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Abstract: Cancer immunotherapy has shown impressive anti-tumor activity in patients with ad-
vanced and early-stage malignant tumors, thus improving long-term survival. However, current
cancer immunotherapy is limited by barriers such as low tumor specificity, poor response rate, and
systemic toxicities, which result in the development of primary, adaptive, or acquired resistance.
Immunotherapy resistance has complex mechanisms that depend on the interaction between tu-
mor cells and the tumor microenvironment (TME). Therefore, targeting TME has recently received
attention as a feasibility strategy for re-sensitizing resistant neoplastic niches to existing cancer im-
munotherapy. With the development of nanotechnology, nanoplatforms possess outstanding features,
including high loading capacity, tunable porosity, and specific targeting to the desired locus. There-
fore, nanoplatforms can significantly improve the effectiveness of immunotherapy while reducing its
toxic and side effects on non-target cells that receive intense attention in cancer immunotherapy. This
review explores the mechanisms of tumor microenvironment reprogramming in immunotherapy
resistance, including TAMs, CAFs, vasculature, and hypoxia. We also examined whether the applica-
tion of nano-drugs combined with current regimens is improving immunotherapy clinical outcomes
in solid tumors.

Keywords: immunotherapy; resistance; nanoparticles; tumor microenvironment; macrophages;
fibroblasts; tumor vasculature; hypoxia; oxidative stress

1. Introduction

Cancer has been a significant and escalating public health issue, which caused one
in six deaths worldwide [1]. It has been reported that 19.3 million new patients and
10.0 million deaths associated with cancer were counted in 2020 [2]. However, the numbers
are still increasing; more than 29.4 million cases of cancer may be estimated 20 years
later [3]. Accordingly, efforts have been made to eliminate cancer through several strategies,
including surgery, radiotherapy, chemotherapy, targeted therapy, and immunotherapy [4].

Recently, tumor immunotherapy has been demonstrated to be a powerful and novel
therapeutic regimen with great durability and specificity against cancers [5]. Immunother-
apy is research based on the communication between cancer and the host immune sys-
tem [6]. Actually, the hypothesis of tumor immunosurveillance was firstly proposed by
Burnet and Thomas in 1957 [7,8]. They found that immune cells could recognize tumor
cells at the early stages and kill them by secreting interferon-γ (IFN-γ). Additionally, tumor
immunotherapy has been recognized since early 1990 in pre-clinical and clinical trials
with immune-stimulating cytokines, cancer vaccines, and adoptive T cell therapy. Intrigu-
ingly, recent studies have demonstrated that both radiotherapy and chemotherapy could
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regulate the response of the immune system to cancer cells in recent years (Figure 1) [9].
Accordingly, many efforts have been made to develop immunotherapy by targeting the
interactions between tumor and immune systems [8]. Several substantial advances have
been made in various immunotherapies as new paradigms against cancer, such as the
immune checkpoints inhibitors, administration of specific cytokines, CAR-T and CAR-NK.
These advances could be mainly summarized as the modulation of immune cell activity
via T cells by using antibodies and adoptive cell delivery [10,11]. Among these, immune
checkpoint inhibitors may be the widest and most effective immunotherapy for a various
solid tumors and hematologic malignancies to date. Immune checkpoint inhibitors are used
to enhance the immune response using antibodies targeting PD-1 or CTLA4 on the cellular
membrane of tumor cells and T cells [12]. Therefore, there has been a rapid increase in
interest in immunotherapy, such as the research on the immune escape during the treatment
of cetuximab and early clinical studies of immune checkpoint inhibitors [13]. These have
been implicated in successful results not only for malignant melanoma but also for non-
small-cell lung cancer as well as head and neck cancer [14]. For example, the latest study
suggested that a combination of anti-CTLA4 and anti-PD1 against metastatic melanoma
and non-small-cell lung carcinoma (NSCLC) increased the patient’s life expectancy and
inhibited metastasis [15,16].
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Figure 1. The response of the immune system to cancer cells. This process is composed of seven steps,
including the release of cancer cell antigens, presentation of tumor cells antigens, T cells priming
and activation by APCs, T cell trafficking, infiltration of cytotoxic T cells (CTLs) into tumor sites,
recognition of tumor cells and the killing of cancer cells by CTLs.

Although cancer immunotherapy is a novel and attractive regimen, it is also limited by
some barriers, including low immunogenicity of tumor cells, the high immunosuppression
of the tumor microenvironment, and systemic toxicities [17]. The tumor microenvironment
(TME) remains the main barrier to cancer therapeutic intervention. The features of the
tumor microenvironment may be complex due to their heterogeneity, in accordance with
their immune response, proliferation, and metastasis. The TME, besides tumor cells, also
includes a variety of other cell types such as T cells, vasculature, extracellular matrix (ECM),
macrophages, fibroblasts, chemokines, and hypoxia (Table 1) [18–20]. Furthermore, tumor
cells could affect immune systems by constructing an immunosuppressive TME to promote
tumor cell growth and immune evasion. In fact, recent evidence has indicated that various
cancers would diminish normal immune capacity against tumor cells leading to immu-
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noediting processes that facilitate tumor growth and redistribution at the later stages, such
as increasing tumor-associated macrophages (TAMs) and regulatory T cells, decreasing
absolute counts of lymphocytes, and apoptosis of cytotoxic T cells [9,21,22]. Furthermore,
some components existing in the tumor microenvironment were also found to directly
reduce the immune response against cancer, including prostaglandin E2, vascular endothe-
lial growth factor, interleukin IL-10 secreted from cancer cells, and transforming growth
factor-β (TGF-β) [23–26]. Many researchers also demonstrated that tumor cells could hijack
the host immune system to promote tumor development, such as the inhibition of Th1
cells, which induces cytotoxic T cell differentiation, and the antagonistic Th2 response [27].
Cancer immunotherapy also needs to overcome not only the immune checkpoints but also
the immunosuppressive TME [20,28,29]. Therefore, targeting TME has received attention as
a potential method for re-sensitizing resistant tumor cells to existing therapy. It is important
to elevate our comprehensive understanding of the interaction between tumor cells and
the TME leading to immunotherapy resistance [30,31].

Table 1. Various TME components for immunotherapy resistance focused on in this review.

Types Main Mechanisms References

CAFs (cancer-associated fibroblasts)

CAFs were proved to be associated with cancer therapy resistance by
secreting chemokines, metabolites, and growth factors, such as
interleukin-17A (IL-17A), interleukin-6 and interleukin-8, ELF, FGF5,
HGF, STC1, IGFBP3, and TGF-β2.

[32–35]

Immune cells

Various immune cells have been reported to promote an
immunosuppressive TME for therapy resistance, which mainly
including effector and regulatory T cells, cytotoxic T cells (CTLs),
tumor-associated macrophages (TAMs), myeloid-derived suppressor
cells (MDSCs), etc.

[36–38]

ECM (extracellular matrix)

The ECM was found to provide structural support and regulate
cellular activities, including proliferation, communication and
adhesion, including laminin, elastin, and collagen. In general, the
ECM contributes to tumor therapy resistance through promoting the
escape from immune surveillance and inhibiting drug delivery.

[39–42]

Vasculature

Recent studies have demonstrated that the outcome of tumor
treatment is influenced by the vasculature through drug delivery and
the supply of nutrients and O2. Additionally, the large bio-molecules
were significantly impeded and transported far away tumor tissue. In
addition, the accumulation of metabolic waste and an insufficient
amount of O2 promote acidic and hypoxic environments, which
contributes to drug resistance.

