
International Journal of

Environmental Research

and Public Health

Article

PAX: Using Pseudonymization and Anonymization
to Protect Patients’ Identities and Data in the
Healthcare System

Mishall Al-Zubaidie 1,2,* , Zhongwei Zhang 2 and Ji Zhang 2

1 Thi-Qar University, Nasiriyah 64001, Iraq
2 Faculty of Health, Engineering and Sciences, University of Southern Queensland,

Toowoomba, QLD 4350, Australia; Zhongwei.Zhang@usq.edu.au (Z.Z.); Ji.Zhang@usq.edu.au (J.Z.)
* Correspondence: Mishall.Al-Zubaidie@usq.edu.au or u1070801@umail.usq.edu.au; Tel.: +61-469-869-029

Received: 13 March 2019; Accepted: 23 April 2019; Published: 27 April 2019
����������
�������

Abstract: Electronic health record (EHR) systems are extremely useful for managing patients’ data
and are widely disseminated in the health sector. The main problem with these systems is how
to maintain the privacy of sensitive patient information. Due to not fully protecting the records
from unauthorised users, EHR systems fail to provide privacy for protected health information.
Weak security measures also allow authorised users to exceed their specific privileges to access
medical records. Thus, some of the systems are not a trustworthy source and are undesirable for
patients and healthcare providers. Therefore, an authorisation system that provides privacy when
accessing patients’ data is required to address these security issues. Specifically, security and privacy
precautions should be raised for specific categories of users, doctor advisors, physician researchers,
emergency doctors, and patients’ relatives. Presently, these users can break into the electronic systems
and even violate patients’ privacy because of the privileges granted to them or the inadequate security
and privacy mechanisms of these systems. To address the security and privacy problems associated
with specific users, we develop the Pseudonymization and Anonymization with the XACML (PAX)
modular system, which depends on client and server applications. It provides a security solution to
the privacy issues and the problem of safe-access decisions for patients’ data in the EHR. The results of
theoretical and experimental security analysis prove that PAX provides security features in preserving
the privacy of healthcare users and is safe against known attacks.

Keywords: anonymity; ECDSA; electronic health record (EHR); PAX; pseudonym; XACML

1. Introduction

Data privacy is a prerequisite for any system, but especially for those systems, such as healthcare
systems, that transmit user-sensitive data [1]. The healthcare system uses authorisation policies
to enable healthcare providers to access required patients’ data. Ensuring patients’ privacy means
preventing unauthorised users from accessing this data. Unfortunately, many healthcare systems
transmit user requests or store policies with explicit plaintext, thus exposing patients’ data to the public.
The personally controlled electronic health record (PCEHR) system provided by the National E-health
Transition Authority (NEHTA) in Australia argues that security and privacy should be properly
addressed in healthcare systems [2].

1.1. Security in EHR Systems

The security of medical records in the electronic health record (EHR) system has been a major focus
of health and academic institutions, since the efficiency and quality of patients’ data management [1,3]

Int. J. Environ. Res. Public Health 2019, 16, 1490; doi:10.3390/ijerph16091490 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0002-3149-9129
https://orcid.org/0000-0001-6622-0346
http://dx.doi.org/10.3390/ijerph16091490
http://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/16/9/1490?type=check_update&version=2

Int. J. Environ. Res. Public Health 2019, 16, 1490 2 of 36

by using the World Wide Web. EHR systems include identifications and patients’ data that require
authorisation privileges to determine access control for authorised users [4]. Accurate medical data
is essential for diagnosing diseases and determining the condition of patients during their online
transfer from patient to healthcare provider [5,6]. Any change to this data causes health problems for
patients. In addition, penetration of medical records of patients with diseases such as HIV infection or
dermatological conditions can lead to discrimination, harassment, or even death of the patient if the
diagnostic data changes during the transition from client to server [6,7]. In a broad sense, a terrorist
may cause national instability by disclosing patients’ data, changing the data, destroying the data,
or impersonating some patients [8]. Healthcare systems, and in particular, EHR systems, should
provide end-to-end privacy for patients’ data. In addition, data storage and authorisation policies for
patients in a central server yield data management gains but are an attractive target for hackers [8].
Therefore, there should be security mechanisms to protect the privacy of the patient as well as to
prevent the penetration of policies on the server.

1.2. Privacy of Critical Medical Cases

The use of patients’ data for various purposes, such as consultations, access by a relative or
caregiver, research, and emergency (secondary or indirect use) is a major challenge for authorisation
systems; for example, the researcher should not exceed the limits of privacy granted to him/her [4].
In an emergency, when the patients’ doctor is unavailable or the patient does not have the capacity
to give consent to another doctor, the patient’s privacy is seriously compromised [9]. In addition,
if the patient is incapacitated, a relative is responsible for receiving the patient’s data [10]. Sometimes,
the doctor also needs to consult another doctor to treat a patient’s condition. All these cases can result
in the intrusion and penetration of data. The sharing of medical records among users of the EHR
system allows patients’ data to be misused or abused by malicious breaches [11]. Many examples
of penetration of the medical records for patients, such as medical staff who sold medical records to
cancer patients, accessed medical records for patients at Washington University [12] or unauthorised
access attacks exposed (June 2016) millions of healthcare records [13]. In 2018, the U.S. Department
of Health and Human Services pointed out that unauthorised access/disclosure attacks targeted
many health institutions and penetrated huge health records [14]. These penetrations show that
the healthcare system requires a high level of security. Furthermore, an internal attack penetrates
medical records more easily than external attacks because each practitioner has a privilege that allows
him/her to access the server system. Many access control models have been used in the EHR, such as
mandatory access control (MAC), discretionary access control (DAC), role-based access control (RBAC),
and attribute-based access control (ABAC), and each model has specific authorisation mechanisms
for data access [2]. In our project, we adopted the integration of the RBAC and ABAC to support a
security level based on both role and user attributes. Therefore, EHR systems require mechanisms to
ensure the privacy of patients’ data while protecting authorisation policies and healthcare provider
requests [15]. In order to develop a successful project, privacy must be provided to the patient via the
following measures:

1. Preventing attackers from accessing patient data and making data anonymous in case attackers
do gain access to the data (i.e., external attacks).

2. Preventing legitimate users from exceeding their privileges (i.e., internal attacks).
3. Securing all requests, policies, and data of the change on the server or during the transfer between

the clients and server to ensure the accuracy and reliability of patient data.
4. Applying anonymity to requests and policies to hide users’ identities.
5. Applying random pseudonym to requests, policies, and data to separate data associated with the

real attributes of patients.

Int. J. Environ. Res. Public Health 2019, 16, 1490 3 of 36

1.3. Our Contributions

Our contributions to providing full privacy and security of patients’ records can be summarised
as follows:

• Combining ABAC and RBAC
In this project, we integrate two existing models (ABAC and RBAC) to develop a system
that provides handling of patients’ information at the coarse-grained and fine-grained levels.
Our model fits the privacy and security requirements for medical records in the EHR by merging
a user’s ID with the role as a single attribute entered in signature to identify subjects and objects.

• Separating users into two sets
We have proposed separating users into direct and indirect sets for patients’ records to allow the
server to distinguish between users’ requests. This significantly reduces the penetration rate of
internal attacks.

• Using ECDSA’s signatures with XACML
The anonymity property has been applied to the requests and policies of subjects. This feature
was used during the implementation of the ECDSA signature algorithm with XACML to prevent
attackers from determining the identity of healthcare providers (to prevent knowledge of the
relation between a physician with a particular patient).

• Using Shamir scheme with signatures
We used the Shamir scheme with the ECDSA signatures in the third protocol of authorising
indirect users. This procedure is necessary to verify unauthorised users of patients’ data who
could be conducting serious attacks on the EHR system.

• Using random pseudonym with patients’ data
The pseudonym property has been applied to the requests and policies of subjects and resources.
This feature prevents hackers from knowing that the data belongs to a particular patient
(separating data from real attributes).

• Validating PAX scheme
PAX scheme has simulated with an automated validation of Internet security protocols and
applications (AVISPA) tool that is an efficient and flexible tool for testing and analysis attacks in
modern research. AVISPA has used to validate that PAX is secure against both passive and active
attacks. Additionally, Burrows, Abadi and Needham (BAN) logic has used to ensure request
source, freshness and entity legitimacy.

1.4. Structure of the Paper

The report proceeds as follows. Section 2 discusses previous studies related to our research. Basic
concepts about the techniques used in the PAX system will be introduced in Section 3. Section 4
describes the proposed authorisation model. Section 5 describes users’ scenarios and security analysis
in the authorisation system. Section 6 presents comparison between PAX and previous studies.
The conclusion and recommendations for future work are presented in Section 7.

2. Related Work

This Section discusses related works [2,6,8,9,16–18], and highlights their shortcomings.
The PERMIS project was proposed by [16] with the RBAC model. It described the conceptual

authorisation of the credential validation service (CVS) before the approval stage of the access decisions
for the resource as well as the distributed management of the credentials. However, the PERMIS
system does not adequately protect the CVS. PERMIS also suffers from the problem of inheriting
managers for all the attributes of their followers (hospital department managers or specialist doctors
who inherit all their practitioners’ attributes and thus have access to patients’ data, which can lead to
significant internal attacks) and also uses one signature of a public key cryptography (PKC#12) file for
policies and attributes.

Int. J. Environ. Res. Public Health 2019, 16, 1490 4 of 36

Quantin et al. [8] suggested using non-central medical records to eliminate issues of
standardization and structure in data access requests. However, this scheme suffered from the use
of a single aggregator that was similar to the dataset on the central server, which is vulnerable to
attack. In addition, patients’ data comes from different sources and have different structures and
standards; this difference causes a burden on the aggregator. Moreover, the authors used Rivest,
Shamir, and Adleman’s (RSA) encryption algorithm, and this algorithm uses a large key size of
1024 bits, which causes a burden on the server. In addition, the aggregator needs time and storage
to convert the data into a single context. Furthermore, this scheme suffered from the collision and
doubloon problems due to the transference and transformation of patients’ data contexts.

