out-

comes, such as mortality, ICU hospital admission, and resource

utilization.20,21

Today, commonly used machine learning algorithms for tabular

data classification tasks are tree‐based models. The most frequently

used tree‐based models are random forest (RF) and gradient boosting

(GB).22,23 Tree‐based algorithms have the ability to capture the

nonlinear relationships that are present in a dataset. In cases where

higher order relationships exist in the data, nonlinear methods often

outperform linear models.

RF is an ensemble learning method most commonly used for

classification problems.23,24 The model operates by constructing

multiple decision trees at training. The output of the RF is selected by

a majority vote of all the trees. RF has the ability to correct the

common challenge of overfitting which is apparent in decision trees.

GB is another machine learning model commonly used for tabular

data classification tasks.22 The model predicts an outcome by con-

structing an ensemble of multiple weak prediction models. The weak

models are usually decision trees.

GB differs from RF in a number of ways. While in RFs multiple

trees are created at the same time using bootstrapping of data, in GB,

trees are learned sequentially and based on the performance of all

previous trees. Each new decision tree created in GB is learned to

correct the errors made by the previously created trees. The GB

model has surpassed other models in a number of data

challenges.22,25,26

In the last few years, tree‐based models have shown promising

results for mortality prediction.14,17,19,21,27 Patients with severe

obesity are a unique hospitalized population that requires adapted

clinical management and may benefit from machine learning decision

support tools.5 The aim of this study was to evaluate machine

learning algorithms to predict in‐hospital mortality among patients

with severe obesity. The two tree‐based models, RF and GB, were

evaluated and compared.

2 | MATERIALS AND METHODS

2.1 | Study design

This retrospective multi‐site study was performed in five hospital

campuses serving different geographic populations: Mount Sinai

Hospital (MSH), Mount Sinai Brooklyn (MSB), Mount Sinai Queens

(MSQ), Mount Sinai Morningside (MSM), and Mount Sinai West

(MSW). Records were retrieved of all ED admissions of hospitalized

patients with severe obesity. Severe obesity was defined as

BMI ≥ 40 kg/m2.28

Nine years of data (1 January 2011 to 31 December 2019) was

extracted from the electronic medical records (EMR). All the hospi-

tals use a unified Epic EMR system (Epic Systems Corporation). Data
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included demographics, comorbidities, arrival mode (walk‐in, ambu-

lance, or intensive care ambulance), chief complaints, vital signs,

laboratory results, and acuity level, also called Emergency Severity

Index (ESI), a five‐level acuity score assigned by the triage nurse. For

each variable, the first measurement that was taken at the ED was

used. BMI measurements were acquired from the EMR for all

patients.

2.2 | Inclusion and exclusion criteria

Adult patients (≥18 years old) with severe obesity were included.

Only ED patients who were hospitalized were included. A docu-

mented hospital measurement of BMI ≥ 40 kg/m2 was required.

Exclusion criteria included patients younger than 18 and patients

with BMI < 40 kg/m2.

2.3 | Machine learning model

Data was split into training and internal validation sets (hospitals

MSH, MSB, MSM, and MSW) and an external validation set (MSQ).

Machine learning models were trained to predict in‐hospital mor-

tality. Variables in the models included: demographics, comorbidities,

arrival mode, chief complaints, vital signs measurements at admis-

sion, ESI, and laboratory results obtained at admission. Table S1

shows the full list of predictors used in the model. The variables that

were chosen for the model were based on the data that was available

to the physician at the point of entry to the hospitalization ward.

These variables included data that was accumulated during the pa-

tient’s ED stay. Additionally, clinical variables were explored and

selected according to the analysis performed in previous

publications.14,29

2.3.1 | Data preprocessing

Categorical variables were factorized. Continuous variables were not

normalized since tree‐based methods are not affected by linear

transformations (the models’ “cut” above and below the desired

value). Comorbidities were coded according to the International

Classification of Diseases (ICD‐9 and ICD‐10) records. The ICD codes

were grouped using the diagnostic Clinical Classification Software.

The first vital signs and laboratory measurements upon arriving to

the ED were used as features in the models.