[43,44]

Hypoxia

The aberrant vasculature and excessive requirement for O2 of tumor
cells may create a hypoxic tumor microenvironment. Hypoxia could
activate HIF-1 to promote tumor cell proliferation, adapt to hypoxia,
and become resistant to various therapies. In addition, hypoxia
upregulates P-glycoprotein and dihydrofolate reductase, which
contributes to the topoisomerase II targeting drug resistance.

[19,44–49]

In addition, caution is also needed to ensure that tumor immunotherapy only tar-
gets specific tumor tissue to inhibit side effects such as systemic toxicity. Although the
mechanisms of TME reprogramming have been studied for long enough to be considered
the basis of cancer therapy resistance, active research is still undergoing, and targeting
TME remains to be an effective and promising strategy [50,51]. Therefore, various specific
aspects of targeting TME are noteworthy for future cancer research [51]. Interestingly,
Nanoparticle-based drug delivery systems provide new tools for these issues, receiving
intense attention in tumor immunotherapy due to their unique biological and chemical
properties [52]. Porous nanomaterials (NPs) have been widely used in several biomedical
fields with high loading capacity and tunable porosity, especially as drug carriers [53,54].
NPs have been demonstrated to possess great advantages including abundant surface mod-
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ification, tunable structures, high loading capacity of biomolecules, and controllable release
molecules (Figure 2) [55–57]. In fact, NP-based drug delivery systems were also found to
be effective to enhance tumor immunotherapy and reduce immune-related adverse events
through several methods including modulating immune dysfunction in TME, specific
tissue or organ targeting, and delivering drugs into target cells/tissues [58,59]. Moreover,
PNMs also can be modified to combine tumor immunotherapy with other treatments to
achieve better clinical effects [60–62].
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Figure 2. Nanoparticles have been demonstrated to possess great advantages including abundant
surface modification, tunable structures, high loading capacity of biomolecules, and controllable
release molecules.

In this review, we summarize the roles of the tumor microenvironment in immunother-
apy resistance, including TAMs, CAFs, vasculature, and hypoxia. We also examined the
recent progress of employing nano-drugs targeting TME on improving immunotherapy
clinical outcomes in solid tumors, such as targeting immunosuppressive components, tar-
geting cancer-associated fibroblasts, targeting the tumor vasculature, and targeting tumor
chemical or physiology in TME. Finally, we discussed the relevant challenges and future
directions of applying NPs for cancer immunotherapy that urgently need to be addressed
in clinical practice, coupled with corresponding solutions to these problems.

2. The Advantages of Nanoparticle Strategies Targeting the Tumor Microenvironment
for Cancer Immunotherapy Resistance

Nanoparticle strategies have attracted much interest in cancer therapy due to the
following properties: low cell toxicity, favorable pharmacokinetics and pharmacodynam-
ics, outstanding biocompatibility, preeminent mechanical and chemical robustness, great
permeation and retention (EPR) effects, etc. [59,63,64]. In addition, nanoparticles (NPs)
could overcome the challenges of traditional drug carries and provide novel regimens to
trigger stronger immune responses. Thus, NPs have received more attention as a potential
strategy for promoting immunotherapies owing to their extended retention time as well as
cell/tissue specificity [65]. The tumor microenvironment (TME) of solid tumors remains
one of the main barriers to successful therapeutic intervention in cancer treatment. The
tumor microenvironment (TME), besides tumor cells, also contains a variety of normal
cells such as macrophages, NK cells, T cells, fibroblasts, dendritic cells, and adipocytes [18].
Therefore, these complex components of the tumor microenvironment remain an issue
that impedes tumor immunotherapy. However, NPs may be versatile, effective, and ap-
propriate agents targeting TME to combine with tumor immunotherapy. For instance,
tumor growth and angiogenesis could active MDSCs and Tregs, secreting VEGF and TGF-
β, which result in hypoxia and immunosuppression [66]. Recent studies demonstrated
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that several nanoparticles can selectively target these cells and molecules to reprogram
the immunosuppressive environment towards a normal immune system and re-sensitize
tumor cells to therapy. Some NPs also were reported to depose in tumor tissue compared
with normal cells which depend on the aberrant lymphatic drainage, increased EPR effects,
and leaky vasculature. In addition, NPs can be modified easily to conjugate with specific
ligands to enhance compatibility, versatility, and efficiency [67]. Based on the nature of the
materials, the NPs can be divided into three groups and the typical examples, advantages,
and disadvantages are summarized in Table 2.

Table 2. Advantages or disadvantages of the main nanoparticle types mentioned in this review.

Types Inorganic NPs Organic NPs Hybrid NPs Ref.

Typical NPs Mesoporous NPs COFs MOFs [68]

Advantages

Good biocompatibility
High drug loading capacity
Optical physicochemical
properties
High catalytic properties

Improved biocompatibility
Biodegradability
Controllable particle size
Different functionalization

Good biocompatibility
Biosensing
High catalytic activity
Optical properties

[69,70]

Disadvantages Poor biodegradability
Potential toxicity

Limited pore size
Degradability

Potential toxicity
Limited pore size
Degradability

[71]

We also summarized recent NPs (Table 3) targeting TME through different TME
components to reprogram the immunosuppressive system and re-sensitize tumor cells to
immunotherapy, such as targeting CAFs, TAMs, tumor extracellular matrix, and vasculature
and immunosuppressive components (Figure 3).
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Figure 3. Nanoparticles have many properties which could release drugs by external or internal
stimulation. These NPs also can inhibit tumor proliferation and progress by targeting TME. Nanoma-
terials can attenuate tumor resistance and hypoxia by targeting the aberrant vasculature. Moreover,
NPs could promote macrophage shifts from M 2 into M 1 subtypes, which reactivate the immune
system. Nanomaterials promote dendritic cell activation, causing the maturation of T cells and
eradication of tumor cells.
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Table 3. The main characters of nanoparticles mentioned in this review, were summarized.

Mechanisms for
Elevating

Immunotherapy
Composition of NPs PNMs Target Cells Main Results Ref.

Enhancing uptake
and presentation

PMSN@OVA-MPN PMSN DCs
PMSN@OVA-MPN prevented
cancer cell proliferation and
enhanced immune response

[72]

UiO-OVA Zircoium-based nMOF APCs
UiO-OVA produce forceful
antigens and effectively
triggered CTLs

[73]

W-TBP/CpG/PD-L1 Castionic nMOF DCs W-TBP NPs promoted
antigen presentation [74]

LPSiNPs PSi B cells LPSiNPs enhanced the
activation of APCs and B cells [75]

IMHCS-OVA IMHCSs APCs IMHCS-OVA promote the
maturation of APCs [76]

Tumor-targeted
delivery

PSiPs-HER2 PSiNP Cancer cells
PSiPs-HER2 achieved specific
targeting and destruction of
tumor cells

[77]

MSN@polyphenol MSN Cancer cells MSN@polyphenol achieved
controlled molecule release [78]

CpG/ZANPs MOFs APCs

CpG/ZANPs targeted lymph
nodes, and APCs,
significantly inhibiting
tumor proliferation

[79]

CD@MSNs (carbon
nanodots-based MSNs) MSNs TAMs, NKs

CD@MSNs combined with
PTT could accumulate in the
tumor and eliminated cancer
cell metastasis

[80]

LCP-II NPs Calcium
phosphate NPs Cancer cells

The LCP-II NPs delivered
drugs to tumor sites in a
xenograft model

[81]

PHNPs@DPA-S-S-BSA-
MA@3-MA PHNPs TAMs

PHNPs exhibited efficiency
for targeting TAMs,
enhancing immune reaction,
and preventing
cancer development

[82]

