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Abstract
Improving exercise capacity during adolescence impacts positively on cognitive and motor functions. However, the neural
mechanisms contributing to enhance physical performance during this sensitive period remain poorly understood. Such
knowledge could help to optimize exercise programs and promote a healthy physical and cognitive development in youth
athletes. The central dopamine system is of great interest because of its role in regulating motor behavior through the
activation of D1 and D2 receptors. Thus, the aim of the present study is to determine whether D1 or D2 receptor signaling
contributes to modulate the exercise capacity during adolescence and if this modulation takes place through the striatum.
To test this, we used a rodent model of forced running wheel that we implemented recently to assess the exercise capacity.
Briefly, rats were exposed to an 8-day period of habituation in the running wheel before assessing their locomotor
performance in response to an incremental exercise test, in which the speed was gradually increased until exhaustion.
We found that systemic administration of D1-like (SCH23390) and/or D2-like (raclopride) receptor antagonists prior to the
incremental test reduced the duration of forced running in a dose-dependent manner. Similarly, locomotor activity in the
open field was decreased by the dopamine antagonists. Interestingly, this was not the case following intrastriatal infusion
of an effective dose of SCH23390, which decreased motor performance during the incremental test without disrupting the
behavioral response in the open field. Surprisingly, intrastriatal delivery of raclopride failed to impact the duration of
forced running. Altogether, these results indicate that the level of locomotor response to incremental loads of forced
running in adolescent rats is dopamine dependent and mechanistically linked to the activation of striatal D1 and extra-
striatal D2 receptors.
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Introduction

A healthier life expectancy is associated with physical
activity [1, 2], yet the biological mechanisms underlying
such an effect remain poorly understood. Physical activity
is a powerful enhancer of brain plasticity and positively
impacts a broad set of cognitive and motor functions
[3–6]. In fact, the maximal amount of physical activity
an individual can perform (defined as exercise capacity)
[7] is a good predictor of health status and physical fit-
ness, and it is commonly used for individualized exercise
programs [8–10]. Of particular interest is the adolescent
period, which is characterized by key behavioral and bi-
ological changes in physical development and brain cir-
cuit maturation [11–17]. In order to enhance the potential
and development of adolescent athletes, the different
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stages of exercise programs (e.g., physical literacy, motor
coordination skills) need to be adapted to the biological
maturity of this sensitive period [11, 12]. Thus, under-
standing the underlying neural processes that contribute
to the enhancement of physical performance during ado-
lescence will allow to act upon such precise neurobiolog-
ical mechanism to optimize training programs in youth
athletes.

Among the different neural processes contributing to
brain maturation during adolescence is the central dopa-
mine system [13, 14, 18], which also plays a crucial role
in modulating a wide variety of cognitive and motor be-
havior including locomotor activity, learning, and memo-
ry [19–23]. At the cellular level, dopamine exerts its ex-
citatory and inhibitory actions on targeted neurons de-
pending on which receptor is being activated. There are
five different types of dopamine receptors, which can be
grouped into two major families: D1-like (constituted by
D1R and D5R) and D2-like (constituted by D2R, D3R,
and D4R). D1-like receptor family has an excitatory ef-
fect, whereas D2-like receptors have an inhibitory effect
[24–26]. Among the main targets of the dopamine system
are the corticostriatal circuits, which are composed of
striatal output neurons containing D1 (direct pathway)
and D2 (indirect pathway) receptors. Direct and indirect
pathways are part of the cortico-basal ganglia-thalamo-
cortical loop. Direct pathway projects from striatum to
substantia nigra pars reticulata (SNr) and the internal por-
tion of globus pallidus and facilitates initiation and exe-
cution of movement. Indirect pathway sends their primary
striatal projections to the external portion of globus
pallidus (GP) leading to inhibition of movement [20, 22,
23]. Pharmacological manipulation of dopamine receptors
has shown effects on spontaneous motor activity and vol-
untary running [20, 27–34]. Moreover, increments in do-
pamine content and release have been observed in re-
sponse to physical activity [3, 35–38], and genetic and
pharmacological studies have suggested that a reduction
in dopamine function could limit the activation of motor
circuits and negatively impact the exercise capacity [3,
39–41].