2.3.2 | Machine learning

Two machine learning models were compared: GB and RF. The GB

model was implemented using the XGBoost library. The RF algo-

rithm was implemented using the scikit‐learn library. For the GB

model, null imputation was used. For the RF model, median

imputation was used. Model hyper‐parameters were tuned in the

training/internal validation cohort, using an 80/20 five‐cross vali-

dation split. An 80/20 split was chosen as it is commonly used in

similar studies.27,30,31

(GB—number of estimators: 50, eta: 0.3, max depth: 3; RF:

number of estimators: 500, criterion: “gini,” max depth: “None”). Data

balancing techniques using scale weighting did not improve the

models’ accuracies and thus were not employed. The final GB and RF

models were trained on the entire internal validation cohort and

tested on the external validation cohort. SHapley Additive exPlana-

tions (SHAP) summary plots were constructed to assess the final GB

model feature importance. Programming was done with Python

(Version 3.6.5; 64 bits).

2.4 | Statistical analysis

Categorical variables were compared using the χ2 test. Continuous

variables were compared using Student’s t‐test. Statistical signifi-

cance was established at a two‐sided P‐value of P < 0.05. The rate of

missing data was analyzed for each variable in the model. The area

under the curve (AUC) metric was used to assess the models’ per-

formance on the test data. Single variable AUCs were also evaluated.

This was conducted by testing each individual variable in the GB

model, one variable at a time. Cutoff values of prominent laboratory

tests were evaluated for 5%, 10%, and 20% mortality rates. AUCs of

two clinical scores were also assessed: The Aged Shock Index

(ASI = Age � Pulse/Systolic blood pressure) and Lactate/albumin

ratio score.32,33

For the GB model, Youden’s index was used to find an optimal

sensitivity‐specificity cut‐point on the receiver operating character-

istic (ROC) curve. Different metrics were also evaluated for fixed

specificities of 90%, 95%, and 99%, respectively. Metrics included

sensitivity, specificity, false‐positive rate, negative predictive value

(NPV), positive predictive value (PPV), and F1 score. Bootstrapping

validations (100 bootstrap resamples) were used to calculate 95%

confidence intervals (CI).

F I GUR E 1 Study flow chart
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TAB L E 1 Baseline characteristics of the study cohort comparing the mortality group to the survival group

Total (n = 14,078) Non‐survivors (n = 297, 2.1%) Survivors (n = 13,781, 97.9%) P‐value

Demographics

Age, median (IQR), years 57.0 (46.0–67.0) 65.0 (58.0–74.0) 57.0 (46.0–66.0) <0.001

Male, N (%) 4819 (34.2) 114 (38.4) 4705 (34.1) 0.144

White, N (%) 3769 (26.8) 86 (29.0) 3683 (26.7) 0.428

African American, N (%) 5040 (35.8) 79 (26.6) 4961 (36.0) 0.001

Arrival status

BLS, N (%) 2278 (16.2) 96 (32.3) 2182 (15.8) <0.001

EMS, N (%) 4717 (33.5) 139 (46.8) 4578 (33.2) <0.001

ESI, median (IQR) level (1–5) 3.0 (2.0–3.0) 2.0 (2.0–3.0) 3.0 (2.0–3.0) <0.001

Vital signs

SBP, median (IQR), mmHg 141.0 (124.0–160.0) 123.0 (105.0–144.2) 141.0 (125.0–161.0) <0.001

DBP, median (IQR), mmHg 77.0 (67.0–88.0) 69.0 (56.0–81.0) 77.0 (67.0–88.0) <0.001

Heart rate, median (IQR), bpm 89.0 (77.0–102.0) 92.5 (79.0–108.0) 89.0 (77.0–102.0) 0.042

Temperature, median (IQR), Fahrenheit 98.0 (97.3–98.6) 98.0 (97.0–98.8) 98.0 (97.3–98.6) 0.478

Respirations, median (IQR), num/min 19.0 (18.0–20.0) 20.0 (18.0–22.0) 19.0 (18.0–20.0) <0.001

O2 saturation, median (IQR), % 97.0 (96.0–99.0) 97.0 (93.0–99.0) 97.0 (96.0–99.0) <0.001

Pain scale, median (IQR) (0–10) 4.0 (0.0–8.0) 0.0 (0.0–5.0) 4.0 (0.0–8.0) <0.001

Comorbidities

BMI, median (IQR), kg/m2 44.3 (41.8–48.9) 44.3 (41.7–50.6) 44.3 (41.8–48.9) 0.072