Reversing
immunosuppressive

TME

Fe3O4-OVA
nano-composites Fe3O4 nanoparticles TAMs, BMDC

The NPs stimulated the
maturation of BMDCs and
the activation TAMs to
prevent cancer progress
and development

[83]

OX/IND-MSNP MSNPs APCs, cancer cells

The OX/IND-MSNP
combined with
immunotherapy leading to
ICD and immune
suppressive effects

[84]

MIL-100 with MTO,
hyaluronic acid MOF (MIL-100) Cancer cells

The NPs induced ICD and
reversed the
immunosuppressive effects

[85]

IMD@Hf-DBP/αCD47 nMOFs TAMs, cancer cells
Under X-ray irradiation, the
NPs reversed the
immunosuppressive effects

[86]

ZIF-8/CpG ODNs ZIF-8 NPs TAMs

The NPs showed less
cytotoxicity and enhanced the
uptake of CpG ODNs in
TAMs, and increased the
levels of cytokines

[87]

Ce6/MLT@SAB Hybrid NPs Cancer cells

The NPs combined with PDT
further upregulated the level
of CD4 + and CD8 + T cells in
tumor sites and reduced the
numbers of MDSCs

[88]
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Table 3. Cont.

Mechanisms for
Elevating

Immunotherapy
Composition of NPs PNMs Target Cells Main Results Ref.

Multi-functionality

IMD@Hf-DBP/αCD47 nMOFs TAMs, cancer cells
The NPs enhanced systematic
immune responses through
the combination of RT-RDT

[86]

Cu-TBP Cuporphyrin nMOF Cancer cells

Cu-TBP elicited systemic
anti-cancer immune
responses by activating
immune responses in primary
and metastatic tumors

[89]

MOF-OVA@CpG MOF APCs

Co-delivery of antigen and
CpG triggered T cell
activation and cytokine
secretion, and inhibited
cancer development

[90]

COF-609 COF Cancer cells

The study offered the first
integration of PDT and
immunotherapy by 3D COFs
to inhibit cancer metastasis
and recurrence and
demonstrated a new way to
design ICD inducers

[91]

COF@ICG@OVA COF DCs

The NPs combined with NIR
irradiation and a checkpoint
inhibitor inhibited cancer
progress and development

[92]

FeSe2-PE FeSe2 nanoflower Cancer cells

The FeSe2-PE-NPs were
fabricated to achieve the
on-demand release of H2Se
on NIR-II photoactivation to
kill tumor cells

[67]

H-MnO2-PEG/C&D Mesoporous
MnO2 nanoshells Cancer cells

The NPs as a multifunctional
theranostic platform
regulated TME and PTT/PDT
therapy and
enhanced immunotherapy

[93]

3. Using Nanoparticle-Based Drug Delivery Systems to Target Cancer-Associated
Fibroblasts (CAFs)

The tumor stroma mainly consists of fibroblasts and tumor cells and regulate tumor
growth and development through reciprocal interaction [94]. Fibroblasts, also known
as CAFs in cancer tissue, promote tissue repair healthy tissue through depositing the
ECM [95]. Recent research has implicated that CAFs could promote drug resistance and
obstruct drug delivery by enhancing the secretion α-SMA, vascular endothelial growth
factor, and pro-angiogenic molecules [94]. Therefore, targeting these cells may be a key
strategy to reprogram the tumor environment and inhibit immune escape. For example,
there have been two types of CAF-based nanoparticle strategies: (1) disruption of the
barriers related to CAFs and (2) targeting CAFs to enhance therapeutic efficacy against
cancer [94].

3.1. Disruption of the Barriers Related to CAFs

(1) Targeting myofibroblasts, one of the important components of CAFs [94]. The
formation of myofibroblasts is dependent on TGF-β1, which enhances ROS and α-SMA
levels, and is inhibited by anti-oxidants [96]. For example, Alili et al. have found that
nanoceria can regulate myofibroblast formation, reduce α-SMA myo-fibroblastic cells, and
inhibit the invasion of tumor cells [97]. These results indicated that they may be an effective
and safe treatment strategy [97].

(2) Targeting pancreatic stellate cells, the primary cancer-associated fibroblast precur-
sors in tumor stroma. For instance, recent studies developed super-paramagnetic iron oxide
nanomaterials improved by relaxin-2, which inhibits the differentiation of pancreatic stel-
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late cells by inhibiting the Smad2 signaling [98]. The relaxin-2 NPs were found to promote
targeted drug delivery and suppressed collagen deposition. These results demonstrated
that NP strategies could enhance stroma modulation and improve drug pharmacokinetics.
Moreover, other researchers designed injectable hydrogel nanoparticles carrying losartan,
which enhanced encapsulation through self-arrangement [99]. It was successfully retained
for several days and inhibited both collagen and cancer-associated fibroblast levels in
orthotopic mice. Chen et al. reported codelivery and pH-sensitive NP systems composed
of a p-GEM and paclitaxel NP [100]. These systems could target the deeper stroma while
delivering drugs. They demonstrated that the NPs specifically reduced the α-SMA level in
tumor tissue and destroyed cancer cells without regulating another stroma [100]. Accord-
ingly, these NPs showed properties with higher drug delivery efficiency, specific targeting,
and warranted further research to achieve the therapeutic outcomes.

3.2. Targeting CAFs to Elevate the Efficacy of Tumor Treatment

(1) Establish physical barriers to impede drug absorption and penetration [94]. Recent
studies have shown that Wnt16, increased in cis-treated CAFs, results in cisplatinum re-
sistance [101]. Cisplatinum upregulated Wnt16 expression, causing stroma reconstruction
and enhancing therapy resistance. However, the nanoparticles carrying wnt16-siRNAs
were confirmed to promote cisplatinum cytotoxicity within the stroma-abundant environ-
ment [101]. These NPs could downregulate Wnt16 to elicit several advantages, such as
re-sensitizing tumor cells to cisplatinum, reprogramming the TME, as well as inhibiting
angiogenesis [101]. Another study also indicated the therapeutic effects of NPs carrying
quercetin which could reduce the Wnt16 level in CAFs [102]. The NPs significantly de-
creased Wnt16 expression and re-sensitized tumor cells to cisplatin in stroma-enriched
bladder cancer. These two studies indicate that CAF targeting and NP re-sensitization in
tumors can reprogram the TME and enhance cytotoxicity.

(2) Targeting and modifying CAFs with NPs. Huang et al. designed nanomaterials
carrying plasmids expressing sTRAIL and administered to mouse xenograft models. They
proved that these NPs were effective in a xenograft PC model by inducing apoptotic
death of CAFs and reprogrammed CAFs to a quiescent state. They also found that these
NPs could ablate the tumor and remodel the TME to promote the second therapeutic
treatment. Another study also developed CAF-targeting NPs carrying navitoclax, which
would selectively combine to the tenascin C [103]. These NPs were reported to improve
cellular uptake and enhance cytotoxic effects. In addition, these NPs eliminated CAFs and
inhibited cancer progression both in vitro and in vivo.

As these examples show, the NPs could reverse drug resistance and improve T cell
infiltration and reshape the TME to reactivate anti-cancer pathways by selectively targeting
CAFs. These elegant approaches could pave the way for personalized therapies and would
combine with the latest therapeutic strategies to elevate clinical outcomes.