The pseudonymization of information for privacy in an e-health (PIPE) project was designed to
protect health data in the EHR through a layered system that included many keys such as an external
key pair, an internal key pair, a symmetric key pair, and a shared key. It relied on RBAC to protect
the keys [6]. This scheme used the Shamir scheme as a backup mechanism to retrieve the patients’
keys in the case of the loss of the smart card. However, this scheme did not explain the symmetric and
asymmetric encryption algorithms used to generate pseudonym for users. In addition, the scheme
increases the complexity of the server system with the use of many keys, especially if the scheme
is used by a large health institution. In addition, the server must use the keystore to store the keys,
and this requires protection and a storage space on the server.

Gajanayake et al. [2] integrated four access control models (DAC, MAC, RBAC, and purpose
based access control [PBAC]) to obtain a single model that limits user access control of the medical
record. However, their scheme addressed only the doctor and the patient and did not address different
classes of healthcare providers. In addition, data and requests are clearly transmitted between client
and server.

The healthcare system for patient privacy (HCPP) project was designed for the EHR to protect the
privacy of patient data [9]. Researchers focused on an emergency scenario regarding the protection
of patients’ data. They used a backup mechanism that allows the doctor to access patients’ health
information without access to confidential parameters. However, this search relies on encrypting
all patient data. When a client wants to access patient data, the server uses a keyword to perform
an encrypted data mining operation. This process is very expensive for the server for two reasons.
First, the server must encrypt the entire massive database with the continuous addition of new records,
and second, the server must continuously mine each access request. In addition, their system did not
support levels of authorisation and privileges (roles and attributes) that are more secure in providing
privacy to patients’ records. In addition, researchers have reported that the patient has not been
exposed to collusion because the patient does not attack himself, but this is not true because some
impersonation attacks do the job without the theft or loss of the patient’s device. Moreover, this search
did not specify the type of encryption algorithm used, which is very important for security and server
performance, and addressed only emergency cases.

Jo & Chung [17] proposed an XML access control system (XACS) that enables users to access
specific elements in an XML document. This system relies on removing certain parts of the XML
document to allow users who are authorised to see certain parts of an XML document. However,
requester information is transmitted explicitly over the Internet to a server, which makes it easier for
an attacker to penetrate the privacy of users. In addition, it does not address internal attacks that are
applied by legitimate users even though certain parts of the XML document have been removed.

Seol et al. [18] proposed an access control model based on partial encryption and XML signing
in EHR’s documents within a cloud environment. Their model is supported in two phases: the first
phase is access control using XACML and the second is to encrypt and sign data with XML. However,
the cloud environment presents multiple security and privacy problems in the EHR system because
of the distributed exchange of data between the various health centres. In addition, their scheme
uses encryption in XML requests and responses, which will be extremely costly for legitimate entities
exchanges in healthcare systems. In addition, in the first phase, requests and responses are clearly

Int. J. Environ. Res. Public Health 2019, 16, 1490 5 of 36

sent between the legitimate parties and therefore are exposed to attack. They also did not address the
pseudonym mechanism that prevents access to real users’ information.

3. Overview of Security and Privacy Techniques in EHR Systems

The EHR system needs a set of techniques to implement the management and privacy of patients’
data. In our project, we focus on the security aspect of authorising legitimate users. The EHR system
collects and stores medical records on a server, and each medical record is associated with a set of
attributes that allow healthcare providers or patients to access it later. Several countries, such as
Australia, the USA, and the UK have implemented EHR by taking advantage of dealing with patients’
data over the Internet [5]. Therefore, our project used a set of techniques with the EHR. This section
describes the threat model and the basic concepts of these techniques:

• Threat model
Many serious risks to healthcare systems that require the building of a threat model to detect
weaknesses in these systems. Dolev-Yao threat model [19] is used to test users’ authorisation
in PAX. It is a formal model, a practical way of analyzing authorisation protocols in real
environments. This model is very efficient in examining and analyzing various attacks. We assume
that attacks can be internal, external, active, and passive. Additionally, we suppose that attributes
server (AS) is trustworthy and safe against information repository penetration attacks. In this
model, we address the following threats:

– The attacker can flood the server with intensive authorisation requests, which is to stop the
service from healthcare’s users and destroy the network.

– The attacker performs an attack to penetrate the repository on the central server, to access
the patient’s data and reveal their identities.

– The attacker performs a Man-in-the-middle (MITM) attack to modify the data and to become
a legitimate user in the network.

– The attacker sends a fake authorisation request during the execution of a
forgery/impersonation attack to gain access to patient data.

– The attacker can launch an eavesdropping attack to obtain authorisation requests, and then
perform an analysis of these requests to detect the correlation between data, information,
and pseudonyms.

– The attacker can execute timing attacks by using the time period to reveal user authorisation
information.

• Access control in EHR systems
Any system needs access control (AC) models to determine users’ access to the data repository.
There are many AC models, and each one depends on a particular method and set of rules.
One of the most distinct AC models is role-based access control (RBAC). This model relies on
the classification of users into roles, and each role has privileges and rights regarding data
access [2]. With RBAC, the security of the system is based on the structure of the system’s roles
assigned to users [20]. Each role in the system is assigned according to the job of the user in the
organization [21]. RBAC was introduced to solve problems with previous access models such as
DAC. As shown in Figure 1, the RBAC model divides users into roles (such as a patient, doctor,
and researcher).

In recent years, there has been significant interest in using the attribute-based access control
(ABAC) model for the protection of data privacy. This model is designed to access data more
accurately (fine-grained) and securely. It handles user attributes (such as name, address, age,
mobile, location, time) to allow users to access the server’s repository. ABAC proposed to
go beyond the limitations in the rules and design of the most well-known control access
models (DAC, MAC, and RBAC) [22,23]. ABAC is a rich model because it deals with a

Int. J. Environ. Res. Public Health 2019, 16, 1490 6 of 36

wide range of user attributes. ABAC supports administration, authorisation of context-aware,
risk-intelligence, and scalability in various applications such as the Internet, IoT, Big Data, cloud
computing, and VANET [24]. The attributes in ABAC are categorized into subject, object, action,
and environment. As shown in Figure 2, each user has a set of attributes that allows him/her to
access data in the server.

• Distributed AC implementation technology
The most important component in the proposed EHR system is the EHR repository.
The repositories contain data in various forms because these systems have difficulties dealing with
different coordinates for data. Therefore, the use of extensible access control (XML) is suitable for
the exchange of various data via the Internet. XML is a symbolic language and uses a simple and
flexible method designed to describe, exchange, and manage data across the Internet.
However, XML should support security and privacy mechanisms that provide different levels of
protection of sensitive data in the whole or part of the XML document [17]. Access to data is a
major challenge in big data management systems (EHR) that use different techniques. In addition,
the exchange of information over the Internet has become essential and needs to achieve access
authorisation, particularly in healthcare applications. Extensible access control markup language
(XACML) standards include both access control (authorisation) and data management based
on XML in the different systems [25]. Effectively, XACML offers features for data access and
authorisation for the users at the fine-grained level, which is the most flexible and effective [26–28].
This technology is presented by the organization for the advancement of structured information
standards (OASIS). This standard has many of the features that qualify it for use on the Internet,
such as combining policy, combining algorithm, attribute, multiple subjects, policy distribution,
implementation independency and obligations [23,28,29].
This technique is based on the specific policies first and then on many modules such as policy
enforcement point (PEP), policy decision point (PDP), policy administration point (PAP), policy
information point (PIP), and policy retrieval point (PRP) to evaluate the request for access [4],
as shown in Figure 3 (PEP sends and receives requests and accesses responses to the repository;
PDP evaluates the decision; PAP creates policies based on users’ attributes; PIP retrieves users’
attributes; and PRP retrieves the users’ data from the repository). The result of the decision
(permit, deny, not applicable, indeterminate) is sent to the subject via PEP [23].

• Elliptic curve digital signature algorithm (ECDSA)
Proposed by Scott Vanstone in 1992 [30], the elliptic curve digital signature algorithm (ECDSA) is
an asymmetric signature algorithm that depends on the use of the points on the curve to sign
data. It has been used to provide integrity, authentication, and non-repudiation properties in the
communications network with limited capacity in terms of power and processing. The algorithm
depends on the elliptic curve discrete logarithm problem (ECDLP). It is impervious against
different attacks when the parameters are accurately selected [31], i.e., it is difficult to obtain k from
P and Q (where k is an integer and P and Q are two points on the curve) [32,33]. ECDSA uses small
parameters which expedites the performance of computations, thus reducing time and storage [34].
These features are very important for large organizations and constrained-source devices such as
wireless sensor networks (WSN) that require processing power, memory, bandwidth, or power
consumption [35]. More details about ECDSA’s signature and verification are available in [31].

• Shamir scheme
The secret sharing scheme or the Shamir (SSs, t) scheme depends on a set of keys/secrets
sharing (SSs) and threshold (t) to produce a master key/secret (MS). The master secret can
be created from some or all of the SSs [36]. In this scheme, t specifies the minimum number of
keys/secrets that allow reconfiguring MS [37,38]. This scheme consists of two phases: Generation
and Reconstruction. In the Generation phase, the server divides MS into a set of secrets sharing
(SS1, SS2, .., SSn), and each client (Ci) securely receives one secret sharing (SS) that is part of MS.
In the Reconstruction phase, Ci needs to achieve any set of secrets (SSs) required by relying on the

Int. J. Environ. Res. Public Health 2019, 16, 1490 7 of 36

value of t to construct MS (correctness and homomorphism properties). If Ci has t-1 from SSs, Ci
fails to obtain information from server (secrecy property). Calculating the MS is a very difficult
operation for the attacker. In addition, the secrets that are configured for the MS are anonymous
users; the attacker does not know if these secrets belong to any of the users [6]. The Shamir scheme
provides an anonymity solution to generate a MS with several features such as full security in
hiding Cis’ SSs, a MS size equal to Cis’ SSs sizes, easy creation of a MS from a set of keys/secrets,
and creation of a new key/secret for one-time use [33].

Figure 1. Scheme of role-based access control (RBAC) model.

Figure 2. Scheme of attribute-based access control (ABAC) model.

