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THE BIGGER PICTURE Self-organized patterns are ubiquitous in biology. They arise from interactions in
and between cells, and with the environment. These patterns are often used as a composite phenotype
to distinguish cell states and environment conditions. Conceptually, pattern generation under an initial con-
dition is encoding; discerning the initial condition from the pattern represents decoding. Inspired by these
examples, we develop a scheme, integrating mathematical modeling and machine learning, to use self-or-
ganization for secure and accurate information encoding and decoding. We show that this strategy is appli-
cable to non-biological dynamical systems. We further demonstrate the scalability of the scheme by gener-
ating a complete mapping of the standard English keyboard, allowing encoding of English text. Our work
serves as an example of nature-inspired computation.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Dynamical systems often generate distinct outputs according to different initial conditions, and one can infer
the corresponding input configuration given an output. This property captures the essence of information en-
coding and decoding. Here, we demonstrate the use of self-organized patterns that generate high-dimen-
sional outputs, combined with machine learning, to achieve distributed information encoding and decoding.
Our approach exploits a critical property ofmany natural pattern-formation systems: in repeated realizations,
each initial configuration generates similar but not identical output patterns due to randomness in the
patterning process. However, for sufficiently small randomness, different groups of patterns that arise
from different initial configurations can be distinguished from one another. Modulating the pattern-genera-
tion and machine learning model training can tune the tradeoff between encoding capacity and security.
We further show that this strategy is scalable by implementing the encoding and decoding of all characters
of the standard English keyboard.
INTRODUCTION

Information encoding is a process of converting information,

such as text and images, from its original representation to an

output format following defined rules. Dynamical systems have
This is an open access article und
this information encoding capability as they can generate spe-

cific outputs according to given inputs. Conversely, decoding

can be achieved if one can infer the input corresponding to an

output. Depending on the system, decoding could be obvious,

challenging, or impossible. As self-organization systems can
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generate high-dimensional outputs, they are particularly useful

for encoding rich information.

One example is to use cellular automaton (CA) that converts a

grid of cells from a simple initial configuration into a self-orga-

nized sequence or spatial pattern according to a set of update

rules.1 Wolfram proposed to use a chaotic rule to generate

random sequences to encode information.2,3 Here, the encoding

is deterministic—each initial configuration corresponds to a

unique output pattern. Because of the chaotic nature of the

rule, however, decoding the input from a given output pattern

is computationally prohibitive without prior knowledge of the up-

date rules. As such, the system in theory can serve as the foun-

dation for digital cryptography.4–8

While making the encoding secure, however, the chaotic na-

ture of the above example can limit its application. Like other

dynamical systems exhibiting deterministic chaos, the final pat-

terns generated by CA are extremely sensitive to perturbations

and lack statistical regularities.9,10 As such, a minute change in

the initial configuration or the encoding process can lead to dras-

tically different final patterns (a phenomenon termed the

avalanche effect11). Unless the encoding and transmission are

noise-free, the decoding is prone to errors even if the rules are

known.12

In contrast to these chaotic systems, many natural systems

are convergent. That is, for the same or similar input configura-

tions and environmental conditions, the final patterns share

global similarity despite local variances. This property is some-

times referred to as ‘‘edge of chaos.’’13 Examples are chemical

reaction14 and cortical networks.15 Many biological patterning

systems also fall into this category. Despite minute variances,

coat patterns are largely determined by animal genomes and

allow identification of different species. In microbes, the same

bacterial strain can grow into colonies with distinct shapes and

sizes under different growth conditions.16,17 Consequently, col-

ony morphology can serve as a crude signature to distinguish

environmental conditions and chemical cues, as well as the

stage of infectious diseases.18,19 Despite these empirical exam-

ples, the potential and limitations of information encoding and

decoding using biological self-organization remain unexplored.

Here, we use these systems to establish distributed information

encoding. Coupled with machine learning (ML)-mediated de-

coding, our system illustrates a scalable strategy for information

encoding and decoding with quantifiable reliability and security

(Figure 1A).