4. Nanoparticle Strategies for Targeting TAMs

Macrophages have been reported to play a crucial function in wound healing and
tissue regeneration, immunity, and homeostasis [95,104]. Macrophages could differentially
transform into M 1 and M 2 types depending on the stimulants. For instance, IFN-γ and
lipopolysaccharide could induce classical M 1 subtype polarization, which impedes tumor
cell growth by secreting IL-12. Exposure to IL-4 and IL-13 polarizes macrophages into M
2 types that promote tumor cell progression, tissue repair, and healing by increasing the
expression of IL-12 [95]. According to these findings, macrophages are thought to be a
double-edged sword. TAMs may promote tumor immunotherapy on tumor initiation but
cause angiogenesis and become centers of immunodepression at an advanced stage, which
may be dependent on the TME alterations [105]. Thus, specifically targeting TAMs may be
a promising cancer immunotherapy strategy.
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4.1. Regulating TAM Polarization

(1) Regulating TAM polarization. Recent studies proved that iron-oxide nanoparticles
such as ferumoxytol, recently approved for the symptom of iron deficiency, could promote
polarization of macrophages from M 2 towards M 1 types, inhibiting tumor cell growth [106].
Another iron-based NP can change TAM-binding molecules on S dots, which carried
many O2-containing groups on the surface [107]. Once internalized by lysosomes, these
NPs released irons and induced ROS, thus transforming macrophages from M 2 towards
M 1. Moreover, NPs of ultra-tiny size promoted deeper cancer issue penetration [107].
These studies implicated that the endogenous components may be utilized to overcome
therapy resistance.

Other groups constructed a biomimetic formula against tumors to reprogram M
2 subtypes and elevate cancer immunotherapy, which coated resiquimod (R848) with PLGA
and B16-OVA membrane [108]. These nanomaterials could upregulate the expression of
CD47 that would protect the nanomaterials from clearance [108]. Hence, this nano-based
strategy, targeting Toll-like receptors, may offer a promising, selective, and efficient method
for re-polarizing M 2 subtype TAMs. Moreover, other groups have developed several
alternative approaches to enhance macrophage reprogramming.

(2) Tumor vaccine based on TMPs (tumor-derived antigenic microparticles). Advanced
nano-based approaches, TMPs, have similar cytosolic components and biological prop-
erties with relevant parentals [109]. T-MPs display universal immunogenicity and are
hopeful vehicles due to the highly immunogenic antigens and are exposure free [109]. For
instance, some studies reported an effective tumor vaccine with TMPs that has shown
effective anti-cancer effects in several solid tumors. They loaded nano-Fe3O4 TMPs with
abundant CpG/Lipo on surfaces to produce a vaccine-pooled cancer antigen, and immune-
stimulant/modulator. This novel vaccine was proved to re-polarized macrophages towards
M 1 subtypes and increased cytotoxic T cell (CTL) numbers [109]. Some studies also
reported that nanoparticles covered with NK cellular membranes, can promote M 1 polar-
ization and enhance anti-cancer responses [110]. Wu et al. developed pFEOOH-NRs using
FeOOH nanorods with PAA [111]. They found that the pFEOOH-DOX loaded nanopar-
ticles could be applied for cancer clinical treatment by recovering the immunostimulant
environment and causing tumor recurrence abolishment [111].

4.2. Suppression of TAM Survival and Function

To test this strategy, recent studies reported novel NPs with dual-targeting M 2-like
properties and TAMs [112]. The function of these NPs was regulated by SRB1, combin-
ing with the peptide that specifically recognized M 2 subtype macrophages. These NPs
displayed high selectivity extinction of M 2 macrophages, causing subsequent eradication
of cancer cells. These dual-targeting NPs also decreased the levels of immune inhibitor
molecules, such as TGF-β and IL-10, and upregulated IL-12 and TNF-α, promoted CTL
infiltration, and recovered normal immune sensitivity [112]. Some studies also reported
a similar strategy to enhance Ibrutinib (IBR), a chemical inhibitory drug of BTKs (bruton
tyrosine kinase), uptake by TAMs [113]. These NPs were demonstrated to prolong IBR
retention time and promote drug delivery, contributing to immune restoration and tumor
suppression. These NPs (SA/IBR/EPG) modified with stearic acid may efficiently deliver
IBR into macrophages and blocked BTK activation, resulting in the decrease in tumor
volume and angiogenesis [113]. According to these findings, these NPs may decrease
elimination and enhance the retention time and delivery by specific targets in the TME,
leading to satisfactory immunotherapeutic outcomes. Therefore, these NP strategies pro-
vide a valuable clinical application that overcomes the traditional disadvantages including
defective solubility, poor circulation, and non-specific delivery. However, these NPs need
to be tested in the clinical trials to evaluate the practical therapies due to the complicated
mechanisms of TAM polarization depending on the TME context.
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5. Nanoparticle-Based Drug Delivery Systems for Modulating the Tumor
Extracellular Matrix

The ECM was found to provide structural support and regulate cellular activities,
including proliferation, communication and adhesion, including laminin, elastin, and
collagen (Figure 4) [114–118]. Additionally, the characters of the extracellular matrix
are diverse, due to the resident cells, tumor tissue, and staging [119–123]. In general,
the ECM contributes to tumor therapy resistance through promoting the escape from
immune surveillance and inhibiting drug delivery. Small molecular medicines are usually
transported from interstitial areas towards tumor cells by the blood pressure. Mechanically,
the organization of the ECM increases fluid pressure to inhibit drug delivery in interstitial
spaces [120,124]. In fact, these drugs must cross the ECM to achieve functions during tumor
treatment. Moreover, drug delivery was significantly suppressed in the three-dimensional
cultured spheroids compared with the two-dimensional monolayer due to the number of
ECM components [121]. Some studies found that cancer cells acquired obvious resistance
to 5-fluorouracil/oxaliplatin in collagen I matrix [121,125,126]. In addition, the extracellular
matrix proteoglycan could upregulate inflammatory cytokines such as TNFα, IL-6, and
NF-κB, to escape immune surveillance [39–42]. Studies suggested that the ECM, which
plays an important role in tumor development, can be utilized for tumor therapy.
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Figure 4. The ECM was found to offer structural support and regulate cellular functions, such
as proliferation, communication, and adhesion (laminin, elastin, and collagen). Small molecular
medicines are usually transported from interstitial areas towards tumor cells by the blood pressure.
Mechanically, the organization of the ECM increases fluid pressure to inhibit drug delivery in
interstitial spaces. For example, the extracellular matrix proteoglycan could upregulate inflammatory
cytokines such as TNFα, IL-6, and NF-κB, to escape immune surveillance.

Recent research has been focused on targeting the ECM. For example, laminin has
been reported to be one of the main components of the ECM. Some studies reported a
laminin-mimicking peptide, which could self-assemble and form NPs through hydrophobic
interactions, effectively inhibiting tumor invasion [127]. These NPs may be modified by
laminin receptors or integrins in vivo, which could prolong retention time and accumulate
at tumor sites. They were proved to successfully inhibit metastasis in multiple cancers [127].
Another approach was reported to use cell adhesion molecules that mimic ECM loading to
assemblies of magnetic nanocarrier agarose hydrogels [128]. These magnetic NPs assem-
bled into both mesh-like or fibrous patterns to guide metastasis driven by magnetostatic
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fields [128]. As these studies suggested, these NP strategies offer an innovative solution to
modulate adhesion and metastasis by enhancing the ECM strength.