Int. J. Environ. Res. Public Health 2019, 16, 1490 8 of 36

Figure 3. Scheme of XACML.

4. Our Proposed Authorisation Model

In this Section, we will provide details about our new authorisation scheme that support
security and privacy mechanisms to ensure legitimate users’ authorisation in healthcare applications.
This Section will be divided into the network model, applying privacy concepts and PAX authorisation
protocols for users.

4.1. Network Model

As shown in Figure 4, Pseudonymization and Anonymization with the XACML (PAX) is an
authorisation system that works with EHR. The network model consists of four entities: client (Ci),
central server (CS), attributes server (AS) and data server (DS). These entities communicate with
each other in the PAX framework to accomplish authorisation and privacy preservation of users in
access to the patients’ datasets. CS is the portal that prevents users from accessing directly to both AS
and DS. Patients’ data are stored on the data server (DS) and are fully separated from the attributes
of the users (patients and healthcare providers) that stored on the attributes server (AS). Each Ci
creates an access request and sends it to the CS. Then, CS verifies the authorisation information for
the user’s request, if this request is valid, CS sends the authorisation request to AS for an evaluation;
otherwise, CS sends the “deny” response to Ci. When AS receives the authorisation request from
CS, AS evaluates the access request by PDPs modules, verifies signatures, pseudonyms, and other
security parameters. If all evaluations and tests are valid, AS sends a request to DS to retrieve patient
data; otherwise, AS sends the “deny” response to CS. After that, DS checks for signatures (Sigs) and
privacy parameters (PP), if all operations are correctly performed, DS sends the required data with
pseudonyms and Sigs to AS which in turn sends the “permit” response to Ci by CS to allow access
to the dataset. The authorised user will receive the “permit” response and the copy of the required
data. The PAX system uses two PDPs (PDP1 and PDP2) to implement the user authorisation process,
as shown in Figure 4. In this project, we focus on securing requests and policies to provide a high
level of user privacy. PAX depends on the Balana Project, which is the only open source project that
implements XACML v3.0 to ensure privacy and security for patients’ medical records.

Int. J. Environ. Res. Public Health 2019, 16, 1490 9 of 36

Figure 4. Pseudonymization and Anonymization with the XACML (PAX) model.

4.2. Implementation of PAX

In this section, we will introduce the privacy concepts in PAX.

• EHR’s users in PAX
Security and privacy address where, when, and why data is available and who can access
the data repository. Patients and healthcare providers require services that are efficient, fast,
and continuous and at the same time incorporate strict restrictions to determine data access.
Therefore, AC to medical records has several challenges in terms of security and privacy:

1. Legitimate users should not exceed their privileges.
2. Users’ roles in the EHR system should be defined. For example, a doctor can have several

roles, such as an emergency doctor and a researcher doctor.
3. Data should be anonymous when it reaches the wrong user due to misuse or attacks.
4. Compliance with medical standards for EHR (such as HIPAA) is essential.

In PAX, we divide users into two categories:

– Direct users: These users include those who are directly associated with the data, such as the
patient and the doctor.

– Indirect users: These users include those who are not directly and continuously associated
with the data, such as advisors, patients’ relatives, researchers, and emergency doctors.

Although PAX includes both categories of users, this project focuses on indirect users (Figure 5
shows a flow chart for authorisation of direct and indirect users in PAX). Any healthcare system
can be exposed to an internal attack by indirect users if there are no security and privacy
mechanisms to prevent them.

• Users’ pseudonym in PAX
Several methods are used to protect the privacy of patients’ data, such as encryption and
anonymization. However, these methods suffer from disadvantages. For example, encryption of
patients’ data [7] has the following disadvantages:

1. The researcher or emergency doctor will not benefit from the encrypted data, and if he/she
can decrypt the patients’ data, this is a breach of security in the healthcare system.

2. Large database encryption is very expensive for the server system, which leads to
unnecessary time consumption and reduced processor performance [39].

Int. J. Environ. Res. Public Health 2019, 16, 1490 10 of 36

3. The database of patients’ data requires the continuous addition and deletion of records,
and if the data is encrypted, this will increase the burden on the server [40,41].

4. Encryption can contain direct information about the patients. The penetration of this
encryption will leave the patients’ identity and information exposed [42].

The anonymization of patients’ data requires the following:

1. The removal of all the attributes associated with the patient that prevents the healthcare
provider from dealing with the associated patient’s data [7].

2. Adding a large set of counterfeit records, which greatly increases the size of the database
and therefore consumes server resources, especially with the continuous use of the database
by healthcare providers.

To solve these problems, we apply random pseudonyms with PAX to separate the association
between patients’ attributes and data. The medical records transmitted between the client and
server do not contain any patients’ attributes. This prevents the attackers from identifying patients.
In PAX, we propose to use four datasets: the first was for users’ attributes (patients and healthcare
providers); the second was for applying pseudonyms to users; the third was for users’ policies
(on AS); and the fourth was for patients’ data (on DS). When the EHR system wants to add a new
healthcare provider or patient, the PAX randomly generates a pseudonym for that user and adds
it to the second dataset. Suppose that we have a dataset for random pseudonyms, as in Table 1.
PAX generates pseudonyms (such as p429 or d761) for patients or healthcare providers during
the addition of a letter representing the user’s role (UR) such as p or d plus a random client’s
number (CN). Each subject’s pseudonym (SP) and object’s pseudonym (OP) consists of UR and
CN (internal pseudonym), which are not transferred between entities and are used for policy
verification at AS. XACML’s request in PAX depends on the SP and OP (external pseudonym),
and both SP and OP are divided into role’s number (RN) and user’s number (UN) (after replacing
UR with RN and CN with RN) and the latter are segmented into three parts (low (l), medium
(m), and high (h)) with length 8 bits per part as in Table 2. These pseudonyms are associated
with the users’ IDs. It enables users to access a specific patient’s data without exceeding granted
privileges and rights.

• Using ECDSA’s signatures
PAX uses ECDSA (NIST prime-256) with requests and policies to ensure that security requirements
apply to the privacy of patients’ data. We have applied ECDSA signatures with subjects’ and
objects’ attributes to ensure integrity property to prevent changing attributes in requests and
policies, authentication property to prevent external attackers and non-repudiation property to
prevent authorised users from denying their requests to receive medical records. The application
of security requirements is very important in systems that use sensitive data, such as healthcare
systems. In PAX, the Ci signs the request with pseudonyms (RN and UN), and the servers
(CS and AS) verify the request’s Sigs. If valid, the AS assigns the request to the PDPs engines
(after replacing Sigs(external pseudonym) with Sigs(internal pseudonym)) in XACML v3.0;
otherwise, the request is rejected. PAX uses ECDSA’s Sigs to hide parts of SP and OP when
exchanging XACML’s requests between PAX entities. The high performance and security level
makes this algorithm suitable for application in large systems (such as EHR).

• Policies administration in PAX
System Administrator is responsible for creating policies for healthcare providers and patients
in AS by PAP. Policy in PAX consists of the policy ID, subject, object, and rules for policy
implementation. The first process in the PAX system is to create datasets for pseudonyms and
attributes for all users. The process of creating policies depends on previous datasets. PAX uses
ECDSA to generate a signature of SP (Ssp) and a signature of OP (Sop) based on the pseudonyms
(UR and CN) for both SP and OP. Creating signature-based policies and pseudonyms protects

Int. J. Environ. Res. Public Health 2019, 16, 1490 11 of 36

policies on the server in a way that is immune to internal and external attacks (policies do not
depend on users’ real attributes). For example, the system administrator creates a user policy
by entering the doctor’s name and UR and patient’s name, PAX creates this policy as shown
in Figure 6. The policy parameters are highlighted in green: d20 represents the SP and uses
as policy’s ID; the first long 128-bit hexadecimal number represents the Sop; and the second
long 128-bit hexadecimal number represents the Ssp. This policy can include a set of rules such
as determining the date of data access, the time specified on a given day, or the number of
access times.

• Clients’ requests and server’s responses
PAX’s users must create an authorisation request to access medical records. This request consists
of subjects’ and objects’ attributes. The Ci application in PAX uses the parts of RN and UN as
a single attribute to generate the ECDSA’s Sig for the subjects and the objects. Figure 7 shows
the client’s request to access patient data (where the request parameters are highlighted in green;
CiS2tm ||RNoptm ||UNoptm ||NC||CiS4tm in resource segment represents the object’s attributes; and
the CiS1tm ||RNsptm ||UNsptm ||NC ||TSCtm ||SNCtm in access-subject segment represents the subject’s
attributes). In addition, the Ci application uses a part of RNsp to explain to the AS the user’s role
to determine the desired policy after verifying the Sigs. Then, the Ci sends the request to the AS
by CS for evaluation. The AS evaluates the request in the PDP engines, and the response (permit
or deny) returns to the Ci by CS.

• Using Shamir scheme
In PAX, we implemented the Shamir scheme to increase the level of security for indirect users
(advisors, patients’ relatives, researchers, and emergency). Indirect users are legitimate users who
can perform an internal attack because of the rights granted to them. PAX uses ECDSA to sign
all signatures of healthcare users to create a master signature (MS). Then, PAX uses the Shamir
scheme to generate secrets sharing (SSs) from a MS. Each indirect user receives SS via a secure
communication channel. Ci needs a set of SSs to reproduce MS. PAX uses t = 3, which means
that the randomly selected SSs require at least 3 SSs to generate MS. In addition, depending on
RNsp, AS specifies that the user’s role is indirect and use the Shamir scheme with ECDSA’s Sig
to verify the original MS and then evaluate the request by PDP2. Using Shamir’s scheme with
XACML adds the property of authenticity, as an indirect user cannot access data with the same SSs.
This operation enables PAX to secure the privacy of patients’ data and protect patients’ data from
internal and external attacks. When an indirect user wants access to medical records, he/she does
not know whether the SSs used to generate the MS belong to any specific healthcare providers.

Table 1. Internal and external pseudonyms of users.