CAD, N (%) 2840 (20.2) 68 (22.9) 2772 (20.1) 0.268

CHF, N (%) 3581 (25.4) 87 (29.3) 3494 (25.4) 0.140

DM, N (%) 6178 (43.9) 132 (44.4) 6046 (43.9) 0.891

HTN, N (%) 7180 (51.0) 146 (49.2) 7034 (51.0) 0.559

CKD, N (%) 2614 (18.6) 63 (21.2) 2551 (18.5) 0.267

COPD, N (%) 2343 (16.6) 59 (19.9) 2284 (16.6) 0.153

Smoking, N (%) 6217 (44.2) 120 (40.4) 6097 (44.2) 0.208

Malignancy, N (%) 2842 (20.2) 77 (25.9) 2765 (20.1) 0.016

Laboratory

WBC, median (IQR), � 109 per L 9.3 (7.2–12.1) 10.5 (7.6–16.2) 9.2 (7.2–12.0) <0.001

LYMPH, median (IQR), � 109 per L 1.7 (1.1–2.6) 1.6 (0.9–4.1) 1.7 (1.1–2.6) <0.001

NEUT, median (IQR), � 109 per L 6.5 (4.7–9.2) 7.9 (5.4–13.1) 6.5 (4.7–9.1) <0.001

HGB, median (IQR), g/dL 12.2 (10.6–13.6) 10.9 (9.2–12.5) 12.2 (10.7–13.6) <0.001

PLT, median (IQR), � 109 per L 244.0 (195.0–303.0) 210.0 (138.0–289.5) 245.0 (196.0–303.0) <0.001

CR, median (IQR), mg/dL 0.9 (0.7–1.4) 1.5 (0.9–2.5) 0.9 (0.7–1.3) <0.001

BUN, median (IQR), mg/dL 16.0 (11.0–26.0) 28.0 (19.0–49.8) 16.0 (11.0–25.0) <0.001

Albumin, median (IQR), g/dL 3.5 (3.1–3.9) 2.8 (2.2–3.3) 3.5 (3.2–3.9) <0.001

GLC, median (IQR), mg/dL 118.0 (98.0–163.5) 131.0 (104.0–183.0) 118.0 (98.0–163.0) 0.013

Troponin‐I, median (IQR), ng/dL 0.0 (0.0–0.0) 0.0 (0.0–0.1) 0.0 (0.0–0.0) <0.001

(Continues)
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The Mount Sinai Institutional Review Board (IRB) approved this

study. The IRB committee waived informed consent.

3 | RESULTS

A total of 237,197 hospital admissions haddocumented measurements

of BMI. Of those, 14,078 (5.9%) admissions were of patients with se-

vere obesity (BMI ≥ 40 kg/m2). Figure 1 shows the inclusion flow dia-

gram. The in‐hospital mortality rate was 297/14,078 (2.1%). The

median time to death was 10 days (IQR: 5–22 days). Table 1 presents

patient characteristics for the mortality and survival groups. Patients

T A B L E 1 (Continued)

Total (n = 14,078) Non‐survivors (n = 297, 2.1%) Survivors (n = 13,781, 97.9%) P‐value

NA, median (IQR), mmol/L 138.0 (135.0–141.0) 136.0 (132.0–139.0) 138.0 (136.0–141.0) <0.001

CL, median (IQR), mmol/L 103.0 (100.0–105.0) 101.0 (97.0–104.0) 103.0 (100.0–106.0) <0.001

Abbreviations: BLS, basic life support; BMI,– body mass index; BUN, blood urea nitrogen; CAD, coronary artery disease; CHF, congestive heart failure;

CKD, chronic kidney disease; CL, chloride; COPD, chronic obstructive pulmonary disease; CR, Creatinine; DBP, diastolic blood pressure; DM, diabetes

mellitus; EMS, emergency medical services; ESI, Emergency Severity Index; GLC, glucose; HGB, hemoglobin; HTN, hypertension; IQR, interquartile

range; LYMPH, lymphocytes; NA, natrium; NEUT, neutrophils; PLT, platelets; SBP, systolic blood pressure; WBC, white blood cells.