Other studies focus on different deposition stages of ECM to recover abnormal struc-
tures. For instance, some studies found LOXL-2-antibodie-loaded NPs, which would be
able to alter the endogenic collagens without changing ECM components [129]. These NPs
effectively destroyed cell adhesion and metastasis in various cancers by modifying collagen
morphologies. These studies indicated that these NPs used to modify ECM architecture
effectively eradicate tumor cells by shifting the tumor environment towards non-metastatic
phenotypes. Meanwhile, hyaluronic acid (HA), a crucial component of the ECM, is a
hydrophilic glucosamine polysaccharide that is mainly over-expressed in malignant tumor
sites. HA has been found to play an important role in metastasis and growth of cancer
cells by inhibiting the infiltration of immune cell tumor perfusion, while elevating tumor
vascular collapse [130]. Thus, NPs based on HA have been applied to improve immunother-
apy. For example, PLGA-PEG-rHuPH2 NPs were developed to elevate the efficiency and
specificity of drug delivery via HAase activity [131]. Interestingly, collagen is one major
components of the ECM in malignant tumor TMEs. Over-expression of collagen could
cause therapy resistance and inhibit drug absorption [132]. Similar to HA degradation,
NPs combined with collagen depletion have been developed to promote drug transport.
For instance, the PLGA NPs were designed to improve drug release and treatment efficacy,
which were composed of collagenase and doxorubicin (DOX) [133]. In addition, other
groups have developed a thermosensitive PLGA-PEG-PLGA hydrogel carrying collage-
nase and trastuzumab to enhance immunotherapy [134]. However, NP-based collagenase
used in tumor therapy may be much less common than NP-based HAase due to the less
separated capacity of cleavage [135]. Among them, MMPs (matrix metalloproteinases) are
another crucial component of the ECM, which was associated with tumor progress and
development. For instance, recent studies have reported an NP based on MMP-9-cleavable
lipopeptide to control tumor proliferation and enhance drug accumulation in the tumor
site [136].

Accordingly, these NPs targeting ECM strategies open new insights of cancer treatment
and attend promising possibilities of personalized therapy.

6. Nanoparticle-Based Drug Delivery Systems for Targeting the Tumor Vasculature

The vasculature could transport nutrients, O2, growth factors, and waste products,
which play an important role in tumor relapse, metastasis, and resistance (Figure 5). Studies
have demonstrated that the outcome of tumor treatment is influenced by the vasculature
through drug delivery and the supply of nutrients and O2 [137]. The vasculature was
found to be complex, extended, branched, and have more loops in tumor tissue [138]. The
blood flow usually is chaotic and variable in tumor tissue, due to the discontinuous vessel
walls and leakiness [139–143]. Moreover, the blood displayed high geometric resistance
and viscosity for blood, and had low pressure between venules and arterioles in tumor
tissues [143,144]. Recent studies also found that lymph vessels are absent or scarce in
various solid tumors, leading to high interstitial pressure [44,143,145,146]. As a result,
the large bio-molecules were significantly impeded and transported far away from tumor
tissue [43,44]. In addition, the abnormal vasculature impairs the transportation of nutrition
and O2 by decreasing blood flow due to the tumor cells’ excessive growth [147]. According
to these findings, the accumulation of metabolic waste and ab insufficient amount of O2
promotes an acidic and hypoxic environment, which contributes to drug resistance [148].
Many studies have proved that the distribution of drugs is related to the distance from vas-
cular systems to tumor tissues which play an important role in the outcomes of lung, breast,
and liver cancers [143,149,150]. For example, the synergistic treatment with anti-angiogenic
agents and a VEGFR inhibitor showed more efficient clinical outcomes compared with
a single treatment alone [151]. It suggested that the resistance of the VEGFR inhibitor is
related to proangiogenic factors. Moreover, growing evidence indicates that various of cy-
tokines can regulate the generation of vasculature. For instance, CXCR7 have been proved
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to promote angiogenesis by promoting ERK1/2 phosphorylation [152]. Additionally, the
complex of CXCL12 and CXCR7 was reported to promote lung metastasis and resistance
via pro-angiogenesis [152,153]. The feature of tumor vasculature is aberrant functions and
appearance. The hypoxic TME promotes the expression of angiogenic molecules, including
TGF-β and VEGF, which impaired its activity. In fact, the imbalance between pro- and
anti-angiogenic factors caused tortuous, unevenly distributed vessel generation in tumor
niches [95]. The characteristics of these abnormal vessels are high permeability, resulting in
protein leakiness and increased interstitial fluid pressure and exacerbates tumor hypoxia in
the TME [95]. Finally, the dysregulated vessels could inhibit T cell infiltration and impair
drug delivery, to generate phylactic barriers which protects the cancers and hampers clinical
trials [95]. Thus, targeting the tumor vasculature may be an important strategy to restore
the tumor immune responses.
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Figure 5. The vasculature usually transports nutrients, O2, growth factors, and waste products,
which play an important role in tumor relapse, metastasis, and resistance. The vasculature was
found to be complex, extended, branched, and have more loops in tumor tissue. The accumulation of
metabolic waste and insufficient O2 can promote acidic and hypoxic environments, which contribute
to drug resistance.

Although targeting the vasculature may be a theoretical therapeutic strategy, its actual
result has been obstructed by acquired endothelial resistance [95,154]. NPs carrying anti-
angiogenic drugs have recently emerged as a potential strategy to target the vasculature,
obviating endothelial resistance [95]. Recently, Du et al. designed a lipid-nanomaterial
strategy that can normalize tumor vasculature and improve therapeutic responses, com-
posed of drugs against angiogenesis, coupled with GEM and LMWH (small molecular
weight heparin) [155]. Other groups developed an NP platform to facilitate tumor vas-
culature normalization using gold NPs carrying recombinant endostatin to reduce VEGF,
which effectively inhibits angiogenesis and metastasis [156]. This platform was reported to
reduce hypoxia, promote vessel normalization, enhance the accumulation of endostatin,
and improve therapeutic responses in xenografts [156]. According to these findings, NPs
could overcome therapeutic challenges by both targeting of the tumor vasculature and
ECM and can improve the efficacy of nanotherapeutics [157].

Some studies also reported that near infrared (NIR)-laser-induced NPs were developed
as a non-invasive strategy for destroying abnormal vasculature in a precise and rapid fash-
ion [158]. After NIR radiation, many bubbles may be released expeditiously to disrupt the
tumor vasculature and induce tumor cell necrosis, due to increased local temperatures [158].
Furthermore, nano-based vasculature-disrupting strategies might be efficient in synergy
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with immunotherapy. For example, Satterlee et al. used NPs to elicit apoptotic death in
the hub while promoting NP absorption through VDAs to improve the accumulation of ra-
diotoxicity [159]. Interestingly, the combination of VDAs with immunotherapy significantly
reduced tumor volume and disrupted the activity of tumor vasculature. For example, other
groups used TLR7/8 agonist encapsulated PLGA as platforms with gardiquimod in cooper-
ation with the VDA, which significantly reduced melanoma tumor volume [160]. Thus, the
synergy of VDA- and TLR-agonists would be one of effective approaches to prevent cancers.
In addition, Zhou et al. combined anti-angiogenic drugs and immunotherapy by using
antiangiogenic copper chelating polymers to fabricate NPs loaded with resiquimod [161].
This strategy dramatically inhibits tumor cell growth and metastasis in breast cancer
through copper-deficiency-induced anti-angiogenesis and resiquimod-elicited immune
activation [161]. Another group developed NPs with co-delivering copper (I) chelators
and anti-angiogenic drugs [162]. The synthesized NPs were loaded with both doxorubicin
and Probe, which would capture Cu+ through photoacoustic and NIR signals [162]. This
platform successfully inhibited cancer progression without toxicity and offered possibilities
of novel nanoparticles that may overcome the impediment of traditional therapies.

Accordingly, nano-based approaches incorporating immunotherapy with anti-angiogenic
drugs warrant further development and investigation with high feasibility and efficiency.