The aim of the present study is to determine whether the
dopamine system modulates exercise capacity during ado-
lescence using a rodent model of forced running wheel we
recently implemented. Briefly, rats were exposed to an 8-
day period of habituation in the running wheel before
assessing their locomotor performance in response to an
incremental load of forced running [42, 43]. Both systemic
and striatal administration of dopamine D1 (SCH23390)
and D2 (raclopride) receptor antagonists were delivered
15–30 min prior to the onset of the incremental test, and
changes in the level of locomotor performance were
compared.

Methods

All the experimental procedures were approved by the Ethical
Committee for Animal Research (CEEA) of the University of
Murcia according to the Spanish regulation on the use of an-
imals for scientific purposes (Royal Degree 53/2013, Law 32/
2007) and European Union directives (86/609/EEC).

Animals

Adolescent male Sprague-Dawley rats (Laboratory Animal
Facilities at the University of Murcia) aged P32–50 days were
group housed (3 rats per cage) and randomly assigned to the
different experimental groups. The randomization schedule
was generated by using the website www.randomizer.org.
Temperature and relative humidity were kept at 21–23 °C
and 55 ± 5%. Chow food and water were provided ad
libitum. The light cycle was kept in a 12:12-h light/dark (dark
period from 8AM to 8PM), and all the procedures were per-
formed during the dark phase. All the rats were handled daily
for 1 min during 5 days before the beginning of the habitua-
tion protocol to get familiarized with the researcher and the
experimental conditions.

Rats subjected to stereotaxic surgery (at P41/42) were in-
dividually housed after surgery and during the exercise habit-
uation protocol.

Exercise Habituation and Incremental Test

An 8-day exercise habituation protocol was implemented
using a forced running wheel system (Lafayette-Campden,
model 8085A). Speed and time of running were progressively
increased throughout the sessions of the protocol, from 5 at
0 m/min the first day to 30 min running at 9 m/min the last
day, as described in Toval et al. (2017, 2020) [42, 43]. Non-
habituated rats remained in locked wheels, without any exer-
cise stimulus, for the same time as the habituated groups.

Twenty-four hours after the last session of the habituation
protocol, motor performance was evaluated by an incremental
exercise test in all the animals. During the test, running speed
was gradually increased 0.5 m/min every minute from a
starting speed of 5 m/min (Fig. 1b, modified from Toval
et al. (2017, 2020) [42, 43]). The test was concluded when
the rat was unable to maintain a regular running path (e.g.,
crawling, jumping, or rolling inside the wheel) for 20 s in a
row. The first 5 min were considered as warm-up phase, since
some rats show transient irregular running paths at the begin-
ning of the test. Thus, the mentioned criteria to stop the test
were applied after these first 5 min. The decision of conclud-
ing the test for every rat was achieved through consensus of
two experimented researchers.
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Drug Administration

To evaluate whether the dopaminergic system plays a role in
mediating the motor performance, dopamine receptors were
pharmacologically blocked during the incremental test by sys-
temic and intrastriatal administration of the dopamine D1 re-
ceptor antagonist SCH23390 (Hello Bio, HB1643) and the D2
receptor antagonist raclopride (Sigma, 98185-20-7). For sys-
temic administration, drugs were diluted in NaCl, 0.9%, and
injected intraperitoneally (i.p.) in a volume of 0.5 ml. All
systemic injections were applied 20 min before the incremen-
tal test. For intrastriatal administration, drugs were diluted in
artificial cerebrospinal fluid (aCSF) composed of (in mM)
122.5 NaCl, 3.5 KCl, 25 NaHCO3, 1 NaH2PO4, 2.5 CaCl2,
1 MgCl2, 20 glucose, and 1 ascorbic acid (pH: 7.4, 295–
305 mOsm). All micro-infusions were performed bilaterally
with a volume of 1 μL per hemisphere at a rate of 0.5 μL/min
using infusion cannulas (Plastics One, C315IA/SPC). After
2 min of infusion, an additional 1.5 min were given until the
infusion cannula is removed, for a complete spreading of the
drug. All intrastriatal infusions were applied 15–30min before
the incremental test.

