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Abstract: The purpose of this study was to assess vascular and histological alterations in two
COVID-19 and three control post-mortem retinas. The macular areas of flat-mounted samples were
processed for immunofluorescence. Lectin and collagen IV positive vessels were captured under
confocal microscopy, and endothelium loss and tortuosity were analyzed. Expression of ACE2
(angiotensin-converting enzyme 2) (the receptor for SARS-CoV-2), Iba1 (ionized calcium-binding
adaptor molecule 1) and GFAP (glial fibrillary acidic protein) were quantified in retinal sections. The
number of lectin vessels in COVID-19 retinas decreased by 27% compared to the control (p < 0.01)
and the tortuosity increased in COVID-19 retinas (7.3 ± 0.2) vs. control retinas (6.8 ± 0.07) (p < 0.05).
Immunofluorescence analysis revealed an increase in ACE2 (2.3 ± 1.3 vs. 1.0 ± 0.1; p < 0.0001) and
Iba1 expression (3.06 ± 0.6 vs. 1.0 ± 0.1; p < 0.01) in COVID-19 sections whereas no changes in
GFAP were observed. Analysis of the COVID-19 macular retinal tissue suggested that endothelial
cells are a preferential target of SARS-CoV-2 with subsequent changes through their ACE2 receptor
expression and morphology. Thus, microglial activation was hyperactive when facing an ensuing
immunological challenge after SARS-CoV-2 infection.

Keywords: SARS-CoV-2; COVID-19; macula; retina; vasculature; ACE2; tortuosity; microglia

1. Introduction

In December 2019, the first cluster of cases was reported in Hubei Province, China;
since then, coronavirus disease 2019 (COVID-19) has spread worldwide, infecting more
than 214 million people and causing more than 4.47 million deaths as of 27 August 2021 [1].
Patients with COVID-19 show a wide range of systemic manifestations, including neu-
rological and ocular involvement [2,3]. However, which pathogenic mechanisms lead to
the alterations observed in affected patients remain unknown. Microvascular alterations,
combined with cytokine overproduction, have profound implications for the develop-
ment of multisystem organ failure and have been proposed to be triggered by widespread
endothelial cell damage [4,5].

To enter human cells, the virus uses a spike protein, angiotensin-converting enzyme 2
(ACE2) receptor, which has been detected in the retina [6]. Viral particles have also been
detected in the human retina [7,8]; moreover, patients with COVID-19 can experience ocular
and neurological signs and symptoms [9–13]. These data, combined with the findings of
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several microvascular-related abnormalities, make the retina a potential biomarker for
studying systemic vascular disease, owing to the ease of measuring minor changes in
microvascular perfusion by optical coherence tomography angiography (OCTA) [10,14,15].

While OCTA can be used to quantify blood flow in the capillary plexi, superficial
capillary plexus, deep capillary plexus, and choriocapillaris, it provides no information on
the etiology of these changes in vascular perfusion. There are currently limited histological
retinal descriptions of the abnormalities that occur during infection and even fewer that
focus on the microvasculature. Araujo-Silva et al. observed viral particles within endothe-
lial cells close to the capillary flame and cells of the inner and outer nuclear layers [7],
while Jidigam et al. described decreased vascular density and increased inflammation
and gliosis [16].

More research is needed to understand these microvasculature changes. We describe
the macular alterations occurring in the entire retinal vasculature plexus and histological
evidence, including glial and microglial responses, in post-mortem retinas of patients who
died from COVID-19.

2. Materials and Methods
2.1. Human Donor Eyes

Five human donor eyes (n = 2 for COVID-19 and n = 3 for control donors) were used in
this study (Figure S1, Table S1). Mean COVID-19 donor age was 81.5 years and 90.3 years
for controls. Donors were obtained from the Department of Pathology, Anatomy and
Physiology of the School of Medicine, University of Navarra and Clínica Universidad de
Navarra. All donors provided informed consent in accordance with the Declaration of
Helsinki and local ethical committee.

Tissue was processed within 2–48 h from death. An experimental overview is shown
in Figure S1. COVID-19 samples were confirmed positive for antibodies against SARS-CoV-
2 (SARS-CoV-2-specific IgG and IgM antibodies (S-RBD)) by Microbiology Department,
Clínica Universidad de Navarra. Control samples were serologic negative for IgG and IgM.

2.2. Tissue Processing

The eyes were fixed in 4% paraformaldehyde diluted in phosphate buffer (PB) for 3 h
and 2% paraformaldehyde for 6 days at 4 ◦C. Then the eyes were cryopreserved in 15%
sucrose 24 h and 30% sucrose until use. Retinas were removed from optic cup, washed in
phosphate buffer saline (PBS) and flat-mounted.