RESULTS

Criteria for choosing an encoding system
Any dynamical systems, including those generating self-orga-

nized patterns, can serve as the foundation for information en-

coding and decoding. However, to ensure secure encoding and

reliable decoding, we reason that the system dynamics need to

meet a set of heuristic criteria. First, the output patterns are suffi-

ciently complex and diverse such that different initial configura-

tions would generate distinguishable output patterns. Second,

the pattern generation is subject to stochasticity but remains

convergent. That is, in repeated pattern-generation processes,

the same initial configuration with small noise or perturbations

should generate output patterns that are approximately the
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same but differ in minor details. Importantly, the differences be-

tween patterns generated from replicated simulations should be

smaller than those between patterns generated from different in-

puts. Third,while different groups of patterns arising fromdifferent

initial conditions can be decoded by a properly constructed

decoder, their differences are difficult to discern by the naked

eye.Wenote that the degree bywhich different groups of patterns

can be distinguished often has to be established empirically (if a

reliable decoder can indeed be constructed).

As a proof of principle, we focus on a coarse-grained model of

self-organized pattern formation (Figure 1, also see ‘‘mathemat-

ical modeling’’ in methods). The model was developed to simu-

late qualitative aspects of branching dynamics of Pseudomonas

aeruginosa colony growth.20 In it, each simulation initiates from a

predefined cell seeding configuration and the cells develop into a

branching colony (Figure S1). The patterning process is influ-

enced by two sources of random noise. One comes from the

variability in the initial distribution of seeding cells; the other

comes from the underlying growth kinetics. With appropriate

choice of parameters (including noise levels), the patterning dy-

namics satisfy all criteria listed above.

In addition, another rationale for choosing this model is its

simplicity and versatility. It can generate diverse patterns by ad-

justing model parameters and be solved in a computationally

efficient manner (one simulation takes several minutes on a clus-

ter compute node to solve). These features allow us to probe this

platform’s security, reliability, and scalability (see ‘‘tradeoff

among encoding capacity, security, and decoding reliability’’).

Distributed encoding and decoding by spatial patterns
To demonstrate encoding, we represent a dictionary of 15 char-

acters—letters A–E and numbers 0–9—using binary numbers

0001–1111 (Table S1). Each binary number then corresponds

to a seeding configuration of cells in a braille-like array at time

0 (Figure 1B): a digit ‘‘1’’ corresponds to a spot seeding indi-

cating the presence of cells, whereas a digit ‘‘0’’ indicates no

cells. In each simulation, the colony grows from its initial config-

uration into a final pattern. As mentioned above, the simulation is

subject to two noise sources: the variability in seeding and during

growth. The former could originate from the marginal but un-

avoidable uneven cell seeding, and the latter could originate

from the inherent heterogeneity of cell gene expression, motility,

or small external perturbation. Therefore, repeated simulations

from the same initial seeding configuration generate similar final

patterns with minor differences, which collectively encode the

identity of the input configuration (Figure 1C). We chose to

encode in seeding configuration because of its simplicity, one

may also choose to encode in other parameters influencing

pattern formation.

We configure our simulations such that neither the mapping

between the initial configurations and the colony patterns nor

the difference between patterns corresponding to different in-

puts is obvious to the naked eye. To allow reliable decoding,

we need a robust method to navigate through this visual

complexity. A direct method is brute-force search, whereby all

the possible patterns for each initial configuration are simulated

to establish an empirical mapping between the input and the

output. While apparently straightforward, this approach is

computationally prohibitive and impractical because the training
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Figure 1. Distributed encoding and decoding using self-organized patterns

(A) The encoding and decoding scheme. To encode, a message is converted into cell seeding configuration followed by colony growth, during which a colony

pattern develops. To decode, the colony pattern of interest is fed into a trained CNN that converts the pattern into the original message.

(B) Predefined braille-like cell seeding arrangement. For a dictionary consisting of 15 characters (A–E and 0–9), we need a minimum 4-digit spot array (top). The

characters (e.g., ‘‘A’’ and ‘‘C’’) are first converted into a 4-digit binary number, then converted into a seeding configuration. For a given digit, if it is 1, cells are

‘‘inoculated’’ within the corresponding spot and if it is a 0, no cell is inoculated.

(C) One-to-many mapping between seeding configuration and spatial patterns. Pattern formation is subject to minor biological noise, which includes hetero-

geneity in cell seeding, external perturbation, and variability in cell phenotype during growth process. The noise is amplified by the branchingmechanism. Hence,

patterns evolved from the same configuration share qualitative similarity but are different in detail. A well-trained CNN should navigate through this mapping and

be able to decode the patterns as the corresponding character. For CNN training, the dataset is composed of equal number of replicates of patterns developed

from all seeding configurations.