Experimental Design

First, to assess the effects of habituation on locomotor perfor-
mance, non-habituated and habituated rats were subjected to
the incremental exercise test after systemic administration of
vehicle (NaCl 0.9%, i.p.).

Next, we aimed to find out the role of dopamine receptors
in mediating the locomotor performance. For that purpose,
D1-like receptors were selectively blocked by injecting
SCH23390 (0.1 and 0.2 mg/kg, i.p.) (Fig. 2a), and D2-like

receptors were selectively blocked by injecting raclopride
(0.5 and 1 mg/kg, i.p.) (Fig. 2b) before the incremental test.
These doses have been previously shown to induce effects on
motor behaviors [36, 44]. After that, we injected a combina-
tion of SCH23390 (0.1mg/kg, i.p.) plus raclopride (0.5mg/kg,
i.p.) given together using the lowest effective dose when given
alone (Fig. 2c). The running time spent during the test was
compared with habituated rats injected with vehicle (NaCl
0.9%, i.p.) (Fig. 2).

Finally, in order to determine whether the observed role of
the dopaminergic system in motor performance was mediated
by striatal neurons, intracerebral cannulas were implanted in
the dorsal striatum (at P41/P42) with the aim to specifically
block striatal dopamine receptors. One week after the implan-
tation of the cannula, rats were exposed to the habituation
protocol, and, prior the incremental test, striatal D1 and D2
dopamine receptors were blocked by local administration of
SCH23390 (D1 antagonist, 10 μM and 100 μM) or raclopride
(D2 antagonist, at 20 μM, 200 μM, and 5 mM) (Fig. 3a, b).
These doses have been previously shown to induce changes in
the local field potential (LFP) activity of the cortex [45].

Furthermore, we assessed whether the observed effect of
the dopamine system during forced running was also affecting
ambulatory locomotor activity, evaluated by an open field test,
as described below (Fig. 2d, 3c).

Intrastriatal Implantation of Guide Cannulas

Stereotaxic surgery was conducted under inhalation of
isoflurane anesthesia (5% for induction and 2–3% for mainte-
nance with O2 flow at 0.8 L/min). Rats were injected with a
non-steroidal anti-inflammatory drug (meloxicam, s.c.
1.5 mg/kg), with an antibiotic (enrofloxacin, i.m. 10 mg/kg)
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Fig. 1 Effects of habituation on the locomotor response during an
incremental exercise test. (a) Timeline of the experiments and picture of
an adolescent rat running in the forced wheel during the dark period. (b)
Speed variation (y-axis) along time (x-axis) during the incremental
exercise test. (c) Average of the total running time spent during the

incremental exercise test comparing non-habituated (gray bar) and habit-
uated (blue bar) rats injected with vehicle (NaCl, 0.9%, i.p.). Data: non-
habituated: 16.65 ± 1.11 min (n = 5), and habituated: 36.75 ± 2.52 min
(n = 14). t17 = 4.6, *p < 0.001, unpaired t test. Diamonds represent indi-
vidual values
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and with a local anesthetic (bupivacaine mixed with epineph-
rine, s.c. local, 1 mg/kg; epinephrine 1:100000). Twenty-four
hours after the surgery, the rats were given another injection of