7. Using Nanoparticle-Based Drug Delivery Systems to Target
Immunosuppressive Components
7.1. Nanoparticles Targeting Immunosuppressive Components

The tumor–immunity cycle was reported to have four steps and starts with the secre-
tion of antigens from tumor cells. Then, antigen-presenting cells (APCs) could recognize
these antigens and promote naïve Treg cells to transform CTLs. The cytotoxic T cells
identify and eliminate cancer cells by secretion of cytotoxicity components, such as perforin
and granzyme B. This original cycle could trigger more secretion of tumor antigens and
the activation of a second cascade [163]. Interestingly, the synergy of immunotherapy and
nanoparticles targeting immunosuppressive components has been valued in a variety of
clinical and pre-clinical outcomes. For instance, recent studies have reported a strategy
through loading chemotherapeutic or photothermal agents into nanoparticles, that may
effectively elicit immunogenic cell death (ICD) by inducing the antigen release [164]. Ac-
tually, nanoparticles carrying oxaliplatin promoted apoptosis and improved the immune
response compared to free oxaliplatin in a prostate cancer model. Moreover, these NPs
also promoted T cell infiltration, INF-γ secretion, and DC maturation [165]. Therefore,
these studies indicated the therapeutic efficacy of oxaliplatin nanoparticles targeting im-
munosuppressive components. In addition, the NPs carrying antigens or adjuvants have
been devised as a tumor vaccine to re-active immunoreaction by targeting antigens arising
from somatic mutations in solid tumors [166]. Furthermore, NP also have been developed
to improve the final step in the immune cycle, which was the process of eradication and
recognition of cancer cells by cytotoxic T cells. These NPs consist of liposomes carrying
IL-21 and IL-15 using maleimide groups, which successfully attached and activated T cells
with cytokine secretion [167].

7.2. Nanoparticles Improving Immune Responses

In addition, recent studies have demonstrated that several NP-based therapies would
induce an immune response or augment immune therapy through targeting TME, including
photodynamic therapy (PDT), sonodynamic therapy (SDT), and photothermal therapy
(PTT). In this review, we also summarized several different types of condition-sensitive
linkers, which are mainly used in nano-drug delivery systems (Table 4).
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Table 4. Different types of condition-sensitive linkers, which are mainly used in nano-drug deliv-
ery systems.

Type Compounds Chemical Formula References

pH sensitive

cis-aconityl derivatives
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Table 4. Cont.

Type Compounds Chemical Formula References
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(1) Photodynamic therapy (PDT) is a treatment using photosensitizers and light to ab-
sorb and convert the laser energy at the cancer site, damaging tumor cells for therapy [188].
For instance, Lu et al. developed a nanoplatform using nMOFs as strong photosensitizers
for PDT, which exhibited highly effective anti-tumor efficacy [189]. These nMOFs not only
promote the PDT effect without self-quenching but also allow optimization due to the
structural and molecular tunability [190]. Mechanically, these nMOFs could facilitate ROS
diffusion to relieve hypoxia via open channels [191]. Moreover, as a highly immunogenic
therapy, PDT also could trigger ICD, recruit neutrophils, and promote T cell infiltration
by acute inflammation, expression of heat-shock proteins, and the presentation of anti-
gens [192]. Importantly, the IDOi@Hf-TBC NPs have been demonstrated to release tumor
antigens and induce ICD following light irradiation in an MC38 mouse colorectal tumor
model. Furthermore, the matured APCs, such as DCs and TAMs, processed and presented
tumor antigens to T cells. Meanwhile, continuously released IDOi could prevent immune-
suppressive metabolism to reactivate CTLs to recognize and kill cancer cells. Recently,
there have been more strategies in combining PDT NPs with immunotherapy for tumor
treatment. Accordingly, these PTTs combined would induce host immune responses, ap-
plied as in situ vaccines and synergize with immune checkpoint inhibitors or CAR-T to
relieve therapy resistance [191].

(2) Sonodynamic therapy (SDT) could utilize sonosensitizers to generate ROS in-
duced by US, which was applied to ablate tumors and ICD. Further synergies of SDT with
immunotherapy could afford enhanced anti-cancer immunity for tumor regression. For
example, Chen et al. developed an SDT NP using a manganese–protoporphyrin complex as
a sonosensitizer which was loaded into liposomes and modified with FA [193]. They found
that the FA-MnPs could efficiently generate oxygen even in 8 cm-deep tissues following
US irradiation in a mouse model [193]. More importantly, FA-MnPs also were reported
to promote the shift of TAMs from M2 to M1 type under US irradiation. Interestingly,
FA-MnPs also could induce the activation of DCs, NKs, and decrease the number of Treg
cells. In another study, Park et al. designed a necroptosis-inducible nanoparticle to combine
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SDT and anti-PD-L1 for tumor therapy [194]. The NPs consist of perfluoropentane, car-
boxymethyl dextran, and Ce6 as the gas precursor, hydrophilic backbone, and hydrophobic
sonosensitizer [194]. Following US irradiation, the NPs could produce ROS through Ce6
and ICD of tumor cells via acoustic cavitation of perfluoropentane. They demonstrated
these NP effects on immunotherapy with the maturation of DCs and activation of CD8+

CTLs. Interestingly, during synergy with anti-PD-L1, these NPs dramatically eliminate
cancer cells in a mouse model [195]. In addition, Wang et al. designed an NP based on
LA-loaded black mesoporous titania (BMT) for SDT and tumor immunotherapy [196].
Under US irradiation, the LA-BMT NP served as a sonosensitizer and NO supplementation
to generate O2 and NO for SDT for immunotherapy [196]. The amount of O2 and NO
cause high intracellular oxidative levels and apoptosis of tumor cells with the release of
tumor-associated antigens (TAAs) [196]. The LA-BMT NPs also induced a strong immune
reaction combining with anti-PD-L1 for both primary and lung distant cancer cells in a
mouse model. Although the SDT NPs study provided an efficient strategy for the therapy
of primary and distant cancer cells, the clinical efficacy should be improved in the future.

(3) Photothermal therapy (PTT) utilizes photothermal agents (PTAs) to kill tumor
cells by converting energy of the laser into localized heat at the tumor sites [197]. Impor-
tantly, PTT NPs also could trigger ICD of tumor cells. Interestingly, hyperthermia also
would cause the changes in cytokine secretion and immune reaction, which may trigger
the activation of DCs and boost the transportation of chemical drugs to the lymph nodes
to activate T cells [198]. For example, recent studies have reported an NP strategy us-
ing BPQDs (black phosphorus quantum dots), as an efficient PTA, encapsulated in hEX
(serum exosomes). This strategy has been suggested to increase several patient-specific
TAAs during hyperthermia treatment [199]. Thus, the BPQD exosomes were found to
show effective outcomes by significantly increasing the temperature of the tumor site and
promoting the T-cell infiltration [199]. In another study, Xu et al. developed a strategy
of NPs based on the SPNE (polymeric multicellular nano-engager) for photothermal im-
munotherapy under NIR-II [200]. The SPNE NPs using a polymer as the photothermal
core responding to NIR-II, which could accumulate on tumor sites and lymph nodes and
activate the cross-interactions among tumor cells, DCs, and T cells, inducing a higher
immune response [200]. Importantly, SPNE NPs triggered ICD and eliminated cancer
cells via further anti-tumor immune response due to the deep-tissue penetrating NIR-II
photo-irradiation. Moreover, recent studies on the immune-regulating NPs based on PTAs
also suggested that more effective outcomes of PTT may be achieved by preventing the
immune clearance of PTAs [201,202]. Thus, these shreds of evidence implicated that the
synergistic PTT effect substantially impedes the proliferation of cancer cells and eradicates
distant metastasis, as well as elevates immunological memory [203].