Users UR CN Internal Pseudonym RN UN External Pseudonym

patient p p1 ... pn
doctor d d1 ... dn
advisor a a1 ... an
relative pr 1 ... n pr1 ... prn 1 ... n 1 ... n 1 ... n

researcher r r1 ... rn (48-bit)
emergency e e1 ... en

Shamir - -

Table 2. Parts of SP and OP.

SP OP

RNsp UNsp RNop UNop

RNspl RNspm RNsph UNspl UNspm UNsph RNopl RNopm RNoph UNopl UNopm UNoph

Int. J. Environ. Res. Public Health 2019, 16, 1490 12 of 36

Ci creates and
sends the

request to CS
CS receives user’s

request, verifies
and sends it to AS
AS receives user’s

request, evaluates it

Verify
PP+Sigs

(ECDSA)?

Communication
denied

Is the
request

for direct
user?

Evaluation of
authorisation

request with two
PDPs (Figure 14)

Evaluation of
authorisation

request with single
PDP1 (Figure 8)

Is the
direct
user

authorised?

Is the
indirect

user
authorised?

Access denied
(server’s repository)

Access granted
for patient-specific

data from DS

Access granted for
patient (s)-specific

data from DS

No

Yes

No
Yes

No
No

YesYes

Figure 5. Authorisation of direct and indirect users.

Figure 6. PAX policy.

Int. J. Environ. Res. Public Health 2019, 16, 1490 13 of 36

Figure 7. Ci’s request.

4.3. PAX Authorisation Protocols

In this section, we will provide in detail PAX’s protocols framework in authorising direct and
indirect users. PAX uses four protocols for direct users such as doctor and five protocols for indirect
users such as researcher to secure communication among PAX’s entities. The request in protocols
includes PP for a subject (sender) and object (receiver).

• Authorisation protocols for direct subjects and objects
To run through the authorisation process for direct users of PAX, the security techniques
mentioned in the previous sections will be the basis for building the PAX authorisation system.
In this section, we will explain the protocols of authorising direct users such as doctors and
patients to access medical records (EHR).

– Prerequisite procedures
There are a set of steps that must be taken before authorisation can begin.

1. Create two datasets (attributes, pseudonym) on AS. If datasets are established,
the processes are to add new users or delete direct users.

2. Create policies (dataset 3) for all direct users based on anonymity and pseudonym.
3. Storage of medical records (dataset 4) for patients in the DS’s repository (after collecting

them from patients using wireless medical devices, this process requires security
mechanisms, but the process of storing medical records safely is beyond the scope
of this research). We assume that patients’ data is located on the DS.

– Authorisation protocols
The following protocols detail how the direct user is associated with the EHR in DS. Figure 8
depicts generally the authorisation process, while Figures 9–12 show the authorisation
protocols of direct users with PAX entities.

1. First protocol as shown in Figure 9:

* PAX’s user enters the subject ID (SID), object ID (OID), subject role (SR) and
object role (OR) to the Ci application. Ci replaces SID, OID, SR and OR with CNsp,
CNop, URsp and URop respectively. After that, internal pseudonyms are replaced
with UNsp, UNop, RNsp RNop respectively. Then, Ci generates random nonces
(NC and SNC) and new timestamp (TSCi). SNC is a random secret between Ci
and CS. Ci computes 4 Sigs (CiS1, CiS2, CiS3 and CiS4). CiS1 and CiS2 is used to
ensure the legitimacy of Ci in CS. CiS3 is used to protect SNC between Ci and

Int. J. Environ. Res. Public Health 2019, 16, 1490 14 of 36

CS. CiS4 is used to validate Ci in both AS and DS (depending on RNoph and
UNoph). Ci hides all Sigs such as CiS1 temporary (CiS1tm) and PP such as TSCtm

and SNCtm . At this point, Ci sends XACML’s request to CS that including subject’s
information (CiS1tm ||RNsptm ||UNsptm ||NC ||TSCtm || SNCtm) and object’s information
(CiS2tm || RNoptm ||UNoptm ||NC||CiS4tm).

* CS receives XACML’s request from Ci, cuts Sigs and PP from access-subject (CiS1tm ,
RNsptm , UNsptm , NC, TSCtm and SNCtm) and resource (CiS2tm , RNoptm , UNoptm , NC
and CiS4tm). Then, CS extracts RNspl , UNspl , RNopl and UNopl from receiving
parameters (such as RNsptm). UNspl and UNopl is used to retrieve UNspm and
UNopm from datasets. CS extracts CiS4, SNC, TSCi and checks timestamp. Then, CS
computes Sigs (CSS1, CSS2 and CSS3), and uses CSS1 to extract original CiS1 and
CiS2. After that, CS checks CSS2=CiS1 and CSS3=CiS2. If the Sigs are not identical,
CS cancels the connection; otherwise, it moves to the next protocol.

2. Second protocol as shown in Figure 10:

* CS generates random secret (SNCS) and new timestamp (TSCS) between CS and
AS. Then, CS computes the secret signature (CSS4) to protect SNCS. In addition, CS
hides Ci’s parameters such as NC and TSCi to use them with validation operations
in AS and DS. In addition, all Sigs (such as CSS2tm) and PP (such as NCS and
TSCStm) are anonymously hidden by CS. At this point, CS sends XACML’s request
to AS.

* AS receives the request, cuts Sigs and PP. After that, AS extracts original parameters
(such as CiS4 and TSCS) and checks timestamp. AS computes ASS1 (to extract CSS2

and CSS3) and computes ASS2 and ASS3 (to check ASS2=CSS2 and ASS3=CSS3).
AS retrieves RNoph and UNoph from dataset (depending on RNopm and UNopm)
and computes ASS4 to ensure Ci request is legitimate after checks ASS4 = CiS4.
AS uses the parts of external pseudonyms to specify URsp, URop, CNsp and
CNsp. AS retrieves Sigs of SP and OP (Ssp and Sop) depending on the internal
SP and OP. AS uses PDP1 engine to evaluate XACML’s request after adding
Ssp and Sop to that request. AS specifies user’s policy in PAP and checks user’s
attributes in PIP. PDP1 applies policy to get a decision (permit, deny, not applicable
and indeterminate). If decision=“permit”, AS uses URsp to specify user’s role
(direct/indirect). If URsp=direct, AS sends the data retrieval request by PRP to DS;
if URsp=indirect, AS sends the Shamir request that contain at least 2 SSs to ensure
legitimate indirect users. Otherwise AS sends reject response to Ci by CS.

3. Third protocol as shown in Figure 11:

* Similarly, AS generates random secret (SNAS) and timestamp (TSAS) between
AS and DS. AS computes ASS5 to protect secret (SNAS) between AS and DS.
Additionally, AS computes ASS6 to ensure legitimate PP (RNopm and UNopm) in
DS. All Sigs (such as ASS6tm) and PP (such as TSAStm and SNAStm) are anonymously
hidden by AS. Then, AS sends XACML’s request to DS.

* DS receives the request, cuts Sigs and PP. After that, DS extracts original parameters
(such as CiS4 and SNAS) and checks timestamp. DS computes DSS1 (to extract
ASS6) and retrieves RNoph and RNopm depending on RNopl . Then, DS computes
DSS2 and DSS3 to check DSS2 = ASS6 and DSS3 = CiS4. If AS’s parameters
validated in DS correctly, DS computes timestamp (TSDS) and signs patient’s data
(DSS4). All Sigs (such as DSS4tm) and PP (such as TSDStm) are anonymously hidden
by DS. At this point, DS sends the response to AS.

Int. J. Environ. Res. Public Health 2019, 16, 1490 15 of 36

* AS receives the response, extracts PP (such as TSDS) and checks timestamp. AS
tests the Sigs checking (such as ASS6 = DSS2). Then, AS computes data signature
(ASS7) to check data integrity by ASS7 = DSS4.

4. Fourth protocol as shown in Figure 12:

* AS prepares the response to CS by generating a new timestamp (TSAS), hides data
signature (ASS7) with ASS2, ASS3, CiS4 and secret signature (ASS1). AS hides PP
and sends the response that contains decision and patient’s data to CS.

* CS receives the response and extracts Sigs and PP. CS computes data signature
(DSS5) to check data integrity (CSS5 = ASS7). Then, CS checks other Sigs
(CSS2, CSS3 and CSS4) with received Sigs (ASS2, ASS3 and CiS4) to ensure
legitimacy of AS. CS prepares the response to Ci by generating a new timestamp
and hides data signature (CSS5) with CSS2, CSS3, CiS4 and secret signature (CSS1).
CS sends the response to Ci.

* Ci receives the response, extracts PP and checks timestamp. Ci computes data
signature (CiS5) to check data integrity by CiS5 = CSS5. Then, Ci extracts signatures
(CSS2, CSS3, CSS1 and CiS4) and checks them with original signatures (CiS1, CiS2,
CiS3 and CiS4) respectively. Ci uses CSS2, CSS3 and CSS1 (secret signature between
Ci and CS) to check legitimacy of CS while uses CiS4 to check legitimacy of AS and
DS. If all Sigs are validated, namely, authorised Ci received securely correct data.

• Authorisation protocols for indirect subjects and objects
Indirect user authorisation is an important process to secure sensitive patients’ data in the EHR
stored in DS. PAX offers additional procedures to prevent the abuse of indirect user privileges.

– Prerequisite procedures
There are a set of steps that must be performed before authorisations are applied.

1. Steps from 1 to 3 are similar to those for direct users.
2. The Shamir scheme is used to generate the SSs from MS for the number of users, each Ci

has unique SS same length as MS, and authorised with two policies for each indirect
user on AS. The policy evaluation process is also done with two, PDP1 and PDP2,
evaluation engines. The use of two evaluation engines is very important in separating
direct and indirect users and increasing security in the privacy of medical records.

3. The PAX authorisation system identifies certain medical records (the patients’ history
at a given time such as a year or more ago) for indirect users who can access them,
as shown in Figure 13 (researcher case).

– Authorisation protocols
The following protocols detail how the indirect user obtains medical records in PAX. Figure 14
illustrates generally the authorisation of indirect users, while Figures 9–12 and 15 show the
authorisation protocols of indirect users in PAX.