meloxicam (s.c. 1.5 mg/kg). These treatments were meant to
achieve analgesia and improve animal welfare after surgery.
Guide cannulas (Plastics One, C315GA/SPC, 8 mm) were
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(0.5 mg/kg). Data: 0 mg/kg: 36.75 ± 2.52 min (n = 14, blue bar) and
SCH23390 + raclopride: 5 ± 0 min (n = 8, red bar). t20 = 9.4,
*p < 0.0001, unpaired t test. (d) Locomotor activity during an open field
test, comparing the effects of systemic (i.p.) injections of vehicle (blue
bar), SCH23390 (0.1 mg/kg, light red bar), raclopride (0.5 mg/kg, white
bar), and SCH23390 (0.1 mg/kg) plus raclopride (0.5 mg/kg, dark red
bar). Data: vehicle: 313 ± 23.86 (n = 6), SCH23390: 67.67 ± 31.85 (n =
6), and raclopride: 130 ± 21.25 (n = 6), SCH23390 + raclopride: 7.14 ±
1.95 (n = 7). *p < 0.0001 vs vehicle, #p = 0.0027 vs raclopride, Tukey
post hoc test after significant one-way ANOVA, F3,21 = 37.6,
p < 0.0001. Diamonds represent individual values
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Fig. 3 Intrastriatal blockade of D1 and D2 receptors during the
incremental exercise test and open field. (a) Examples of Nissl-stained
coronal sections showing the site of injection. The image above shows an
example of a rat injected with raclopride and the image below a rat
injected with SCH23390. (b) Mean running time during the incremental
exercise test after intrastriatal administration of aCSF (blue bar),
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concentrations were pooled for treatment comparison. Data: aCSF:

33.87 ± 1.7 min (n = 6), SCH23390, 10 and 100 μM: 26.64 ± 1.39 min
(n = 8), and raclopride, 20 μM, 200 μM, and 5 mM (n = 10): 33.01 ±
1.62. *p < 0.02 vs aCSF, Tukey post-hoc test after significant one-way
ANOVA, F2,21 = 5.9, p < 0.01. Diamonds represent individual values. (c)
Locomotor activity during an open field test, comparing the effects
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implanted bilaterally into the dorsal striatum at the following
coordinates: anteroposterior (AP), − 0.7 mm; lateral (L), +
3.0 mm; and dorso-ventral (V), − 3.6 mm (Paxinos and
Watson, 2007 [46]) and protected with dummy cannulas
(Plastics One, C315DC/SPC, 8 mm, without projection).
After 1 week of post-operative recovery, with daily handling,
rats started the habituation protocol at P49.

The day before the incremental test, the dummy cannula
was replaced with a longer one (Plastics One, C315IA/SPC9)
that protruded 0.5 mm beyond the tip of the guide cannula to
reduce possible damage caused by the infusion cannula and to
facilitate drug spreading. After the experiment, rats were
sacrificed, and cannula placement was confirmed by Nissl-
stained coronal sections (Fig. 3a). Rats with off-target
cannulations were excluded from the study.

Open Field Test

The open field test was performed in a white plywood box
(100 × 100 × 40 cm) under 4 lx intensity and recorded using a
video camera. The floor was divided into 25 squares (20 × 20
cm). All rats were started the test at the same corner of the
box 20 min after systemic (i.p.) administration of SCH23390
(0.1 mg/kg), raclopride (0.5 mg/kg), a combination of
SCH23390 (0.1 mg/kg) plus raclopride (0.5 mg/kg,) or vehi-
cle (NaCl 0.9%) (Fig. 2d) and 15 min after intrastriatal infu-
sion of SCH23390 (100 µM, diluted in aCSF) and vehicle
(aCSF) (Fig. 3c). For the open field test, the lowest effective
dose during the incremental test in the forced wheel was used.
The behavior of the animals was monitored for 15 min. The
rats were then removed from the open field and returned to
their cages. The surface was cleaned with 70% ethanol before
each test. Ambulatory locomotor activity was measured by the
total number of squares entered by the rats (Figs. 2d and 3c)
[47].

Statistical Analysis

Statistical analysis was performed using SPSS v25. All data
are presented as mean ± standard error of the mean. For con-
tinuous variables, one-way repeated measure analysis of var-
iance (ANOVA) (followed by Tukey’s post hoc test) was used
for multiple comparisons and two-tailed Student’s t test for
two-group comparisons. For categorical variables, Pearson
chi-square test was used. Differences between the experimen-
tal groups were considered statistically significant at p < 0.05.