(D) Relationship between the number of replicates of the training set and CNN accuracy. The CNN was trained on a balanced dataset that contains 15 distinct

characters. The numerical simulation used the default parameter values (see ‘‘mathematical modeling’’ in methods) and intermediate growth noise (signal-to-

noise ratio = 3.5). TheCNNdecoding accuracy increases as the number of available replicates increases. The accuracy is significantly higher than random chance

(1/the size of the dictionary).
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patterns are 8-bit, 80 3 80 pixels grayscale images, resulting in

up to 28380380 � 1015412 possible patterns.

Alternatively, image classification using convolutional neural

networks (CNNs) has been successful for numerous applica-

tions.21–23 Through observing sufficient examples, a CNN learns

to cluster images by their categories. Here, we built a CNN to

decode the colony patterns via multiclass classification (Fig-

ure S2, see ‘‘CNN training’’ in methods). During training, our

CNN decoder takes pattern images (generated by repeated sim-

ulations) as input and updates its trainable parameters to classify

patterns based on initial seeding configurations. With sufficient

replicates in each class, our trained CNN was able to distinguish

patterns corresponding to the 15 characters with high accuracy

(Figure 1D). For instance, greater than 93% of decoding accu-

racy can be achieved by having 800 replicate patterns in the

training set.
In an actual application of this encoding/decoding strategy,

we assume the channel is public while the pattern generator,

model parameters, training set, and the trained CNNs are private

to the end users (Figure 1A). The recipient chooses the correct,

trained CNN to decode a pattern according to the model param-

eters transmitted through another private channel (not shown in

the figure) as prior knowledge.

Tradeoff among encoding capacity, security, and
decoding reliability
In this platform, we aim tomaximize the capability of the patterns

to encode information, termed encoding capacity, and our plat-

form’s robustness against data leakage to unauthorized parties,

termed encoding security. We consider that a system has higher

encoding capacity if it can encode more characters correctly

with adequate data, while we consider our encoding scheme
Patterns 3, 100590, October 14, 2022 3
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Figure 2. Tradeoff between encoding capac-

ity, security, and decoding reliability

We present the prediction performance of CNNs

trained on branching patterns with different pa-

rameterizations. Specifically, (A) we fixed the

seeding noise such that the only source of noise is

growth. The magnitude of growth noise is modu-

lated through changing the signal-to-noise ratio

(SNR) of the growth kernel. The higher SNR is, the

lower the noise level is. We present the results on

datasets with no noise, SNR = 2, 3.5, 5, and 10,

respectively. (B) We simulated patterns using

seeding spacing = 10, 25, and 50, respectively,

which represent from small to large spacing. As

the spacing increases, patterns corresponding

to different initial configurations become more

dissimilar.

(C) We simulated datasets of 3, 15, and 63 charac-

ters using 2-, 4-, and 6-bit predefined braille-like

seeding arrays, respectively, while keeping all else

as the default. Overall, the decoding accuracy

increases as the number of replicates per class in-

creases, and it significantly exceeds the corre-

sponding accuracy by random guessing. The only

exception is in the absence of growth noise,

in which case the patterns are identical thus the

decoding is trivial. Notably, when the patterns becomemore complicated (e.g., larger growth noise, smaller spacing, or larger dictionary), more data are required

to reach the same accuracy. Data are represented as mean ± standard deviation.

(D) Required training replicates per class as a function of dictionary size. The green, orange, and blue lines represent accuracy of 0.9, 0.5, and 0.1, respectively.

The required data size increases exponentially as the desired accuracy increases.
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being more secure when the attacker cannot build a successful

decoder from the leaked data. For example, the accuracy of a

separate decoder built on only 10 replicates per class drops to

less than 20% (Figure 1D), which is only slightly better than

random guessing (1/15). Note that the efficacy of our platform

depends on the complexity of the generated patterns, our

desired accuracy, and the amount of available training data.

We can tune our scheme’s performance by modulating pa-

rameters in the pattern-generation model. We constructed 16

simulated training datasets of diverse patterns by tuning these

2 parameters (see ‘‘mathematical modeling’’ in methods, Fig-

ure S3A). Based on their final appearance, we categorized our

results into three subgroups: disk-like (a large disk occupying

the entire growth domain), trivial (final pattern is identical to initial

configuration), and branching. Disk-like colonies cannot be

distinguished regardless of the training data size—thus, the

input information was obscured and ‘‘lost’’ after growth

(Figures S3B–S3D). Conversely, trivial patterns allow perfect

but insecure decoding since the reverse mapping is obvious. Ul-

timately, the intricate branching patterns allow secure encoding

and reliable decoding as demonstrated previously.