2.3. Immunofluorescence in Flat-Mounted Eyes and Retinal Sections and Conventional
Hematoxylin-Eosin Staining in Retinal Cross-Sections

Retinal flat-mounts were incubated in blocking buffer containing (3% Triton X-100,
0.5% Tween 20, 2% sodium azide, and 1% fetal bovine serum (FBS) in PBS) for 5 h at 4 ◦C.
Then, they were subjected to biotinylated isolectin (1:240, L8262 Sigma–Aldrich, Saint
Louis, MO, USA) and anti-collagen IV (1:500, 1340-01, Southern Biotech, Birmingham, AL,
USA) for 3 days at room temperature (RT). Samples were washed in PBS and incubated in
Alexa Fluor streptavidin 488 (1:250; S32354; Life Technologies, Carlsbad, CA, USA) and
donkey anti-goat Alexa Fluor 594 (1:250; A11058, Thermo Fisher Scientific, Waltham, MA,
USA) for 3 h. Flat-mounts were mounted with PBS-glicerol (1:1).

After analyzing and capturing retinal flat-mount images, the retinas were embedded
in OCT (Optimal compound tissue) and stored at −80 ◦C. Fourteen-micron frozen sections
from areas adjacent to the macula were obtained containing the macular as well as the pe-
ripheral retinal region using a cryostat (Microm HM550; Thermo Fisher Scientific, Waltham,
MA, USA). Sections were mounted onto glass slides and stored at −20 ◦C in a refrigerator
until use. Three to four retinal sections per group were chosen, blocked with blocking buffer
and incubated in target retrieval solution (Dako, Santa Clara, CA, USA) at 90 ◦C for 10 min.
Collagen IV and lectin stained samples were subject to the following antibodies: mouse
anti-glial fibrillary acidic protein (GFAP) (1:100; 3670S; Cell Signalling, Danvers; MA, USA),
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rabbit anti-ionized calcium-binding adaptor molecule 1 (Iba1), (1:100; CP290A; Biocare
Medical, Concord, CA, USA) and rabbit anti-ACE2 (1:50; ab108252; Abcam, Cambridge,
MA USA), and incubated overnight at 4 ◦C. After PBS washing, donkey anti-rabbit Alexa
Fluor 647 (1:250; A31573; Invitrogen, Carlsbad, CA, USA) and donkey anti-mouse Alexa
Fluor 647 (1:250; A31571; Invitrogen Carlsbad, CA, USA) were added and incubated for
1 h at RT. 4′,6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, St. Louis, MO, USA) was
used to stain the nuclei.

Conventional hematoxylin–eosin (H&E) staining for morphological observation of
the retinal layers was performed in three sections per eye.

2.4. Confocal and Brightfield Image Capture and Analysis

All retina imaging was performed using a confocal microscope (LSM800; Zeiss,
Oberkochen, Germany). For overview, Z-scanned pictures of retinal flat-mounts with
lectin and collagen IV labelling were captured using a 10×/0.75 NA objective. Five sam-
ple areas of 14.7 mm2 per donor around the macula were captured and analyzed with
ImageJ software (Figure S1). The number of lectin and collagen IV vessels was calculated
using a custom Fiji/ImageJ [17] plugin that automatically detected vessel intersections
from the 3D segmentation mask of the complete retinal vasculature (Figure S1). The en-
dothelium loss rate was calculated as number of lectin vessels/number of collagen IV
vessels. The same program was further customized to calculate simple tortuosity between
branching points by calculating the average ratio between each individual vessel length
(arc length) and the shortest distance between its opposite ends (chord length) [18]. This
image analysis software was developed by the Imaging Platform of the Center for Applied
Medical Research (CIMA).

Twenty cross retinal sections from 5 donors were used to measure staining intensities
for ACE2, Iba1 and GFAP (ImageJ). The results were normalized to the unlabeled areas
background staining of as presented by percentage.

Three images from each HE section were captured using a brightfield microscope
(AxioImager, Zeiss, Oberkochen, Germany) to assess retinal morphology structure.

2.5. Statistical Analysis

Data are presented as mean ± SEM. Statistical analysis was performed using Graph-
Pad Prism 8.0 (GraphPad Software, San Diego, CA, USA). Data were compared between
COVID-19 and control eyes, by a paired Student t-test. The minimum level of significant
difference was defined as p < 0.05.