1. The steps of the first and second protocols are similar to the ones of the direct users
authorisation.

2. Third protocol as shown in Figure 15:

* AS computed MS previously by signing all users’ signatures. Then, AS computes
Shamir scheme to generate SSs with the same number of users (each Ci has one
unique SS). In PAX, Ci needs at least 3 SSs to generate original MS. In this protocol,
AS generates a new timestamp and retrieves at least 2 SSs. After that, AS hides SSs

with ASS2, CiS4, Ssp and secret signature (ASS1) as well as parameters (such as

Int. J. Environ. Res. Public Health 2019, 16, 1490 16 of 36

TSAStm and UNsptm) are anonymously hidden. At this point, AS sends request
to CS.

* CS receives the request, extracts PP and checks timestamp. Then, CS removes
the secret signature (CSS4) and adds the secret signature (CSS1) in CSS2tm . CS
generates a new timestamp (TSCS), hides PP and sends the request to Ci.

* Ci receives Shamir’s request, extracts PP and checks timestamp. Then, Ci computes
CiS6 to extract SSs and retrieves his SS. At the moment, Ci can generate MS from
Shamir (Ci’s SS||SSs), hides MS with CiS6 and CiS3, generates timestamp and
hides PP. At this point, Ci sends the response to CS.

* CS receives the response, extracts PP and checks timestamp. Also, CS removes
CSS1 and adds CSS4 in CiS6tm . CS generates a new timestamp, hides PP and sends
the response to AS.

* AS receives Shamir response, extracts PP and checks timestamp. Then, AS extracts
the received MS and checks it with the saved original MS. After that, AS retrieves
Ci’s SS depending on Ssp(URsp||CNsp) and assigns the request (SS,Sop) to PDP2
. AS specifies policy depending on policy’s ID (Shamir||SP), checks attributes
in PIP and PDP2 applies policy in PAP to produce the decision. If the decision is
“permit”, AS creates a data retrieval request by PRP to DS; otherwise AS sends
reject response to Ci by CS.

3. The fourth and fifth protocols are similar to the third and fourth ones respectively in
direct user authorisation. DS sends the response to the Ci by AS and CS. If Ci is an
advisor, relative, or emergency doctor, Ci will receive specific patient’s data; otherwise,
if Ci is researcher doctor, Ci will receive a set of medical records.

Figure 8. Authorisation of direct users.

Int. J. Environ. Res. Public Health 2019, 16, 1490 17 of 36

Ci CS
Enters SID , OID , SR and OR

Replaces SID with CNsp , OID with CNop

SR with URsp and OR with URop

Replaces CNsp , CNop , URsp and URop with
UNsp , UNop , RNsp and RNop

SP=RNsp ||UNsp , OP=RNop ||UNop

UNsp = UNspl ||UNspm ||UNsph
UNop = UNopl ||UNopm ||UNoph
RNsp = RNspl ||RNspm ||RNsph
RNop = RNopl ||RNopm ||RNoph
Generates new NC , SNC and TSCi
CiS1 = ECDSA(RNspm ||UNspm ||NC ||TSCi)

CiS2 = ECDSA(RNopm ||UNopm ||NC ||TSCi)

CiS3 = ECDSA(SNC)

CiS4 = ECDSA(RNoph ||UNoph ||TSCi)

CiS1tm = CiS1 ⊕ CiS3, CiS2tm = CiS2 ⊕ CiS3

TSCtm = TSCi ⊕ SNC ⊕ RNspm ⊕UNspm

SNCtm = UNspm ⊕UNopm ⊕ SNC ⊕ CiS4 ⊕ CiS1tm
CiS4tm = CiS4 ⊕UNspm ⊕UNopm ⊕ CiS2tm
RNsptm = RNspl ⊕ CiS1tm ⊕ SNCtm
RNoptm = RNopl ⊕ CiS2tm ⊕ SNCtm
UNsptm = UNspl ⊕ CiS1tm ⊕ SNCtm
UNoptm = UNopl ⊕ CiS2tm ⊕ SNCtm

Request=(CiS1tm ||RNsptm ||UNsptm ||NC ||TSCtm ||SNCtm ,
CiS2tm ||RNoptm ||UNoptm ||NC ||CiS4tm)

Sends XACML’s request

Receive XACML’s request
From access-subject:
Cuts CiS1tm , RNsptm , UNsptm , NC , TSCtm and SNCtm

From resource:
Cuts CiS2tm , RNoptm , UNoptm , NC and CiS4tm
Extracts RNspl = RNsptm ⊕ CiS1tm ⊕ SNCtm
Similarly, extracts RNopl , UNspl and UNopl
Retrieves UNspm and UNopm from datasets depending on

UNspl and UNopl
CiS4 = CiS4tm ⊕UNspm ⊕UNopm ⊕ CiS2tm
SNC = UNspm ⊕UNopm ⊕ SNCtm ⊕ CiS4 ⊕ CiS1tm
TSCi = TSCtm ⊕ SNC ⊕ RNspm ⊕UNspm

Checks TSCS − TSCi ≤ 4T, CSS1 = ECDSA(SNC)

CiS1 = CiS1tm ⊕ CSS1, CiS2 = CiS2tm ⊕ CSS1

CSS2 = ECDSA(RNspm ||UNspm ||NC ||TSCi)

CSS3 = ECDSA(RNopm ||UNopm ||NC ||TSCi)

Checks CSS2 = CiS1 and CSS3 = CiS2

Figure 9. Protocol of PAX model between Ci and CS.

CS AS
Creates new XACML’s request
Generates new SNCS and TSCS

CSS4 = ECDSA(SNCS)

CSS2tm = CSS2 ⊕ CSS4, CSS3tm = CSS3 ⊕ CSS4

NCS = NC ⊕ TSCi ⊕ TSCS ⊕ SNCS

TSCtm = TSCi ⊕ SNCS ⊕ RNspm ⊕UNspm

TSCStm = TSCS ⊕ SNCS ⊕ RNopm ⊕UNopm

SNCStm = UNspm ⊕UNopm ⊕ SNCS ⊕ CiS4 ⊕ CSS2tm
CiS4tm = CiS4 ⊕UNspm ⊕UNopm ⊕ CSS3tm
RNsptm = RNspl ⊕ CSS2tm ⊕ SNCStm
RNoptm = RNopl ⊕ CSS3tm ⊕ SNCStm
UNsptm = UNspl ⊕ CSS2tm ⊕ SNCStm
UNoptm = UNopl ⊕ CSS3tm ⊕ SNCStm

Request=(CSS2tm ||RNsptm ||UNsptm ||NCS ||TSCtm
||TSCStm ||SNCStm ,
CSS3tm ||RNoptm ||UNoptm ||CiS4tm)

Sends XACML’s request

Receive XACML’s request
Similarly for CS:

Cuts security parameters, extracts RNspl , RNopl , UNspl and UNopl
Retrieves UNspm and UNopm

Extracts CiS4, SNCS , TSCi , TSCS and NC , checks TSAS

ASS1 = ECDSA(SNCS)

CSS2 = CSS2tm ⊕ ASS1, CSS3 = CiS3tm ⊕ ASS1

ASS2 = ECDSA(RNspm ||UNspm ||NC ||TSCi)

ASS3 = ECDSA(RNopm ||UNopm ||NC ||TSCi)

Checks ASS2 = CSS2 and ASS3 = CSS3

Retrieves RNoph and UNoph
ASS4 = ECDSA(RNoph ||UNoph ||TSCi), ASS4 = CiS4

SP = RNsp ||UNsp , OP = RNop ||UNop

Specifies URsp , URop , CNsp and CNsp depending on
RNsp and RNop , UNsp and UNsp

Retrieves Ssp and Sop depending on SP and OP (internal pseudonym)
Uses PDP1 to evaluate request (Ssp , Sop)
Specifies policy depend on policy’s ID (SP)
Checks attributes (SID ,OID ,SR ,OR) in PIP, applies policy in PAP
If decision =“permit”, then
If URsp= direct user, then
Sends data retrieval request by PRP to DS

If URsp= indirect user, then
Sends request with Shamir scheme to Ci by CS

Figure 10. Protocol of PAX model between CS and AS.

Int. J. Environ. Res. Public Health 2019, 16, 1490 18 of 36

AS DS
Creates new data retrieval request
Generates new SNAS and TSAS

ASS5 = ECDSA(SNAS)

ASS6 = ECDSA(RNopm ||UNopm ||SNAS ||TSAS

||CiS4)

RNoptm = RNopl ⊕ TSAS ⊕ SNAS

ASS6tm = ASS6 ⊕ TSAS ⊕ ASS5

TSCtm = TSCi ⊕ SNAS ⊕UNoph
TSAStm = TSAS ⊕ SNAS ⊕UNopm

SNAStm = UNopm ⊕ SNAS ⊕ CiS4 ⊕ ASS6tm
CiS4tm = CiS4 ⊕UNoph ⊕ SNAStm ⊕UNopm

UNoptm = UNopl ⊕ ASS6tm ⊕ SNAStm

Request=(ASS6tm ||RNoptm ||UNoptm ||SNAStm
||TSCtm ||TSAStm ||CiS4tm)

Sends data retrieval request

Receives data retrieval request
Extracts UNopl , retrieves UNopm and UNoph depending on UNopl
Extracts CiS4, SNAS , TSCi and TSAS , checks TSDS

DSS1 = ECDSA(SNAS), extracts ASS6 and RNopl
Retrieves RNoph and RNopm depending on RNopl
DSS2 = ECDSA(RNopm ||UNopm ||SNAS ||TSAS ||CiS4)

DSS3 = ECDSA(RNoph ||UNoph ||TSCi)

Checks DSS2 = ASS6 and DSS3 = CiS4

Sends data retrieval response
Generates new TSDS

DSS4 = ECDSA("Data")
DSS4tm = DSS4 ⊕ DSS1 ⊕ CiS4

DSS2tm = DSS2 ⊕ DSS4 ⊕ TSDS ⊕ DSS1

CiS4tm = CiS4 ⊕ DSS1 ⊕ TSDS

TSDStm = TSDS ⊕ SNAS ⊕UNoph
UNoptm = UNopl ⊕ DSS2tm ⊕ TSDStm

Response=(DSS2tm ||DSS4tm ||UNoptm
||TSDStm ||CiS4tm ||"Data")

Sends data retrieval response

Receives data retrieval response
Extracts UNopl and TSDS , checks TSAS

Extracts CiS4, DSS2 and ASS6

Checks ASS6 = DSS2, extracts DSS4

ASS7 = ECDSA("Data"), checks ASS7 = DSS4

Figure 11. Protocol of PAX model between AS and DS.