Accordingly, these therapies based on NPs can be incorporated with immunotherapy
to improve the efficiency and specificity for drug delivery, including photodynamic therapy
(PDT), sonodynamic therapy (SDT), and photothermal therapy (PTT). However, the valid
outcomes still need to be tested in clinical examinations.

8. Using Nanoparticle-Based Drug Delivery Systems to Target Tumor Hypoxia

The tumor microenvironment is insufficient regarding oxygen provision due to the
rapid growth of tumor cells and abnormal blood vasculature [95]. Insufficient oxygen
caused hypoxia in TME and various events including angiogenesis, drug resistance, and
metastasis. Recent studies also found that hypoxia may lead to immunotherapy resis-
tance through activating MDSCs and Tregs, increasing CCL22-CCL28, and polarizing M
2 TAMs [204–206]. Hypoxia also was found to stimulate VEGF, TGF-β, and PDL-1 tran-
scription on immune and cancer cells, resulting in immunosuppressive TME [95]. The drug
resistance related to hypoxia may require O2 for cancer elimination in radiotherapy. Owing
to the extensive tumorigenic effect of hypoxia, targeting hypoxic remains one of the main
frontiers in various cancer treatment strategies. Several NP strategies were devised to target
hypoxia, such as (1) delivery oxygen to hypoxia within tumor tissues by nanoparticles,
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(2) direct targeting of hypoxia by nanoparticles, and (3) oxygen generation in hypoxic
TME using nanoparticles [94]. The following descriptions will explore some advances in
this field.

8.1. Oxygen Delivery to Hypoxic Tumor Tissues Based on Nanoparticles

This approach may represent a promising field to replenish oxygen in the tumor
microenvironment. In this case, an adequate oxygen carrier may be necessary, such as
perfluorocarbon (PFC). Gao et al. utilized PFC-NPs consisting of red blood cells (RBCs) and
PLGA. These PFC@PLGA-RBCM NPs showed efficient capacity for oxygen carrying and
prolonged blood retention time [207]. After intravenous injection, the PFC@PLGA-RBCM
NPs efficiently delivered oxygen to tumor tissues, relieved the hypoxic environment, and
elevated the effect of radiotherapy. A similar strategy loading Bi2Se3-NPs with PFC also
releases O2 by stimulation with near-infrared light [208]. Moreover, another group utilized
nano-PFC oxygen shuttles to deliver oxygen to tumor issues with ultrasound power [209].
After intravenous injection, nano-PFC could rapidly release oxygen and recirculate into
the lung for reoxygenation under ultrasound power. This strategy might also significantly
overcome hypoxia-related drug resistance in tumor treatment. Smart NPs were developed
to release oxygen depending on O2 demands, which were triggered by near-infrared light
to achieve cooperative photodynamic or photothermal treatment [210]. These intelligent
NPs achieved on-demand and continuous oxygen generation, and excellent accumulation
rates and deep intratumor penetration [210]. In addition, other groups have reported
decorated PEG-stabilized PFC nanoparticles. They found that the TaOX@PFC-PEG NPs
could release oxygen gradually and concentrate X-rays in tumor cells using TaOx [211].

In addition, the applications of nanoparticles based on hemoglobin (Hb) have sug-
gested a significant clinical interest, which could mimic the oxygen carrier capacity of
hemoglobin, simultaneously conquering some drawbacks. The primary biological function
of natural hemoglobin (Hb) is to carry and transport O2 between various tissues and lungs.
The research efforts to develop Hb nanoparticles have used several different strategies
depending on the manner of combination with Hb [212]. The first manner utilizes the poly-
merization of hemoglobin to inhibit its tetramer dissociation and filtration. Additionally,
the second strategy focuses on incorporating anti-oxidant enzymes to prevent the switching
of non-functional met-Hb. The recent research also developed a nanoplatform based on the
encapsulation of Hb within a protective shell. For example, raffinose and glutaraldehyde
(GA) have been applied as bi-functional cross-linking reagents to develop different poly-Hb
products, such as Oxyglobin, HemoLink, and PolyHeme [213,214]. These NPs showed
unacceptable toxicities. Furthermore, Lu et al. designed nanoparticles with PLGA-PEG-Hb
to alleviate oxygen, which exhibited longer circulation times [214]. One of the most recent
examples of the oxygen-enhanced nano-sensitizer platform was MnPcS@HPO NPs based
on a combination of human serum albumin (HSA) and Hb using a disulfide relocation,
which could generate oxygen and potentiate the results of sonodynamic therapy [215].
This MnPcS@HPO strategy efficiently targets cancerous niches and relieves hypoxia by
harnessing the oxygen carrier capacity of hemoglobin coupled to HSA’s tumor-targeting
properties [215]. These studies displayed the dramatic anti-tumor activity of sonodynamic
therapy based on MnPcS@HPO in an animal model [215,216]. Another group also reported
a nano-platform to alleviate hypoxia and synergize chemo-photodynamic therapy [217].
They developed an SPN-Hb@RBCM NP, which was based on the biomimetic theranostic
ability of Hb, to enhance photostability, photosensitizer accumulation, O2 supply, and
photodynamic therapy efficiency. The SPN-Hb@RBCM NP used Hb as an O2 transporter
to reverse tumor hypoxia and re-sensitized the tumor cells to photodynamic therapy [217].
This SPN-Hb@RBCM NP provides a valuable insight into biomimetic and theranostic
nanoparticles based on improving O2 generation and synergistic PDT/CDT treatment
against tumors. Moreover, other similar NP strategies also displayed a significant effect on
relieving hypoxia, such as metformin-based nanoreactors, which used methylene blue as
an oxygen providing and guiding system for PDT/CDT treatment, and CeO2 nanocrystals
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anchored to MnO2 nanoflowers [218,219]. As these various strategies suggest, advances in
nanoparticles can be harnessed to develop practical solutions that solve key issues posed
by hypoxia in a tumor microenvironment. Innovative nanoparticles could deliver oxygen
directly to hypoxic sites, thus, remodeling tumor environment and reactivating anti-cancer
responses. In future, more studies need to focus on the translation of these theranostic
solutions to clinical therapies as potential treatments in combination with chemotherapy,
radio- or photodynamic therapies.

Accordingly, as these studies could efficiently deliver O2 to tumors this warrants
further investigation to evaluate its clinical efficacy.

8.2. Direct Targeting of Hypoxia by Nanoparticles

Elevated ROS is known as one of cancer hallmarks. The aberrant ROS accumulation
caused oxidative stress and subsequent upregulation the levels of oxidative scavengers
such as glutathione [220]. Although an abnormal oxidative status promotes tumor growth,
it may be utilized to potentiate therapies. An aberrant oxidative status offers an avenue
for the design nanoparticles, due to the increased sensitivity of tumor cells to change the
redox status [220]. For example, redox-sensitive nanoparticles could utilize the upregulated
glutathione levels in cancer tissue to refine cancer therapies, which may be exploited to
improve current therapeutic strategies including chemotherapy and immunotherapy [220].

There are various nanoparticles based on this strategy, so we describe main the repre-
sentative approaches. (1) Liu et al. constructed GSH-sensitive NPs containing camptothecin
and GalP5 [111]. These GSH-NPs can efficiently trigger drug release in TME which exhibits
high GSH concentrations. Some groups developed a class of pH/GSH-sensitive NPs via
self-assembly [216]. These pH/GSH-NPs displayed high stability and specificity compared
to traditional photosensitizers [216]. (2) Similarly, SA-CS-NAC@IGC nanoparticles can con-
tinuously release drugs in tumor tissue under high GSH and low pH conditions [216]. After
laser irradiation, these nanoparticles generated high levels of ROS, leading to the suppres-
sion of tumor growth. This class of NPs has also been utilized to construct ROS-sensitive
nanomaterials for TME and re-sensitize tumor cells. Similarly, other groups developed
ROS-sensitive UA NPs through joining UA molecules via ROS cleavable linkage [111]. The
UA-NPs platform can selectively release chemical molecules to enhance anti-tumor effects
in the stimulations of ROS.