We can also modulate encoding capacity and security by tun-

ing the noise during the patterning process. Without noise, one

pattern per input is sufficient for perfect decoding as long as

output patterns are distinguishable (Figure 2A). Too much noise

would introduce too many variations in the replicate patterns

generated from each input. If these intra-category variations (be-

tween replicate patterns) approach or exceed the inter-category

differences (between sets of patterns corresponding to different

inputs), the decoding accuracy would deteriorate significantly

(Figure 2A). Depending on the magnitude of the noise, this

loss in accuracy can be alleviated by increasing the number of
4 Patterns 3, 100590, October 14, 2022
replicate patterns per class. A similar tradeoff exists for other pa-

rameters as well, such as the spacing between spots in the initial

configuration (Figure 2B). When spacing decreases, patterns

grown from different configurations appear more alike and indis-

tinguishable. Moreover, a larger dictionary with all else being

equal would also reduce the decoding accuracy (Figure 2C).

Again, expanding the number of replicate patterns per class

can compensate for losses in accuracy, thus increasing the en-

coding capacity (Figure 2D). Similar tradeoff was also observed

in patterns arrested from growth at different time points (see

‘‘temporal information encoding and decoding’’ in supplemental

information).

In principle, the encoding-decoding scheme is applicable to

any dynamical systems where the input-output mapping sat-

isfies the criteria listed above. To illustrate this point, we chose

an elementary CA model with weakly chaotic dynamics9 (see

‘‘encoding and decoding using elementary cellular automaton’’

in supplemental information). Given the set of rules, we chose

the model parameters (including noise levels) such that the re-

sulting dynamics can allow secure encoding and reliable decod-

ing. Again, we encoded characters in binary numbers, which is

then converted into 1D initial configuration in a similar manner

as in 2D. Noise was imposed on the initial sequence, and the

latter develops into a final sequence following the evolution rules

(Figure S4). A feedforward neural network was trained to code

the final sequence. As expected, higher complexity leads to

worse decoding accuracy, and it can be remedied by increasing

training data size (Figure S5).

Enhancing encoding security and integrity
To enhance security, we evaluated utilizing encryption to prevent

unauthorized access during communication. A secret key is
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Figure 3. Encryption using growing domain shape as the secret key

(A) Encryption scheme. A secret key is used to convert a message (e.g., ‘‘A’’) to a self-organized pattern, and the knowledge of it is required to reliably convert the

pattern back to the original message. For our ML-mediated decoding method, the information on the secret key allows the designated recipient to choose the

correct, trained CNN to decode the received pattern.

(B) Training data generation and preprocessing. For each encoding character, we computationally seeded cells on growing domains of different shapes (left) and

let them grow into spatial patterns over the entire field (middle). The centers of the colonies (within the blue circles) were cropped to remove the information of the

growth domain (right), and then used for CNN training.

(C) Effectiveness of encryption when growth domain shape is the secret key. Four CNN models were trained independently on datasets encrypted by circular,

diamond, square, and triangular growth domains, respectively. The heatmap shows their decoding accuracies on each dataset. Only the model trained on the

corresponding dataset can decode at the highest accuracy.
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implemented during encoding and successful decoding requires

the correct key (Figure 3A). For pattern formation systems, the

geometry of the patterning domain is a feasible choice of secret

key as it can influence the patterning process and is easily

tunable.24–26 In our system, the boundary suppresses bacteria

colonization, and the strength of the impact decreases exponen-

tially as the distance from every location in the colony to the

boundary increases (see ‘‘encryption dataset generation’’ in

methods). As such, the boundary exhibits a time-invariant,

long-range, and weak inhibitive force on colony expansion. As

this force is anisotropic due to asymmetric boundary geometry,

the patterns are encrypted by the domain shape.

To test this notion, we generated patterns within different

boundary shapes. For each shape, the resulting patterns would

occupy the entire space. We removed the information of the

boundary in the output by cropping out a smaller, circular area

at the center of each pattern (Figure 3B). We found that only

the decoders trained on the correct datasets can decode at

high accuracy (Figure 3C), indicating that knowledge of the

domain shape (i.e., the secret key) is critical for selecting the right

CNN decoder to accurately decode. Note that since the x and y

axes are datasets and models, respectively, we do not expect

symmetric accuracies in the off-diagonal cases. Similarly, we

evaluated the potential of other secret key choices, such as

the seeding spacing (Figure S7) and patterning domain size.
We have also considered the threat to information integrity

during communication, in which the attackers could alter the

output patterns or replace them with fake ones, thus deceiving

the intended information receiver. We demonstrated that the

noise in the patterning dynamics could be used to ensure the

integrity (see ‘‘authenticating patterns using noise signatures’’

in supplemental information). In brief, the noise leaves a unique

signature for each correct pattern, which can be used to authen-

ticate a received pattern.