Results

All animals included in the present study were subjected to an
8-day period of habituation (Fig. 1a) before assessing their
locomotor response to an incremental load test of forced

wheel running [42, 43]. Typically, the locomotor performance
is revealed by the amount of time spent running while the
rotation speed of the wheel increases (Fig. 1b). Relative to
the vehicle group, systemic (i.p.) administration of
SCH23390 (0.1 and 0.2 mg/kg) or raclopride (0.5 and
1 mg/kg) alone reduced the time of running during the incre-
mental test in a dose-dependent manner (Fig. 2a, b).
Interestingly, the behavioral effects of SCH23390 and
raclopride alone are comparable. Next, the administration of
the lowest effective dose of SCH23390 (0.1 mg/kg) +
raclopride (0.5 mg/kg) given together showed a marked loco-
motor disruption during the incremental test (Fig. 2c). Despite
that the overall level of locomotor disruption observed with
SCH23390 or raclopride alone is not statistically different
from SCH23390 + raclopride (p = 0.053 vs SCH23390 or
raclopride alone, one-way ANOVA), none of the animals
from the latter group surpassed the 5-min running time
(p < 0.0001 vs raclopride alone, p < 0.005 vs SCH23390
alone, chi-square test) (Fig. 2c). These data indicate
that activation of D1 and D2 receptors are required to sustain
the locomotor response to incremental loads of forced run-
ning. However, our data also revealed that systemic blockade
of either D1 or D2 receptors independently is sufficient to
disrupt the locomotor behavior in the open field, although a
robust motor impairment emerges following systemic admin-
istration of SCH23390 + raclopride (Fig. 2d). Together, these
results imply that both motor skills in the running wheel and
locomotor activity in the open field are dopamine dependent.

We next asked whether the comparable locomotor disrup-
tion resulting from systemic administration of SCH23390 and
raclopride when given alone shares a common anatomical
target. Of particular interest is the striatum, one of the major
targets of dopamine and well-known for its role in modulating
motor behavior [19–23, 48, 49]. Thus, it is possible that the
behavioral effects observed following systemic administration
of dopamine antagonists occurred through the striatum. To
test this hypothesis, we generated another cohort of rats where
guide cannulas were placed into the dorsal striatum (Fig. 3a)
and changes in the duration of forced running during the in-
cremental test were assessed following striatal injections of
SCH23390 or raclopride (Fig. 3b). Relative to vehicle infu-
sions, striatal delivery of SCH23390 (10–100 μM) reduced
the time spent during the incremental test (Fig. 3b).
Interestingly, this was not the case following infusions of
raclopride (20μM–5 mM) as revealed by the level of locomo-
tor performance resembling that of the vehicle group (Fig. 3b).
Of note, striatal injections of SCH23390 did not disrupt loco-
motor activity in the open field (Fig. 3c), which implies that
striatal D1 receptor signaling is preferentially recruited during
incremental loads of forced running. Furthermore, the lack of
effect after intrastriatal administration of raclopride together
with the observed systemic effect implies an extra-striatal D2
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receptor signaling mechanism underlying the modulation of
the behavioral response during the incremental test.

Discussion

In the present study, we found that the level of locomotor
response to incremental loads of forced running in adolescent
rats is dopamine dependent and mechanistically linked to the
activation of D1 and D2 receptors. Our data also show that
striatal blockade of D1, but not D2 receptors, reduced the
response during the incremental test. Together, these results
imply a recruitment of striatal and extra-striatal D1 and D2
receptor signaling to sustain proper level of locomotor perfor-
mance during forced running.