TAB L E 2 The variables with the highest area under the curves

(AUCs) to predict in‐hospital mortality among patients with severe
obesity

Feature AUC 95% CI

Patient variables

Chief complaints 0.72 0.65–0.77

Age 0.65 0.59–0.71

African American 0.57 0.52–0.63

White 0.52 0.46–0.57

Sex 0.50 0.44–0.56

Arrival status

ESI 0.73 0.67–0.79

BLS 0.59 0.52–0.65

EMS 0.57 0.51–0.63

Vital signs

Respiration rate 0.69 0.62–0.76

SBP 0.67 0.59–0.75

DBP 0.66 0.59–0.73

Pain scale 0.64 0.58–0.69

Pulse oximetry 0.63 0.55–0.70

Temperature 0.60 0.51–0.67

Pulse 0.56 0.49–0.63

Laboratory tests

Albumin 0.77 0.70–0.83

BUN 0.76 0.71–0.81

Lactate 0.72 0.64–0.80

CR 0.71 0.64–0.77

AST 0.69 0.60–0.77

CL 0.69 0.62–0.76

NA 0.69 0.63–0.75

LYMPH 0.66 0.59–0.74

NEUT 0.65 0.57–0.73

WBC 0.64 0.56–0.73

CA 0.64 0.57–0.70

Troponin 0.63 0.56–0.71

T A B L E 2 (Continued)

Feature AUC 95% CI

ALK PHOS 0.63 0.55–0.71

HGB 0.62 0.54–0.70

PLT 0.62 0.53–0.70

ALT 0.57 0.48–0.66

CPK 0.57 0.42–0.72

Comorbidities

BMI 0.55 0.49–0.63

CVD 0.53 0.49–0.59

Neoplastic 0.52 0.49–0.56

HTN 0.52 0.48–0.55

DM 0.52 0.49–0.54

CKD 0.52 0.48–0.56

Smoking 0.51 0.44–0.57

CVA 0.51 0.50–0.51

COPD 0.51 0.49–0.52

Abbreviations: ALK, PHOS alkaline phosphatase; ALT, alanine

aminotransferase; AST, aspartate transaminase; BLS, basic life support;

BMI, body mass index; BUN, blood urea nitrogen; CA, calcium; CKD,

chronic kidney disease; CL, chloride; COPD, chronic obstructive

pulmonary disease; CPK, creatine phosphokinase; CR, creatinine; CVA,

cerebrovascular accident; CVD, cardiovascular disease; DM, diabetes

mellitus; EMS, emergency medical services; ESI, Emergency Severity

Index; GLC, glucose; HGB, hemoglobin; HTN, hypertension; LYMPH,

lymphocytes; NA, natrium; NEUT, neutrophils; PLT, platelets; SBP,

systolic blood pressure; WBC, white blood cells.
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who died were significantly older. They were more likely to arrive by

basic life support or emergency medical services. Significant differ-

ences were also observed in vital signs and laboratory results. Table S2

presents how the populations of the five hospitals are different. Of the

14,078 admissions, 10,909 were used for the training/internal valida-

tion set, and 3169 for the external validation set.

3.1 | Data exploration

Figure S1A presents the chief complaints associated with the highest

mortality rate. Cardiac arrest was the most associated with mortality

(63%), followed by hypotension (10.8%), altered mental status (9.9%),

and respiratory distress (7.2%). Figure S1B demonstrates the primary

diagnosis associated with the highest mortality rate. Cardiac arrest

had the greatest association with mortality (8.2%), followed by septic

shock (6.5%), shortness of breath (4.4%), and congestive heart failure

(3.7%). Single ED variables with the highest AUCs were albumin

(AUC = 0.77), blood urea nitrogen (BUN) (AUC = 0.76), ESI

(AUC = 0.73), lactate (AUC = 0.72), and chief complaint

(AUC = 0.72). The univariate analysis is presented in Table 2.

Table S3 shows cutoff values of the prominent laboratory tests for

5%, 10%, and 20% mortality rates.

3.2 | Machine learning model outcome

Table S4 presents the rate of missing data for each variable. The GB

model and the RF model showed an AUC of 0.90 (95% CI: 0.87–0.94

and 95% CI: 0.86–0.93, respectively), in the external validation set.

F I GUR E 2 Performance characteristic curves for the machine learning model compared to existing clinical scores. ASI, Aged Shock Index;
ESI, Emergency Severity Index
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Figure 2 presents the ROC curve of the GB model compared to clinical

scores. In comparison, ASI had an AUC of 0.73 (95% CI: 0.70–0.76),

albumin/lactate ratio had an AUC of 0.77 (95% CI: 0.73–0.81), and ESI

had an AUC of 0.75 (95% CI: 0.69–0.80). Figure S2 presents the SHAP

values plot of the GB model. For Youden’s index, the GB model had a

sensitivity of 0.77 (95% CI: 0.67–0.86) and a specificity of 0.89 (95% CI:

0.87–0.90), which corresponds to a false positive rate of 1:9 (Table 3).