Improving decoding performance by ensemble learning
All else being equal, the reliability of decoding can be improved

by increasing the number of replicates per class when training

the decoder. However, the degree of improvement diminishes

for an increasing number of replicates (Figure 2C). For instance,

for a dictionary of 63 characters, the decoding accuracy in-

creases by �30-fold by increasing the number of replicates

from 10 to 100; it only increases by �1.5-fold by increasing

from 100 to 800. To more effectively use the available data, we

adopted ensemble learning—a class of ML techniques.27–29

Staked generalization combines the knowledge learned by in-

dividual ML models (base model) for better prediction.30–33 We

first trained multiple-base CNN decoders on a dataset with

random initialization using the same protocol in the previous sec-

tions, then trained an ensemble decoder to combine their
Patterns 3, 100590, October 14, 2022 5
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Figure 4. Using ensemble learning to improve decoding accuracy

(A) Training procedure of the ensemble model. The training is done in two steps. First, we train multiple-base CNN decoders on a dataset as described in the

previous sections. Then their predictions on the training set and the corresponding class labels constitute a new dataset. In the second step, we train an ensemble

model from scratch using the new dataset.

(B) Decoding accuracy of ensemble and base models. Here, a logistic regression ensemble model was trained with five base models. The ensemble model

outperforms the base models regardless of the training data size. Notable improvement in accuracy occurs when a moderate amount of data was available for

training, whereas the improvement is less significant with adequate or scarce data. Data are represented as mean ± standard deviation.

(C) ROC curve of ensemble and base models (orange, ensemble model; shades of blue, base models). The ROC curves were computed for each encoding

character and then averaged over all classes to reflect the overall performance of the decoders. The area under the ROC curve (AUCROC) of the ensemblemodel

is 0.963. AUC ROC of the base models are 0.881, 0.893, 0.920, 0.925, and 0.924. The models were trained on a dataset with 100 replicated per class.

(D) Schematic of the majority voting algorithm. Instead of using only one pattern for communication, the sender would generate and send out multiple patterns

representing the same message. Due to the randomness in the patterning process, these patterns appear similar but differ in detail. The recipient would use a

trained decoder to decode each pattern and obtain the corresponding predictions. The most popular prediction will be used as the final prediction.
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prediction capabilities. The ensemble model was then used for

final decoding (Figure 4A, see ‘‘ensemble learning and uncer-

tainty estimation’’ inmethods). For patterns generatedwithmod-

erate growth noise, the prediction performance of the ensemble

decoder excels that of the base models for up to 22% in accu-

racy (Figure 4B). Receiver operating characteristic (ROC) curves

and confusion matrices also show significant improvement with

ensemble model (Figures 4C, S8, and S9). As expected, the

ensemble model generally outperforms the base ones when in-

termediate data are available but demonstrates marginal

improvement with adequate or scarce data. This is expected

because when intermediate data are available, the individual

base models are diversified due to random initialization. How-

ever, when adequate data are available, each base model indi-

vidually decodes with high accuracy, leaving little room for

improvement. Conversely, when data are scarce, the base de-

coders barely learn such that integrating their results provides

little insight. This final aspect implies encoding security against

minor data leakage. In addition, considerable improvement can

be achieved with a simple logistic regression model, and more

basemodels leads to better ensemble performance (Figure S10).

In addition to stacking, we have also shown that majority voting
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can improve the decoding accuracy (Figures 4D and S11). Mul-

tiple patterns corresponding to the same character were de-

coded using the same CNN, and the most voted prediction

was used as the final prediction.

Ensemble learning not only improves the decoding accuracy,

but also sheds light on the prediction uncertainty. According to

Lakshminarayanan et al., the base models trained with random

initialization explore the entirely different modes of function

space,34 thus their independent predictions can be used to esti-

mate well-calibrated uncertainty.35 We adopted this notion and

estimated decoding uncertainty through multiple metrics,

including log likelihood, mean square error (MSE), top 1 and

top 5 errors (see ‘‘ensemble learning and uncertainty estimation’’

in methods). A higher metric value indicates larger uncertainty

or lower confidence. As expected, the uncertainty reduces as

more training data are available (Figure S12). Having more

base models does not necessarily reduce the uncertainty

(Table S2).