Ci CS AS
Sends decision and data response
Generates new TSAS

ASS2tm = ASS2 ⊕ ASS1 ⊕ ASS7

⊕CiS4

ASS3tm = ASS3 ⊕ ASS1 ⊕ ASS7

⊕CiS4

TSAStm = TSAS ⊕ SNCS ⊕UNopm

UNsptm = UNspl ⊕ ASS2tm ⊕ TSAStm

Response=(ASS2tm ||ASS3tm ||UNsptm ||
TSAStm ||"Decision & Data")

Sends response

Receives decision and data response
Extracts UNspl and TSAS , checks TSCS

Extracts ASS7 = CSS2 ⊕ CSS4 ⊕ CiS4

⊕ASS2tm

CSS5 = ECDSA("Data")
Checks CSS5 = ASS7, extractsASS2 and ASS3

Checks CSS2 = ASS2 and CSS3 = ASS3

Extracts ASS1 and CiS4

Checks the corresponding values for CSS4 and CiS4

Sends response
Generates new TSCS

CSS2tm = CSS2 ⊕ CSS1 ⊕ CSS5 ⊕ CiS4

CSS3tm = CSS3 ⊕ CSS1 ⊕ CSS5 ⊕ CiS4

TSCStm = TSCS ⊕ SNC ⊕UNopm

UNsptm = UNspl ⊕ CSS2tm ⊕ TSCStm

Response=(CSS2tm ||CSS3tm ||UNsptm ||
TSCStm ||"Decision & Data")

Sends response

Receives decision and data response
Extracts UNspl and TSCS , checks TSCi

Extracts CSS5

CiS5 = ECDSA("Data")
Checks CiS5 = CSS5

Extracts CSS2 and CSS3

Checks CiS1 = CSS2 and
CiS2 = CSS3

Extracts CSS1 and CiS4

Checks the corresponding values for
original CiS3 and CiS4

Figure 12. Protocol of PAX model between AS, CS and Ci.

Int. J. Environ. Res. Public Health 2019, 16, 1490 19 of 36

Int. J. Environ. Res. Public Health 2019, 16, 5 21 of 34

require the patient’s consent. Abraham should not know any secrets healthcare providers have
used to authorise access to Rose’s data.

PAX provides security and privacy for all previous scenarios; indirect users cannot access the patient’s
personal information because it is separate and completely hidden from the data. As a result, the user
can retrieve this data to improve healthcare without penetrating the repository in DS.

Figure 15. Users’ scenarios in PAX.

* Patient’s Data *

Pseudonym: RNoptm & UNoptm

check1: report: status: date:
check2: report: status: date:
check3: report: status: date:
check4: report: status: date:
check5: report: status: date:

. . . .

. . . .

. . . .

Figure 16. Part of Sarah’s data.

* Patients’ DataSet *

--
No Check Report Status time date
--
1 check3 Report3 still 23:21:33 2017-09-05
2 check1 Report1 ok 14:36:45 2017-09-08
3 check2 Report2 normal 17:09:57 2017-09-08
5 check3 Report3 still 17:10:09 2017-09-10
6 check2 Report2 normal 12:28:20 2017-09-11
.
.
.

Figure 17. Part of medical records
for patients.

5.2. Security Analysis

Security and privacy mechanisms in PAX have evaluated under theoretical analysis, BAN logic
and AVISPA tool.

5.2.1. Theoretical Security Analysis

Organizational and managerial features are important in healthcare systems, but the key player in
applying these systems is the use of security and privacy mechanisms for patient records [11]. Medical
records in the EHR are sensitive data and require security mechanisms to protect their privacy from
attackers. Also, the different levels and privileges of healthcare providers make the development
of security mechanisms and authorisation models very difficult [4]. Moreover, applying privacy to
medical records (EHR) requires the use of access models in the authorisation of users. Integrating

Figure 13. Part of medical records for patients.

Figure 14. Authorisation of indirect users.

Ci CS AS
Sends Shamir’s request
MS = ECDSA(users′signatures)
SSs = Shamir(MS, t, numberso f users)
Each Ci has one SS
Generates new TSAS

Retrieves randomly 2 SSs or more
ASS2tm = ASS2 ⊕ ASS1 ⊕ SSs

⊕CiS4 ⊕ Ssp

TSAStm = TSAS ⊕ SNCS ⊕UNopm

UNsptm = UNspl ⊕ ASS2tm ⊕ TSAStm

Request=(ASS2tm ||UNsptm ||TSAStm)
Sends request

Receives Shamir’s response
Extracts UNspl and TSCS , checks TSAS

MS = CiS6tm ⊕ Ssp ⊕ ASS1

Checks recieved MS with saved MS
Uses PDP2 to evaluate request (SS, Sop)
Specifies policy depend on policy’s ID (Shamir||SP)
Checks attributes in PIP, applies policy in PAP
If decision =“permit”, then creates data retrieval request
by PRP to DS and sends to Ci by CS (Figures 11 and 12)

Receives Shamir’s request
Extracts UNspl and TSAS , checks TSCS

CSS2tm = ASS2tm ⊕ CSS4 ⊕ CSS1

Generates new TSCS

TSCStm = TSCS ⊕ SNC ⊕UNopm

UNsptm = UNspl ⊕ CSS2tm ⊕ TSCStm

Request=(CSS2tm ||UNsptm ||TSCStm)
Sends request

Receives Shamir’s response
Extracts UNspl and TSCi , checks TSCS

CiS6tm = CiS6tm ⊕ CSS1 ⊕ CSS4

Generates new TSCS

TSCStm = TSCS ⊕ SNCS ⊕UNopm

UNsptm = UNspl ⊕ CiS6tm ⊕ TSCStm

Response=(CiS6tm ||UNsptm ||TSCStm)

Sends response

Receives Shamir’s request
Extracts UNspl and TSCS , checks TSCi

CiS6 = ECDSA(SP)
SSs = CiS1 ⊕ CiS3 ⊕ CSS2tm

⊕CiS4 ⊕ CiS6

Retrieves his SS
MS = Shamir(C′i sSS||SSs)

CiS6tm = CiS6 ⊕ CiS3 ⊕MS
Generates new TSCi
TSCtm = TSCi ⊕ SNC ⊕UNspm

UNsptm = UNspl ⊕ CiS6tm ⊕ TSCtm

Response=(CiS6tm ||UNsptm ||TSCtm)

Sends response

Figure 15. Protocol of PAX model for indirect users.

Int. J. Environ. Res. Public Health 2019, 16, 1490 20 of 36

5. Discussion

In this Section, we discuss users scenarios and security analysis in PAX and demonstrate PAX’s
ability to protect patients’ data during security and privacy implementation. In addition, the use of
formal tools in the PAX security analysis is to prove security measures in repelling healthcare risks.

5.1. Direct and Indirect Users Scenarios in PAX

This Section illustrates four case scenarios in PAX that involve obtaining access to medical records
in the EHR. We present our perspective of securing the privacy of patients’ data through the integration
of anonymity, pseudonym, and XACML in our project. To provide user scenarios, we impose a number
of EHR users with the PAX system, as shown in Figure 16. The patient may suffer from many diseases
such as diabetes, dementia, cancer, addiction, blood pressure, and heart disease, which means that
the patient is associated with more than one doctor. The patient does not want other healthcare
providers to access his/her personal information because of embarrassment or his/her psychological
state. In addition, the doctor has treated a set of patients. Therefore, ensuring privacy in non-disclosure
of personal information to patients requires each indirect user to apply HIPAA standards.

Assume we have three patients, Sara, John, and Rose, who suffer from diseases such as cancer,
dementia, and diabetes respectively. Each disease requires a different level of care. For instance,
a patient suffering from dementia needs a family member who assists with all of the patient’s tasks and
is able to access all of the patient’s data. We assume that Julia is one of John’s relatives. In addition, there
is a group of healthcare providers, including Simon, Adam, Hawa, and Abraham, who want access to
patients’ medical records. These users can have different roles; for example, Adam may have the roles
of advisor and doctor, and Abraham may be a doctor and an emergency doctor. Different user roles
can be a major reason for breaching the privacy of medical records. Users such as patients (Sara and
Rose) and the physician (Simon) need direct authorisation to EHR data because of persistent and
regular requests to access the repository. For example, Simon is the general practitioner (GP) for Sara
and needs to access her data every day or even more than once a day (under the PAX system, Sara’s
data is private in data access requests by both Sara and Simon, as shown in Figure 17).

1. The first scenario (advisor): Simon needs a consultant (such as Adam) to diagnose Sara’s disease
or to submit treatment suggestions (after taking Sara’s consent to seek specialist advice). Adam
is not associated with Sara permanently and continuously and does not need Sara’s personal
information; he only needs certain details of the patient’s data and medical reports. Therefore,
in PAX, Adam needs to enter his name (Adam), the name of the doctor (Simon), and Sara’s
pseudonym to access Sara’s data; he does not need to know Sara’s real attributes. Figure 17 shows
Sara’s data, which can be obtained by Simon and Adam. We note from Figure 17 that the data
received does not contain any of Sara’s attributes, and Adam does not use any real attributes
for Sara, which means that PAX provides a high level of security and privacy that can prevent
external and internal attacks.

2. The second scenario (relative of a patient): Because the patient (John) suffers from dementia, he
is unable to perform his duties. John needs a family helper (such as Julia) to access his medical
data without misuse or to bypass these privileges to other medical records. Julia needs a request
that contains her Sigs and John’s pseudonym to be considered a legitimate user in the system
but is not authorised to access John’s data until the CS and AS complete the third authorisation
protocol with the Shamir scheme.