Both ROS- and GSH-sensitive nanoparticles have been devised and tested in coop-
eration with current therapy. For example, some studies reported a class of GSH/ROS
dual sensitive GOx@BNPs that were sensitive to elevated ROS and GSH in the tumor
environment [111]. The GOx@BNPs caused an anti-cancer effect through targeting ele-
vated ROS, low ATP, and pro-apoptotic tumor tissue [221]. PEG-PPS-GSNO@DOX-NPs
were also designed to enhance drug toxicity as a dual ROS-GSH system [222]. This class
of NPs displayed high NO affinity and promoted ROS-induced doxorubicin release and
GSH-mediated NO release. They proved that NO reversed chemo-resistance and promoted
doxorubicin accumulation without any side effects, which emphasized the promising
potential of ROS/GSH dual sensitive nanomaterials for tumor therapy. As these studies
suggest, these NP strategies could utilize and surmount the pathological characters of the
tumor microenvironment, causing enhanced drug targeting and clinical outcomes.

8.3. Oxygen Generation in Hypoxic TME Using Nanoparticles

Although direct O2 delivery by nanoparticles is simple, the O2 loading capacity of
NPs is limited. Another alternative strategy is to carry oxygen-producing agents, including
MnO2, metformin, and catalase, that could generate oxygen using chemical reactions
in tumor cells [111]. Based on these, some groups constructed a novel PH-H2O2 dually
responsive nano-platform using albumin-decorated MnO2 to alleviate hypoxia [223]. This
dual nano-platform synergistically enhanced the effect of both photodynamic therapy
and chemotherapy through upregulating O2 amounts on cancer centers [223]. Li et al.
developed F127@CNS-CuS/MnO2-NPs to enhance PTT and PDT treatments [64]. The
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F127@CNS-CuS/MnO2-NPs produced O2 to alleviate hypoxia in TME, further promoting
therapeutic effects [64]. Furthermore, Wang et al. also designed potential NP-based MnO2
to boost chemo-photodynamic therapy [224]. These NPs utilized hollow polydopamine
nanostructures decorated with MnO2 for drug delivery. Upon reaching tumor tissue by
utilizing RGD, the PDA and MnO2 shell would release Ce6 and doxorubicin in TME. MnO2
can interact with H2O2 to generate O2, thus boosting outcomes of PDT [224]. Thus, this
multifunctional nanoplatform might represent a promising approach to change hypoxia.
As these studies implicated, advances in nanoparticles could be harnessed to develop
clinical outcomes that address important challenges posed by the TME. These innovative
nano-platforms directly deliver O2 to tumor tissue or cause self-generation, which would
effectively remodel TME and re-sensitize chemotherapy and immunotherapy.

Other innovative technical approaches based on noble metals have also been de-
veloped to generate O2 in TME and enhance tumor immunotherapy, including meso-
porous manganese cobalt oxide derived from MOFs [225], Pt nanoparticles decorated on
MOFs [226], gold nanoclusters [227], MOF-Au NPs [228], Pd@Pt nanoplates [229], Pt-based
core-shell nanoplatforms [230], Pd@Au bimetallic core-shell nanostructures [227], etc. For
instance, Wei et al. have designed Pd@Pt-PEG-Ce6 NPs that could not only extend pho-
tosensitizers to tumor sites but also attract the transformation of endogenous H2O2 to O2
over a long period of time [229]. They also found that the moderate photothermal character
of Pd@Pt-PEG-Ce6 could promote the process of decomposition following 808 nm laser
irradiation. Moreover, Yang et al. developed a Pd@Au core-shell nanostructure NP that
would continuously catalyze the decomposition of cellular H2O2 to O2, which effectively
relieves hypoxia and restores the resistance [227]. Under the irradiation of an NIR-II laser,
the catalytic efficiency of Pd@Au NPs has been enhanced via the plasmon resonance effect.
In addition, Liu et al. designed AuNCs-NH2 NPs to produce O2 to improve photodynamic
therapy, which was encapsulated with PAMAM [227]. Importantly, these NPs displayed the
catalase-like activity from pH 4.8 to 7.4 [227]. Tao et al. reported multifunctional HABT-C
NPs exhibiting multienzyme activities for sonodynamic therapy to alleviate hypoxia and
inhibit immune suppression. These NPs could produce O2 via a cascade reaction and
amplify redox signaling to promote apoptosis of tumor cells [231]. Importantly, TiO2 could
facilitate oxidative injury and ROS production in tumor cells [231]. Actually, HABT-C@HA
NP exhibited satisfactory anti-cancer activity in animal experiments [231].

9. Discussion

Cancer cells have developed various properties that differentiate them from normal
cells. These properties are known as hallmarks such as active proliferation, angiogenesis,
genomic instability, invasion and metastasis, inflammation, immune evasion, epigenetic
reprogramming, and phenotypic plasticity [3,232]. Traditional therapies including surgery,
radiotherapy, and chemotherapy, are standard in tumor clinical treatment; however, the
resistance of these therapies remains as the main barrier due to the hallmarks of cancer.
Thus, exploring alternative treatment options has been demonstrated to be an important
strategy. Recently, tumor immunotherapy has been demonstrated to be a powerful and
novel therapeutic regimen with great durability and specificity against cancers [5]. How-
ever, current cancer immunotherapy is limited by barriers such as low tumor specificity,
poor response rate, and systemic toxicities, which result in the development of primary,
adaptive, or acquired resistance. The rate of proliferation and migration exceeds the rate of
carcinoma cell removal by the immune system, so it cannot be eliminated by the immune
systems. Moreover, immunotherapy resistance has complex mechanisms that depend on
the interaction between tumor cells and the tumor microenvironment (TME). Therefore,
targeting TME has recently received attention as a promising approach for re-sensitizing
resistant neo-plastic niches to existing cancer immunotherapy. Cancer immunologists are
focus on elevating the effectiveness of cancer treatment by reversing or neutralizing the
immune evasion mechanism of these cancer cells. Hence, a better understanding of tumor
microenvironment dependencies in specific tumor tissues is key to defining the aspects
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of TME that caused resistance; only then can vulnerabilities be explored to provide better
cancer treatments in the near future.

With the development of nanotechnology, nano-platforms possess outstanding fea-
tures, including high loading capacity, tunable porosity, and specifically targeted to the
desired locus. Therefore, nanoplatforms can significantly improve the effectiveness of
immunotherapy while reducing its toxic and side effects on non-target cells that receive
intense attention in cancer immunotherapy. With these porous properties, NPs can load a
large number of biomolecules, deliver them in a targeted manner, modulate the TME, and
regulate the immune systems. In this review, we summarized novel nanoparticle strategies
targeting the tumor microenvironment reprogramming enhancing immunotherapy, such as
targeting macrophages, targeting fibroblasts, targeting vasculature, targeting hypoxia, and
oxidative stress. Although a great change has been undertaken to facilitate the advances
in NPs for immune therapy, the applications of nanoparticles in clinical trials still remain
in a fledging period. With interdisciplinary synergism and accumulated science findings,
inspiringly, the process will be accelerated with expected breakthroughs in nanoplatforms
for cancer treatment. Nanoplatforms are promising and will play an increasingly significant
role in the field of tumor treatment.
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