Distributed encoding of English in Emorfi
Our distributed encoding-decoding platform is scalable for

practical applications. We constructed 100 sets of patterns
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Figure 5. Encoding text in Emorfi

(A) Each of the 100 printable ASCII characters is represented by a unique initial configuration. Ninety-five of them are shown on the keyboard, and five other

printable whitespace characters (tab, linefeed, return, vertical tab, and formfeed) are not shown here. In the training set, each character maps to 1,000 patterns.

The collection of patterns, as well as subsequent ones to be generated, constitutes Emorfi.

(B) A piece of text could be encoded as a video and decoded using the ensemblemethod.① Each character in the text is translated to a corresponding pattern.②

The images are arranged in order and assembled into a video that can be used for communication.③ To decode, each frame is retrieved from the video.④ The

patterns are decoded sequentially, representing the decoded text.
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to encode all printable ASCII characters including English let-

ters in upper and lower cases, digits, punctuations, and white-

spaces (Figure 5A; Appendix A). A 7-bit seeding array was

used to create the training dataset, in which 100 of the unique

initial configurations corresponded to the printable characters.

Each of the initial configurations was then used to generate

1,000 patterns. We term this collection of patterns Emorfi,

which represents a new, digitally generated coding scheme.

When encoding text, each character is represented by one

or multiple newly generated patterns with the same setup,

and the patterns are then arranged to assemble a video

(Figure 5B).

By doing so, all standard English text can be encoded in

Emorfi and decoded back. For instance, we encoded the public

speech ‘‘I have a dream’’ by Martin Luther King Jr. containing

8,869 individual characters as a video (Video S1). Accommoda-

ting majority voting, each character was represented by five

different patterns, and 99.8% of the text can be correctly de-

coded (Appendix B). The same approach was also used to

encode the poem ‘‘Auguries of Innocence’’ by William Blake as

a video (Video S2), and 99.6% of the text was correctly decoded

(Appendix C). In another example, using a 5-bit seeding array,

we encoded the GFP protein sequence (238 amino acids) as a

video (Video S3) and 100% was correctly decoded (Appendix

D). In these real-world use cases, attackers with limited access

to the training data cannot decode successfully. For example,

having access to 10 patterns per class would only lead to decod-

ing 1.3% of ‘‘Auguries of Innocence,’’ which is much lower than

using a properly trained decoder.
DISCUSSION

Our encoding and decoding framework is applicable to diverse

dynamics systems, as long as they have three key properties:

(1) an approximately convergent mapping between initial input

and output, (2) complex output signals, and (3) the output pat-

terns are difficult to distinguish to the naked eye. While past

studies have explored the possibility of using chaos to encode

information and to provide security,36–38 unavoidable noise and

error in numerical simulation (e.g., finite precision computing)

or transmission (e.g., channel noise) can alter the output despite

these systems being deterministic. In contrast, the convergent

nature of our system ensures patterns that originate from the

same initial configurations share common features (recognizable

by a trained NN) despite small variances. Although noise is often

considered undesirable in biological studies—such as masking

ground truth39–41 or disrupting interactions between compo-

nents42,43—we take advantage of the variance in our system to

ensure information security and to authenticate each pattern.

These features distinguish our methods from other biology-

based information encoding, encryption, or storage methods,

such as DNA sequences,44,45 DNA origami,46 and arrays of mi-

crobial colony,47 which mostly rely on one-to-one mapping be-

tween the information to encode and the encoded format.

Our proposed criteria together contribute to the sufficient en-

coding capacity and tunable information security of our platform.

Many systems satisfy these criteria. With appropriate parame-

terization and boundary conditions, many reaction-diffusion

models exhibit considerable robustness in output patterns and
Patterns 3, 100590, October 14, 2022 7
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sensitivity to initial conditions.48,49 In addition to the example we

demonstrated (Figures 2, S4, and S5), many CA models with

asynchrony update rules also show convergence.50,51 Biological

systems, such as biofilm morphology, butterfly wing scale

pattern, and human fingerprint, have also evolved to exhibit

common features but vary in detail. Their convergent nature re-

sults from the rich multiscale, multidimensional interactions be-

tween different system components, such as chemical reactions

and diffusion, gene circuits, and cell-cell interactions.52–56 Our

work can motivate future studies of utilizing other types of

dynamical system outputs or implementing information encod-

ing using controllable experimental patterns. Similar to the

computational examples, the methods of selecting a suitable

system, and balancing encoding capacity and security are also

applicable for experimental systems.