3. Results
3.1. Endothelium Loss in COVID-19 Retinas

The numbers of blood vessels labeled with lectin (endothelial cells) and collagen
IV (basal membrane) in the total vascular layers in the human retina (Figure 1A–F) were
quantified. Superficial, intermediate, and deep vascular layers were skeletonized (Figure S2)
and quantified around the macula. The number of lectin vessels in the retinas of patients
with COVID-19 was decreased by 27% compared to that in the control (p < 0.01) (Figure 1G,
in which the basement membrane is stained red (collagen IV) and endothelial cells in
green (lectin)). Despite of the clearly observed endothelium loss in COVID-19 vs. control
flat-mounted retinas, no morphological alterations were observed in HE stained cross
retinal sections (Figure S1E,F).
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Figure 1. Retinal vessels labeled with lectin vs. collagen IV positive vessels. (A–F) Endothelial cells in retinal flat-mounts 
are labelled with lectin (green) and basement membrane is stained with collagen IV (red) in COVID-19 (A–C) and control 
retinas (D–F). (G) Percentage of number of lectin vessels (LV) vs. number of collagen IV vessels (CV). Expression of lectin 
decreased in endothelial cells in both groups; however, COVID-19 retinas showed less expression than controls. ** p < 0.01. 
Scale bar: 100 µm. Arrowheads indicate missing lectin endothelium areas. 

3.2. Tortuosity Increased in COVID-19 Retinal Vessels 
Analysis showed significantly increased tortuosity in the retinal vessels of the retinas 

in the patients with COVID-19 (7.3 ± 0.2) vs. control retinas (6.8 ± 0.07) (p < 0.05) in the 
macular area (Figure 2). 

 
Figure 2. Vessel tortuosity in flat-mounted retinas in COVID-19 and control labelled with lectin (green). (A–C) Quantita-
tive analysis in the macular area. Tortuosity is significantly increased in COVID-19 samples compared to controls. Error 
bars indicate S.E.M. * p < 0.05. Scale bar: 100 µm. 

3.3. Pattern Localization and Quantification of ACE2 in Retinal Vessels 
ACE2 was expressed in capillaries throughout the retina, with the highest expression 

observed in retinal ganglion cells (RGCs) and vascular endothelial cells in vessels located 
in the RGCs of patients with COVID-19 (Figure 3A–C) and control retinas (Figure 3D–F). 
Flat-mounted (A,B) and cross retinal sections (C) of samples from the patients with 
COVID-19 showed strong staining in both types of cells compared to the control (D–F). 
ACE2 expression was quantified by measuring the relative fluorescence intensity, which 

Figure 1. Retinal vessels labeled with lectin vs. collagen IV positive vessels. (A–F) Endothelial cells in retinal flat-mounts
are labelled with lectin (green) and basement membrane is stained with collagen IV (red) in COVID-19 (A–C) and control
retinas (D–F). (G) Percentage of number of lectin vessels (LV) vs. number of collagen IV vessels (CV). Expression of lectin
decreased in endothelial cells in both groups; however, COVID-19 retinas showed less expression than controls. ** p < 0.01.
Scale bar: 100 µm. Arrowheads indicate missing lectin endothelium areas.

3.2. Tortuosity Increased in COVID-19 Retinal Vessels

Analysis showed significantly increased tortuosity in the retinal vessels of the retinas
in the patients with COVID-19 (7.3 ± 0.2) vs. control retinas (6.8 ± 0.07) (p < 0.05) in the
macular area (Figure 2).
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Figure 2. Vessel tortuosity in flat-mounted retinas in COVID-19 and control labelled with lectin (green). (A–C) Quantitative
analysis in the macular area. Tortuosity is significantly increased in COVID-19 samples compared to controls. Error bars
indicate S.E.M. * p < 0.05. Scale bar: 100 µm.

3.3. Pattern Localization and Quantification of ACE2 in Retinal Vessels

ACE2 was expressed in capillaries throughout the retina, with the highest expression
observed in retinal ganglion cells (RGCs) and vascular endothelial cells in vessels located
in the RGCs of patients with COVID-19 (Figure 3A–C) and control retinas (Figure 3D–F).
Flat-mounted (A,B) and cross retinal sections (C) of samples from the patients with COVID-
19 showed strong staining in both types of cells compared to the control (D–F). ACE2
expression was quantified by measuring the relative fluorescence intensity, which clearly
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showed a significant ACE2 signal increase in COVID-19 retinas compared to controls
(2.3 ± 1.3 vs. 1.0 ± 0.1) (Figure 3G, p < 0.0001).
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4E) showed ACE2 positive cells in both COVID-19 (Figure 4A–C) and control retinas (Fig-
ure 4D–F). 