3. The third scenario (researcher): Hawa is a researcher and tries to access the server’s repository
to use EHR in evaluating a medical study to develop a disease treatment. The researcher needs
access to medical records sporadically and not permanently. The researcher is not associated with
a particular patient and needs access to a set of the patients’ data. In addition, this indirect user
does not need access to the patients’ attributes. Figure 13 shows a set of medical records obtained
by Hawa in the case of authorisation without using any of the patients’ real attributes.

Int. J. Environ. Res. Public Health 2019, 16, 1490 21 of 36

4. The fourth scenario (emergency doctor): When Rose’s health has deteriorated significantly and
suddenly, her doctor is not available for some reason. Rose needs an emergency doctor to treat
and assess her condition quickly (e.g., Abraham). The emergency doctor needs to access Rose’s
data without accessing personal information. In an emergency, access to a patient’s data does not
require the patient’s consent. Abraham should not know any secrets healthcare providers have
used to authorise access to Rose’s data.

PAX provides security and privacy for all previous scenarios; indirect users cannot access the
patient’s personal information because it is separate and completely hidden from the data. As a result,
the user can retrieve this data to improve healthcare without penetrating the repository in DS.

Figure 16. Users’ scenarios in PAX.

Int. J. Environ. Res. Public Health 2019, 16, 5 21 of 34

require the patient’s consent. Abraham should not know any secrets healthcare providers have
used to authorise access to Rose’s data.

PAX provides security and privacy for all previous scenarios; indirect users cannot access the patient’s
personal information because it is separate and completely hidden from the data. As a result, the user
can retrieve this data to improve healthcare without penetrating the repository in DS.

Figure 15. Users’ scenarios in PAX.

* Patient’s Data *

Pseudonym: RNoptm & UNoptm

check1: report: status: date:
check2: report: status: date:
check3: report: status: date:
check4: report: status: date:
check5: report: status: date:

. . . .

. . . .

. . . .

Figure 16. Part of Sarah’s data.

* Patients’ DataSet *

--
No Check Report Status time date
--
1 check3 Report3 still 23:21:33 2017-09-05
2 check1 Report1 ok 14:36:45 2017-09-08
3 check2 Report2 normal 17:09:57 2017-09-08
5 check3 Report3 still 17:10:09 2017-09-10
6 check2 Report2 normal 12:28:20 2017-09-11
.
.
.

Figure 17. Part of medical records
for patients.

5.2. Security Analysis

Security and privacy mechanisms in PAX have evaluated under theoretical analysis, BAN logic
and AVISPA tool.

5.2.1. Theoretical Security Analysis

Organizational and managerial features are important in healthcare systems, but the key player in
applying these systems is the use of security and privacy mechanisms for patient records [11]. Medical
records in the EHR are sensitive data and require security mechanisms to protect their privacy from
attackers. Also, the different levels and privileges of healthcare providers make the development
of security mechanisms and authorisation models very difficult [4]. Moreover, applying privacy to
medical records (EHR) requires the use of access models in the authorisation of users. Integrating

Figure 17. Part of Sarah’s data.

5.2. Security Analysis

Security and privacy mechanisms in PAX have been evaluated under theoretical analysis, BAN
logic and AVISPA tool.

Int. J. Environ. Res. Public Health 2019, 16, 1490 22 of 36

5.2.1. Theoretical Security Analysis

Organizational and managerial features are important in healthcare systems, but the key player
in applying these systems is the use of security and privacy mechanisms for patient records [11].
Medical records in the EHR are sensitive data and require security mechanisms to protect their privacy
from attackers. In addition, the different levels and privileges of healthcare providers make the
development of security mechanisms and authorisation models very difficult [4]. Moreover, applying
privacy to medical records (EHR) requires the use of access models in the authorisation of users.
Integrating RBAC and ABAC gives more powerful features to PAX users. The result is an access
control model based on roles and attributes that handle users’ requests at the coarse-grained and
fine-grained levels. To increase security and privacy in the authorisation model, we have added a
set of mechanisms to hide and separate personal information about data. The PAX system ensures
that legitimate users access their specific data and, on the other hand, the privacy of medical records
is maintained. Any healthcare system should support the basic security features of confidentiality,
integrity, and availability (C.I.A.) [7], and there is a set of security features included in PAX.

1. Integrity and non-repudiation of requests
User requests and policies need protection from change or repudiation. We used the ECDSA
algorithm to sign user attributes. Any change in the Sigs will be detected in the server because the
server checks the users’ requests before authorising access to the data. In addition, the signatory
party cannot deny its Sig. These features make the system immune against changing attacks such
as MITM.

2. Authentication and authorisation of requests
Each EHR requires authentication and authorisation properties to protect medical records from
unauthorised access. We applied ECDSA to the XACML v3.0 to support these properties in PAX.
The use of Sigs in XACML between the Ci and the CS, AS and DS support user authentication
in addition to the use of policies and rules to identify authorised users and the level of access
granted to them by providing anti privileged insider and authorisation policies.

3. Confidentiality and anonymization
One of the security features of hiding information is confidentiality. We applied ECDSA to add
confidential requests to subjects and objects, and we added a Shamir scheme (backup or fail-open
mechanism) to provide anonymity of SSs to users of the EHR system. This process prevents the
attacker from seeing explicit attributes and does not allow the hacker to know the user-configured
SS for any healthcare provider. A Shamir scheme ensures the anonymity of the Sig. This backup
mechanism enables indirect users to access protected health information (PHI) with privacy
and security.

4. Pseudonymization
A patient’s privacy requires the separation of personal information from the patient’s data.
Pseudonym prevents the intruder from knowing the data of any of the patients. PAX supports
pseudonym in both subjects’ and objects’ attributes using pseudonyms for real attributes.
This feature supports the privacy of a patient’s data.

5. Audit and activities
PAX records all user activities (requests and responses) to access medical records. It monitors user
activities, including the number of access times, the result of the decision, and the amount of data
required. The audit process is important for any healthcare system in determining users’ activities.
PAX stores and organizes requests and responses for each user (patient, doctor, advisor, relative,
researcher, and emergency doctor) separately to facilitate the management of these activities.

There is a range of attacks that pose a serious risk to any healthcare system. PAX’s security
mechanisms act as countermeasures (as shown in Table 3) against known attacks.

1. Availability attacks
The server is vulnerable to the denial of service (DoS) attacks that are intended to disable the

Int. J. Environ. Res. Public Health 2019, 16, 1490 23 of 36

service. In PAX, the indirect user creates a random Sig based on SSs provided by healthcare
providers. The attacker cannot use the same SSs because the CS and AS will ignore the request.
The abundance of medical records is critical to healthcare providers’ flexible access. Therefore,
supporting robustness in any healthcare system depends on preventing DoS attacks. Although the
PAX system limits the risk of DoS attacks and provides successfully anti DoS, it does not do
so fully because the attacker can still send requests without penetrating the patient’s personal
information and data.

2. Data and policies datasets attacks
The data in the single server is considered an attractive treasure for attackers. In addition, policies
contain the attributes and roles of users, which can assist attackers in carrying out an attack
to recognise and access patients’ data. In PAX, even if the attacker obtained a patient’s data,
the data would not be useful because both the stored and movable data would have a pseudonym.
In addition, the data is stored (on DS) separately from policies (on AS) as well as PAX policies are
associated with pseudonym and anonymity (both CS and DS do not have real attributes datasets
for users), which prevent attackers from revealing subjects’ and objects’ attributes. Consequently,
PAX provides effectively authorisation policies and anti datasets attacks.

3. Modification attacks on requests
Users’ requests from clients to server in PAX are fully protected from modification. PAX uses
random nonces and Sigs to detect changing operation by intruders. Thus, PAX fully is secure
against MITM attacks.

4. Replay attacks
The intruder cannot resend authorisation request to the network later because PAX produces a
new timestamp (TSC, TSCS, TSAS, and TSDS) between PAX’s entities. Therefore, PAX withstands
securely against replay attacks.

5. Unauthorised access attacks
User access to a repository depends on authorisation policies. We use XACML v3.0 to create user
policies. Integrating RBAC and ABAC into XACML prevents internal/external unauthorised
users from accessing patients’ data. Thus, PAX reliably provides anti privileged insider depending
on users’ role and attributes.

6. Traffic analysis attacks
To perform this attack, the hacker must analyse either the requests or the data moving between
the source and the target. In PAX, if we assume that the attacker has some attributes (such as the
name) and expects a specific patient, the attacker cannot use a keyword (name) and analyse it
with multiple requests or medical records, even if it is the same user, to reveal its real attributes;
the attacker cannot identify this data for a particular patient. Using pseudonym and anonymity
prevents attackers from tracking/leaking traffic. For example, if advisor1 and advisor2 want
patient1 data, the generated requests will be different. This prevents the parsing of requests. As a
result, PAX supports anonymity, pseudonym, anti traceability and anti leakage features.

7. Impersonation attacks
The intruder cannot impersonate PAX’s entities (Ci, CS, AS and DS) because PAX uses secret
nonces (SNC, SNCS and SNAS) and secret Sigs among entities to support mutual authentication
and prevent impersonation attacks. Thereupon, PAX resists impersonation attacks of the fake
client/server.

8. Timing attacks
This attack exploits the security procedure while calculating the time period for security
operations (such as encryption and signing). PAX prevents these attacks because when the
attacker gets multiple requests for the same user, the attacker will find that these requests
contain different Sigs, and the attacker does not have the parameters to generate the Sig.
In addition, ECDSA’s Sigs with 256-bit is resistant to timing attacks. Hence, PAX robustly
prevents timing attacks.

Int. J. Environ. Res. Public Health 2019, 16, 1490 24 of 36

5.2.2. Proof of PAX Security Protocol

To verify request source, freshness and legitimacy of entity in PAX, we have used Burrows, Abadi
and Needham (BAN) logic that depends set of rules such as seeing (SR), message meaning (MMR),
nonce verification (NVR), jurisdiction (JR), freshness conjuncatenation (FCR) and shared secret (SSR)
(details about BAN’s notations and rules is available in [43–45]). With BAN, we prove that each entity
in PAX deals with other legitimate entity when transferring the message (M) from the indirect user to
the servers and vice versa. BAN structures consist of goals (G), idealized form, hypotheses (H) and
proofs of goals by applying rules and hypotheses.