However, our work does bring up a fundamental question:

given a dynamical system with stochasticity, how do we know

the dynamics are convergent enough while the output signals

from different initial conditions are also distinguishable? We

suspect that the question has to be addressed empirically for

each specific system. In ours, each initial configuration gener-

ates an ensemble of output patterns following a distribution

(visualized using t-SNE in Figure S13). It is difficult to determine

this distribution by solely inspecting the pattern-generation

model, even if parameters and noise magnitudes are known.

However, whether each distribution corresponding to an input

can be distinguished from another distribution arising from

another input is established by ML. In essence, the trained

CNN provides an empirical estimate on the extent by which

the pattern generation is convergent. To this end, our work

has implications for quantifying the convergence for a dynam-

ical system by using ML.

As we have demonstrated with Emorfi, the pattern-based en-

coding-decoding platform is scalable and generalizable for infor-

mation in various formats. We envision that the platform could be

extended to other languages, such as alphabetic languages with

different letters or diacritics (e.g., French, Hebrew) and logo-

graphic scripts consisting of thousands of characters (e.g., Chi-

nese, Japanese). It could also be applicable for communicating

science and protecting intellectual properties by incorporating

Greek alphabet, mathematical symbols, nucleic acid bases,

etc. In addition, one may increase the information density from

one-character-per-pattern to multiple-characters-per-pattern

by usingmore complex initial conditions, or improve the informa-

tion efficiency by choosing more convergent systems. The en-

coding speed could be accelerated by using a faster pattern

generator.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Lingchong You (you@duke.edu).

Materials availability

This study did not utilize any materials aside from the code noted below and

did not generate new unique reagents.

Data and code availability

The mathematical simulation and machine learning codes used in this study

are available on GitHub: https://github.com/youlab/Information_encoding.
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The platform for encoding text in the format of video is available at https://

www.patternencoder.com/.

Mathematical modeling

The simple colony pattern-generation model accounts for several driving

forces. In particular, it uses a kernel-based method to capture the high-level

positive (expansion) and negative (inhibition) effects on patterning, regardless

of the specificmechanism. Themodel is formulated as the following equations:

Nt + 1ðx; yÞ =

Z Z
K
�
dx;y

�
Ntðx; yÞdxdy

K
�
dx;y

�
= b 2

�

�
d
d1

�h1

� 2
�

�
d
d2

�h2

:

Here, N is the colonization of the bacteria over the growing medium, K is the

growth kernel that is the addition of the expansion and (negative) repulsion ker-

nels. b is the relative magnitude of expansion to repulsion, d1 and d2 are the

distances that characterize half of the maximum effect of expansion and repul-

sion respectively. dx;y is the distance of a position ðx; yÞ to (x; y). We used d1/

d2 = 0.4, h1 = 1,000, h2 = 2,000, and b = 6.5 as the default parameter values

unless otherwisementioned. This parameter set generates complex branching

patterns.

To adapt the published model for our study, wemade several modifications.

First, we implemented various seeding configuration, such as the spot seeding

arrangement for encoding binary representations of characters (Figure 1B).

The size and spacing of the spots were subjected tomodulation. As the default

setting, we used spacing = 15 and spot radius = 5. Second, we implemented

white Gaussian noise with varying signal-to-noise (SNR) ratios to the growth

kernel at each time step. The noise (s) mimics the heterogeneity and small per-

turbations in growth. Thus, the kernel equation becomes:

K
�
dx;y

�
= b 2

�

�
d
d1

�h1

� 2
�

�
d
d2

�h2

+ s:

We also implemented uneven cell seeding by assigning random intensities

drawn from a truncated Gaussian distribution (mean = 0.5, deviation varies)

to the pixels within the spot configurations. Both noise sources contribute to

the variation in patterns given the same model parameters and initial configu-

rations. As default, we used random seeding without growth noise.

Themodel was implemented in MATLAB 2017b and solved numerically. The

simulation terminates once the colony stops growing. The simulation outputs

an 8-bit, 451 3 451 pixel grayscale image. Except for the encryption experi-

ments, the patterns were formed on a circular growth domain of a diameter

of 451 pixels.

To generate different patterns, we modulated the relative acting distance

(d1=d2) and magnitude of colony expansion versus repulsion processes ðbÞ.
Large relative distance and magnitude (i.e., higher colony expansion) result

in thick branches, whereas small relative distance and magnitude (i.e., higher

repulsion) result in thin, sparse branches. In extreme cases, these conditions

can result in large disks or small circular colonies, respectively. When these

two forces are intermediate and comparable, the system generates branching

colonies.