Figure 3. Angiotensin-converting enzyme 2 (ACE2) expression in COVID-19 (A–C) and control retinal vessels (D–F).
ACE2 expression (white) observed in retinal ganglion cells (RGCs) in superficial vasculature in COVID-19 (A) and control
(D) retinas. ACE2 is observed in cells in inner nuclear layer (INL) and ganglion cell layer (GCL) and endothelial cells in
vessels of COVID-19 (B) and controls (E). ACE2 localization in Optimal compound tissue (OCT)-embedded retinas cross-
sections previously labelled with lectin (green) and collagen IV (red) in COVID-19 (C) and controls (F). B and E represent
an orthogonal projection of retinal vessels. 4′,6-diamidino-2-phenylindole (DAPI) (blue) label nuclei. (G) Quantification
of immunofluorescence intensity in percentage of COVID-19 retinas vs. controls. **** p < 0.0001. Scale bar: 100 µm.
Abbreviations: GCL (ganglion cell layer), INL (inner nuclear layer), ONL (outer nuclear layer).

At higher magnification, retinal vessels located in the superficial vasculature
(Figure 4E) showed ACE2 positive cells in both COVID-19 (Figure 4A–C) and control
retinas (Figure 4D–F).

3.4. Iba1 and GFAP Expression in COVID-19 Human Retinas

The expressions of Iba1 and GFAP throughout the retina in COVID-19 and control
post-mortem samples were determined. Activated microglia (Iba1) were expressed in the
inner nuclear layer (INL) and ganglion cell layer (GCL) (Figure 5). Notably, COVID-19
samples (Figure 5A–D) showed a three-fold increase in the immunoreactive profile of Iba1
(3.06 ± 0.6) compared to that in the controls (1.0 ± 0.1) (Figure 5E,F) (p < 0.01).

Astrogliosis was observed in the retinal sections on GFAP immunostaining. Some
GFAP-positive cells were found to extend their end-feet processes in the GCL surrounding
blood vessels (Figure 6). However, no differences were found between COVID-19 and con-
trol retinas, and the quantification of signal intensity was similar in COVID-19 (1.05 ± 0.1)
and controls (1.0 ± 0.3).
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Figure 4. Localization of ACE2 in vessels in post-mortem flat-mounted COVID-19 (A–C) and control retinas (D–F). Samples
label with lectin (green), collagen IV (red) and ACE2 white). ACE2 expression is analyzed in superficial and deep vasculature.
ACE2: Angiotensin-converting enzyme 2, FM: flat-mounted. DAPI (blue) label nuclei. Scale bar: 200 µm.
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Figure 5. Localization and quantification of ionized calcium-binding adaptor molecule 1 (Iba1) (white) in COVID-19
(A–D) and control retinal cross-sections (E,F) previously labelled with lectin (green) and collagen IV (red). In contrast
to controls (E,F), COVID-19 retinas (A–D) exhibited very strong Iba1 staining. Boxed region in (C) is shown at higher
magnification in (D). DAPI (blue) label nuclei. (G) Percentage of Iba1 signal intensity from COVID-19 retinas vs. controls.
** p < 0.01. Scale bar: 100 µm. Arrows indicate areas of microglial activation. Abbreviations: GCL (ganglion cell layer), INL
(inner nuclear layer), ONL (outer nuclear layer).
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Figure 6. Localization and quantification of glial fibrillary acidic protein (GFAP) staining (white) in COVID-19 (A–C) and
control retinal cross-sections (D,E) previously labelled with lectin (green) and collagen IV (red) antibodies. There were no
differences between COVID-19 (A–C) and control retinas (D,E). Image C is a magnification of GFAP staining in GCL. DAPI
(blue) labels nuclei. (F) Quantification of immunofluorescence intensity in percentage of COVID-19 retinas vs. controls
shows no significant differences. Scale bar: 100 µm. Abbreviations: GCL (ganglion cell layer), INL (inner nuclear layer),
ONL (outer nuclear layer).

4. Discussion

This study documented vasculature alterations in the human retinal plexus and an
increase in ACE2 expression, microglial activation, and astrogliosis in retinal layers after
SARS-CoV-2 infection. One of the main results was the absence of endothelial markers
in deep and superficial retinal plexus in controls that was more evident in retinas from
patients with SARS-CoV-2 infection. This might indicate that the endothelium was severely
damaged or even completely absent. Accordingly, increasing evidence suggests that a
dysfunctional endothelium may be the main pathogenic mechanism of the prothrombotic
state in COVID-19 [16,19–21]. Moreover, the detection of retinal vascular lectin loss is a
feature of the aged human central nervous system and aged retinas with the previously
described appearance of acellular capillary remnants in the periphery of human and
rat retinas [22,23].