The dopaminergic system is known to play a key role in the
development and maturation of neural circuits associated with
cognitive andmotor learning behaviors during adolescence [3,
15, 19–23, 41]. Accordingly, systemic administration of D1
and D2 receptor antagonists reduced the duration of forced
running in a dose-dependent manner. Of note, both dopamine
receptor antagonists elicited similar levels of locomotor dis-
ruptions when given alone, which is consistent with the idea
of a synergistic D1-D2 action to maintain coordinated motor
activity [50–53]. However, the behavioral impact of D1 and
D2 receptor antagonists was not limited to reducing the re-
sponse in the forced running wheel, as revealed by the atten-
uated locomotor activity in the open field and severe motor
deficit when SCH23390 + raclopride were administered to-
gether. In fact, dopamine antagonists also impair motor coor-
dination during voluntary wheel running [20, 32, 34, 54]. This
suggests a common neural mechanism underlying the regula-
tion of ambulatory locomotor activity and motor skills in the
running wheel by dopamine. Future studies are warranted to
determine whether the neural substrate modulating the motor
response is age dependent, despite the fact that the results
obtained in the open field from adolescent rats are similar to
those induced by SCH23390 [33, 53, 55, 56] and raclopride
[30, 31, 56, 57] in adults.

The striatum is the main input structure of the basal ganglia
circuitry involved in motor control and one of the brain re-
gions with the highest expression of dopamine receptors [15,
19–23, 44, 48, 49, 58]. Thus, the level of locomotor response
to incremental loads of forced running is expected to be mit-
igated following striatal delivery of dopamine receptor antag-
onists. Our data revealed that only striatal D1 receptors are
required to maintain proper levels of performance during
forced running, whereas striatal D2 receptors are not. These
findings are consistent with the prominent role of striatal D1
receptors over D2 receptors in the regulation of coordinated
motor behavior [20, 59–64], including voluntary wheel run-
ning [20] and ambulatory activity [49, 65]. However, our re-
sults also suggest that there is an extra-striatal component

modulated by D2 receptors that acts synergistically with the
striatal D1 receptor signaling to sustain the behavioral re-
sponse during incremental loads of forced running.

In our previous [42, 43] and current studies, the expo-
sure to an 8-day period of habituation is critical to enable
a higher locomotor performance in the forced running
wheel [42, 43]. It is therefore conceivable that the dopa-
minergic system is also recruited during the habituation
phase to enhance the level of motor coordination and re-
sponse to incremental loads of running. While such a do-
paminergic effect could be mediated by several cellular
and synaptic mechanisms, activation of striatal D1 recep-
tors can effectively potentiate corticostriatal transmission
[62, 66–71] during habituation to promote motor coordi-
nation and motor skill learning [20, 59–61]. Remarkably,
our data also point toward the contribution of extra-
striatal D2 receptors [72–78] in facilitating the behavioral
response, despite the fact that D1 and D2 receptors often
exert opposing postsynaptic effects [24–26]. Certainly,
D2 receptor deletion impairs locomotion, motor skill
learning, and coordination [79–81], resembling the motor
disruption elicited by chronic depletion of the nigrostriatal
dopamine pathway and associated striatal deficit of D2
receptor signaling [79, 82–86]. Hence, it is possible that
striatal and extra-striatal motor circuits are gradually re-
cruited by D2 receptors during the habituation period [3,
72–78] to enable the potentiation of corticostriatal trans-
mission and locomotor response by D1 receptors.

In addition to the dorsal striatum and dopamine, other
motor-related neurotransmitter systems, such as serotonin
[87], and extra-striatal structures are likely to interact in the
regulation of exercise capacity. In this regard, the nucleus ac-
cumbens has been pointed as a critical component in modu-
lating effort-related functions due to its role in decision-
making and motivation [72, 88, 89]. Other candidate struc-
tures include the globus pallidus, since it has been highlighted
to orchestrate dynamic aspects of basal ganglia regulation of
motor coordination [90]. Although the integration of sensory
and cognitive information by the striatum is required during
movement initiation [58], increments in striatal activity are
often preceded by convergent projections from multiple cor-
tical areas, such as the motor cortex [76] and the prefrontal
cortex. The latter cortical region is of particular interest for its
importance in the neural maturation during adolescence [13,
14] as well as its role in working memory, planning, and
executive functions [91].

Collectively, the results presented here indicate that coor-
dinated modulation of striatal and extra-striatal neural circuits’
activity by dopamine could play a major role in adjusting the
level of locomotor response during forced running. Whether
similar neural mechanisms are recruited to enhance other
forms of effort-related motor skill behaviors [3, 72, 89] re-
mains to be determined.
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