CNN training

For CNN training, we numerically simulated datasets with equal numbers of

replicates for each encoding character. For evaluation, test datasets made

of 100 replicates per class were used. The pattern images were rescaled to

80 3 80 pixels before training or testing.

The CNN (Figure S2) and the ensemble model (Figure 4A) were implemented

in Python 3, TensorFlow 1.15.2, and Keras 2.4.0. The CNN uses pattern im-

ages as inputs and outputs N features, where N is the dictionary size (i.e., num-

ber of characters in a dictionary). It consists of two convolutions, each followed

by max pooling and rectified linear unit (ReLU). Then their output is passed

onto two fully connected layers, followed by ReLU and softmax, respectively.

Here, the softmax function turns it into categorical probabilities. For training,

we used Glorot normal initializer, categorical cross entropy loss, and Adam

optimization algorithm with learning rate subject to tuning. Keras early

mailto:you@duke.edu
https://github.com/youlab/Information_encoding
https://www.patternencoder.com/
https://www.patternencoder.com/
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stopping function was also implemented to stop the training once the loss

metric stopped improving. We carried out hyperparameter tuning (including

learning rate, batch size, early stopping patience, and delta) to obtain the

best performing models for analysis. The data generation and training were

conducted on Duke Compute Cluster and Google Cloud Platform.
Encryption dataset generation

The geometry of the growth domain impacts the growth and pattern formation

through exerting a negative effect on the colony in the vicinity of the boundary,

such that the colony does not reach the edge. The plate influence is formu-

lated as:

I = � k 2� ε
d
R :

The model is:

Nt + 1ðx; yÞ =

Z Z �
K
�
dx;y

�
+ I

�
dx;y

��
Ntðx; yÞdxdy:

Here, d is the Euclidean distance of a position ðx; yÞ in the space to the

boundary, and k = 1,000. R is the plate radius. For irregular domains, contour

lines are drawn to determine d
R , whereR is the value of the highest contour line.

ε regulates the shape of the impact function. We deducted the influence from

the colony after each discrete time step. For the purpose of encryption, we

maximized the influence of the geometry by modulating ε, such that the nega-

tive plate impact reached as far as the center of the patterns.We used ε = 1 for

generating the encryption datasets, and 2,000 for any other dataset.

When using the shape of the growing medium as the secret key, we simu-

lated the colony patterns on circular-, diamond-, square-, and equilateral trian-

gular-shaped domains. The area of each geometry was kept the same to

compare the effect of the geometry. We removed the information of growth

domain shape by cropping out a smaller, circular area at the center of each

pattern, and only the processed pattern images were used for CNN training.
ENSEMBLE LEARNING AND UNCERTAINTY
ESTIMATION

The training of ensemble model was carried out in two steps.

First, we trained several base CNN models using the same pro-

tocol described in ‘‘CNN training.’’ Their probabilistic predictions

on the training set were then linearly combined to constitute a

newdataset. Next, we used the newdataset to train an ensemble

model from scratch. We tested several ensemble model archi-

tectures, including logistic regression and feedforward neural

networks with different numbers of hidden layers and nodes. In

the ensemble model, we used ReLU activation function for the

input and hidden layers and passed the model output into soft-

max function to turn it into categorical probabilities. For its

training, we used Glorot uniform initializer, categorical cross en-

tropy loss, and Adam optimization algorithm with learning rate =

0.0001. Keras early stopping was used to stop the training once

the loss metric stopped improving. The patience was 5 and the

minimum change was 0.0001. We evaluated the model perfor-

mance on a balanced dataset of 100 datapoints per class

through metrics such as precision, recall, ROC, AUC ROC using

scikit-learn (0.22.2).

We evaluated the prediction uncertainty based on the output

of base models. We used common metrics, such as log likeli-

hood, MSE, and top 1 and top 5 errors, for estimating the uncer-

tainty. Specifically, the log likelihood is �M� 1
PM
j = 1

PN
i = 1

yij logðpijÞ

and the MSE isM� 1N� 1
PM
j = 1

PN
i = 1

ðyij � pijÞ2. For the ith data point,
yij is the true label for class j (1 if the data point belongs to class j,

otherwise 0), pij is the predicted probabilities for class j. M indi-

cates the total number of data points, N indicates the dictionary

size, and top 1 and top 5 indicate the fraction of data points

whose correct label is not among their top 1 or 5 probable pre-

dictions, respectively.
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