We also observed a significant increase in capillary tortuosity in COVID-19 retinas.
Other authors indicated that microangiopathy might be secondary to COVID-19 or inciden-
tal, suggesting that the virus itself or the systemic treatments used might have triggered
microangiopathy in patients with systemic vascular disease [16,24]. Vascular tortuosity at
later stages of retinal vascular aging has been reported [23,25] in other diseases, such as dia-
betic retinopathy [26], familial retinal arteriolar tortuosity (fRAT) [27], chronic anemia [28],
and facioscapulohumeral muscular dystrophy [29]. Despite the endothelial alterations
found in flat-mounted retinas, morphologic analysis in retinal cross-sections did not show
the hallmark changes from chronic diseases, such as microaneurysms, between COVID-19
cases and controls.

Apart from the morphological vascular alterations observed in the COVID-19-positive
donors, we report the widespread expression of ACE2 in the retina. It is remarkable that
retinal vasculature and RGCs expressed ACE2, with a particularly high density in COVID-
19 retinas. As the signal was observed at the external part of the vessel, these cells probably
corresponded to pericytes, consistent with reports in COVID-19 brain samples [30]. The
potential impairment of these structures could be the neural substrates for the clinical
manifestations of COVID-19 syndrome, as well as those described in the brain [30]. Recent
histopathological studies from patients who died from severe COVID-19 indicate the
presence of endothelial inflammation [31]; moreover, neuroinflammation during COVID-
19 could be partially explained by changes in ACE2 expression at the blood–brain barrier
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of the vast brain network of capillaries, which could affect the integrity of endothelial tight
junctions, thereby allowing passage of cytokines and inflammatory cells.

Furthermore, in the present study, we found evidence for increased microglial cells in
the retinas of patients with COVID-19, which appear to show characteristic hallmarks of
microglial hypertrophy, as reported previously [16,32]. Microglial cells changed with an
increase in ramified morphology, and most migrated to the retinal vessels in the GCL and
nerve fiber layer. Recent studies have shown that dystrophy is a disease associated with
microglial morphology [32] and brain alterations in COVID-19 [33].

Astrocytes are key regulators of homoeostasis and respond to stimuli through the
upregulation of GFAP and astroglial hypertrophy [34]. In our study, astrogliosis was
evident in human retinas in both groups, with no difference between them. However,
astrogliosis occurs in a variety of pre-existing medical conditions and has been proposed to
exert protective effects against oxidative stress [35–37].

In particular, astrocytes in the aged human retina have been described to undergo
morphological changes, including hypertrophy and increased density of intermediate
filaments, displaying increased GFAP immunoreactivity [38,39]. Therefore, SARS-CoV-2
infection was not the direct cause of astrogliosis in the present study. However, a recent
study observed an increase in GFAP immunoreactivity near the ONH regions in some
cases of COVID-19 patients, but not near the middle retinal regions [16].

Overall, our findings are consistent with a growing body of evidence suggesting
that endothelial cells are a preferential target of SARS-CoV-2 [40]. SARS-CoV-2 can infect
endothelial cells using the ACE2 receptor, with subsequent endotheliitis and endothelial
cell apoptosis [40]. The disruption of vascular integrity due to direct viral infection and
immune-mediated inflammation leads to the exposure of the thrombogenic basal lamina
and activation of the clotting cascade [19].

Amongst the limitations of the study, the main one could be the low number of
samples analyzed to reach statistically significant conclusions. However, we consider that
the magnitude of the changes found and their statistical significance, despite the small
sample size, support the need to take them into consideration. Another limitation to be
highlighted is that the changes we found seem relatively nonspecific. It can be argued
that may be due to coexisting systemic disease or simply age dependent degenerations;
however, controls were older than the COVID-19 donor. In addition, the lack of specific
criteria owing to the nature of the samples means that we do not know the concomitant
diseases of any donor included, both controls and COVID-19. Therefore, more studies with
a greater number of retinal samples are needed. Finally, the severity of the viral infection is
unknown, and it was not possible to the use clinical history of donors in our study.

Future work to confirm the results obtained is needed. In this sense, we are planning to
also study other molecules involved in the virus entry to different cells, such as Neuropilin
1. In addition, of special importance is the role of pericytes in endothelium alterations, thus
we will analyze pericyte involvement by immunofluorescence. Finally, we plan to assess
gene and protein changes in future collected samples.
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