The NPV was 0.99 (95% CI: 0.99–1.0) and PPV was 0.13 (95% CI: 0.10–

0.17).

4 | DISCUSSION

This research presents a machine learning tool that can predict in‐
hospital mortality in patients with severe obesity at the time of

admission. Mortality prediction among hospitalized patients with

severe obesity is challenging. Predictive models for patients with

severe obesity at risk may be beneficial.

The study utilized a large cohort of patients with severe

obesity that were hospitalized. An extensive number of data points

was collected from the time of ED admission. These included de-

mographics, comorbidities, laboratory results, and ED assessment.

Albumin was a strong predictor of mortality. Hypoalbuminemia

represents illness severity and was shown to be associated with

mortality.34 Abnormal albumin levels may also be an indicator of

nutrition status. In patients with obesity, a high caloric intake does

not necessarily correlate with proper nutrition. They may even

suffer from malnutrition.35 Although this test was the best single

mortality predictor, it was limited to an AUC of 0.77.

Big data has the potential to help us understand obesity and

to address the challenges of this 21st‐century epidemic.36 In recent

years, there is an increased usage of machine learning in obesity

research.37‐40 Studies that have applied machine learning to

obesity have helped predict the disease itself as well as understand

the underlying biological and psychological mechanisms of this

disease. In this study, machine learning was utilized to predict in‐
hospital mortality in patients with severe obesity. Since the mor-

tality rate is low (∼2%), this may be considered a needle in a

haystack problem. For Youden’s index, the model achieved a

sensitivity of 77% with a false positive rate of 1:9. While not

perfect, this proof of concept suggests that a targeted system for

patients with severe obesity may alert physicians to about 80% of

high‐risk patients, while creating one out of nine false positives

(high specificity of about 90%). It should be noted that there are

scores that predict mortality among the patients with obesity.

Examples include Kings Obesity Staging Criteria and Edmonton

Obesity Staging System.41 However, these tools are not used for

acute hospitalized patients.

The complexity of predicting mortality among hospitalized pa-

tients with severe obesity was evident in this study. Intuitively, it could

be assumed that patients with severe obesity who did not survive

would have more comorbidities. Yet, this was not evident in this study.

Additionally, most single variables did not have a distinguishing capa-

bility. Thus, it is clear that the physician’s ability to predict mortality of

patients with severe obesity is limited. The medical staff must be aware

of this population's unique characteristics rather than rely on familiar

patterns. Therefore, a decision support system that can alert to high‐
risk patients with severe obesity can potentially enhance the care

delivered to this population.

This study has several limitations. This is a retrospective study.

Missing data was recorded in some patients. Nevertheless, the GB

model can integrate missing values. Additionally, although this was a

multi‐center study, it was limited to an urban New York setting.

Moreover, in this study, BMI was used to define severe obesity.

Alternative indices can be used, such as the waist circumference and

the waist‐to‐hip ratio. Also, different cutoff values of BMI could be

used.

In conclusion, machine learning can predict in‐hospital mortality

among patients with severe obesity. The utilization of a decision

support system may assist with the management of this complex

population.
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TAB L E 3 Performance of the final model

Fixed specificity Sensitivity Specificity PPV NPV F1a

Youden’s

index

0.77 (95% CI: 0.67–0.86) 0.89 (95% CI:

0.87–0.90)

0.13 (95% CI: 0.10–0.17) 0.99 (95% CI: 0.99–1.00) 0.23 (95% CI: 0.18–0.28)

90% 0.73 (95% CI: 0.62–0.83) 0.90 0.14 (95% CI: 0.10–0.17) 0.99 (95% CI: 0.99–1.00) 0.24 (95% CI: 0.19–0.29)

95% 0.54 (95% CI: 0.42–0.65) 0.95 0.20 (95% CI: 0.14–0.26) 0.99 (95% CI: 0.99–0.99) 0.29 (95% CI: 0.22–0.36)

99% 0.39 (95% CI: 0.28–0.50) 0.99 0.47 (95% CI: 0.33–0.58) 0.99 (95% CI: 0.98–0.99) 0.42 (95% CI: 0.31–0.53)

Abbreviations: NPV, negative predictive value; PPV, positive predictive value.
aF1 score is defined as the harmonic mean of the sensitivity and positive predictive value.
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