• Goals: PAX must provide the following goals to securely exchange messages among PAX entities.

– G1:Ci |≡ Ci
Ci S3−−⇀↽−−CS

– G2:CS |≡ Ci
CSS1−−⇀↽−−CS

– G3:CS |≡ CS
CSS4−−⇀↽−−AS

– G4:AS |≡ CS
ASS1−−−⇀↽−−−AS

– G5:AS |≡ DS
ASS5−−−⇀↽−−−AS

– G6:DS |≡ AS
DSS1−−−⇀↽−−−DS

• Idealized form: The messages (M) are represented in a BAN formula.

– M1: Ci → CS: CiS1tm ||RNsptm ||UNsptm ||NC ||TSCtm ||SNCtm , CiS2tm ||RNoptm ||UNoptm ||NC ||CiS4tm : 〈SNC〉Ci S3

– M2: CS→ AS: CSS2tm ||RNsptm ||UNsptm ||NCS ||TSCtm || TSCStm ||SNCStm , CSS3tm ||RNoptm ||UNoptm ||CiS4tm : 〈SNCS〉CSS4

– M3: AS→ CS: ASS2tm ||UNsptm ||TSAStm : 〈SNCS〉ASS1

– M4: CS→ Ci : CSS2tm ||UNsptm ||TSCStm : 〈SNC〉CSS1

– M5: Ci → CS: CiS6tm ||UNsptm ||TSCtm : 〈SNC〉Ci S3

– M6: CS→ AS: CiS6tm ||UNsptm ||TSCStm : 〈SNCS〉CSS4

– M7: AS→ DS: ASS6tm ||RNoptm ||UNoptm ||SNAStm ||TSCtm ||TSAStm ||CiS4tm : 〈SNAS〉ASS5

– M8: DS→ AS: DSS2tm ||DSS4tm ||UNoptm ||TSDStm ||CiS4tm ||"Data": 〈SNAS〉DSS1

– M9: AS→ CS: ASS2tm ||ASS3tm ||UNsptm ||TSAStm ||"Decision & Data": 〈SNCS〉ASS1

– M10: CS→ Ci : CSS2tm ||CSS3tm ||UNsptm ||TSCStm ||"Decision & Data": 〈SNC〉CSS1

• Hypotheses: Sets of hypotheses to analyse PAX’s security.
– H1: Ci |≡ #(SNC).
– H2: Ci |≡ #(TSCi).
– H3: CS |≡ #(SNC).
– H4: CS |≡ #(TSCS).
– H5: CS |≡ #(SNCS).
– H6: AS |≡ #(SNCS).
– H7: AS |≡ #(TSAS)

– H8: AS |≡ #(SNAS).
– H9: DS |≡ #(SNAS).
– H10: DS |≡ #(TSDS).
– H11: CS |≡ Ci =⇒ SNC .

– H12: AS |≡ CS =⇒ SNCS .
– H13: DS |≡ AS =⇒ SNAS .

– H14: Ci |≡ Ci
KCSpu7−−−→ CS.

– H15: CS |≡ CS
KCpu7−−−→ Ci .

– H16: CS |≡ CS
KASpu7−−−→ AS.

– H17: AS |≡ AS
KCSpu7−−−→ CS.

– H18: AS |≡ AS
KDSpu7−−−→ DS.

– H19: DS |≡ DS
KASpu7−−−→ AS.

• Proofs: We have used BAN logic to prove goals based on rules and hypotheses.
– M1: Ci → CS:

* SR:
S1: CS� M1

* MMR:
Using MMR, S1 and H14, S2: CS |≡ Ci |∼ SNC

* NVR and FCR:
Using NVR, FCR, S2, H1 and H2, S3: CS |≡ Ci |≡ SNC

* JR:
Using JR,S3 and H11, S4: CS |≡ SNC

* SSR:

Using SSR, S3, H1 and H2, S5: CS |≡ Ci
CSS1−−⇀↽−−CS (G2)

– M2: CS→ AS:

* SR:
S6: AS� M2

* MMR:
Using MMR, S6 and H16, S7: AS |≡ CS |∼ SNCS

* NVR and FCR:
Using NVR, FCR, S7, H4 and H5, S8: AS |≡ CS |≡ SNCS

* JR:
Using JR, S8 and H12, S9: AS |≡ SNCS

Int. J. Environ. Res. Public Health 2019, 16, 1490 25 of 36

* SSR:

Using SSR, S8, H4 and H5, S10: AS |≡ CS
ASS1−−−⇀↽−−−AS (G4)

– M3: AS→ CS:

* SR:
S11: CS� M3

* MMR:
Using MMR, S11 and H17, S12: CS |≡ AS |∼ SNCS

* NVR and FCR:
Using NVR, FCR, S12, H6 and H7, S13: CS |≡ AS |≡ SNCS

* JR:
Using JR, S13 and H12, S14: CS |≡ SNCS

* SSR:

Using SSR, S13, H6 and H7, S15: CS |≡ CS
CSS4−−⇀↽−−AS (G3)

– M4: CS→ Ci :

* SR:
S16: Ci� M4

* MMR:
Using MMR, S16 and H15, S17: Ci |≡ CS |∼ SNC

* NVR and FCR:
Using NVR, FCR, S17, H3 and H4, S18: Ci |≡ CS |≡ SNC

* JR:
Using JR, S18 and H11, S19: Ci |≡ SNC

* SSR:

Using SSR, S18, H3 and H4, S20: Ci |≡ Ci
Ci S3−−⇀↽−−CS (G1)

– M5: Ci → CS: Similar to the M1 (G2)
– M6: CS→ AS: Similar to the M2 (G4)
– M7:AS→ DS:

* SR:
S21: DS� M7

* MMR:
Using MMR, S21 and H18, S22: DS |≡ AS |∼ SNAS

* NVR and FCR:
Using NVR, FCR, S22, H7 and H8, S23: DS |≡ AS |≡ SNAS

* JR:
Using JR, S23 and H13, S24: DS |≡ SNAS

* SSR:

Using SSR, S23, H7 and H8, S25: DS |≡ DS
DSS1−−−⇀↽−−−AS (G6)

– M8: DS→ AS:

* SR:
S26: AS� M8

* MMR:
Using MMR, S26 and H19, S27: AS |≡ DS |∼ SNAS

* NVR and FCR:
Using NVR, FCR, S27, H9 and H10, S28: AS |≡ DS |≡ SNAS

* JR:
Using JR, S28 and H13, S29: AS |≡ SNAS

* SSR:

Using SSR, S28, H9 and H10, S30: AS |≡ AS
ASS5−−−⇀↽−−−DS (G5)

– M9: AS→ CS: Similar to the M3 (G3)
– M10: CS→ Ci : Similar to the M4 (G1)

5.2.3. Proof of PAX Security Mechanism

In this Section, we simulate the PAX scheme using the AVISPA tool to test and analyse that user
authorisation information is safe during its transition between PAX entities and immune against active
and passive attacks.

• AVISPA Briefly
After designing any authorisation scheme, this scheme should be validated and its accuracy
verified under a security analysis tool such as AVISPA to analyse, trace, observe and test the
possibility of threat experimentally. The AVISPA tool is a push-button, testing/proofing model
and is used directives and expressive terms intermediate format (IF) and output format (OF) to
achieve simulation of security analysis [3,46,47]. AVISPA is a formal tool for analysing security
schemes and applied by researchers to evaluate recent security protocols [48–51]. This tool is
based on the Dolev-Yao (dy) model in analysis protocols during the transmission of information
in the communication channels. It provides many features to analyse security schemes, such as
a practical assessment of error detection and tracking, statistics, accurate results, testing of
many techniques on the one protocol, ease of use, robustness of this tool to implement security

Int. J. Environ. Res. Public Health 2019, 16, 1490 26 of 36

protocols [46]. This tool deals with high-level protocol specification language (HLPSL) and
4 backends such as Constraint-Logic-based Attack Searcher (CL-AtSe) to extract the results of the
scheme analysis (more detailed information about the HLPSL language and the description of the
AVISPA tool is available in [46,52]).

• PAX with AVISPA
In terms of HLSPL with AVISPA, PAX consists of four core (essential) roles: client (Ci),
centralServer (CS), attributesServer (AS) and dataServer (DS). In addition, there are supporting
roles such as session, and environment, goal specification section. Essential roles include a
transition section (to specify the sequence of communication operations in network framework).
Supporting roles include a composition section (to specify the linking of sessions and roles). PAX
depends on asymmetric cryptography by using ECDSA with public keys (KCpu, KCSpu, KASpu

and KDSpu) to perform security requirements (integrity, authentication and non-repudiation).
Moreover, PAX applies nonces (SNC, SNCS, SNAS and SNDS) to support anonymity and
timestamps (TSC, TSCS, TSAS and TSDS) to support freshness. Authorisation process for indirect
users is illustrated by the HLPSL scripts in Figures A1–A4 (in Appendix A). Each role consists of
the number of transitions, the receiving process (RCV), the sending process (SND), the sender’s
claim process of fresh value and correct (witness), the validation process in receiver for the
sender’s claim (request), the process of creating a fresh value for the nonce and timestamp (new)
and the use of the private key (_inv) in PAX’s entities. At first, Ci receives the start signal as
in Figure A1, then the SND and RCV operations continue until the authorisation process is
completed as in Figure 18.
Figure A5 shows the roles of session, environment, and goal section. In the session role,
a composition process has been performed for the four roles (clienti, centralServer, attributeServer
and dataServer) and specifies the send and receive channels in the Dolev-Yao model. In the
environment role, the PP, the goals specified in the goal section, and the known information
for the intruder (intruder_knowledge) have been defined. In this role, one or more sessions are
composed, and we tested our scheme with sessions for replay, MITM, and impersonating entity
attacks. We assumed that an intruder (I) creates a public key (ki) and has knowledge of the
public keys (kCpu, kCSpu, and kASpu) of PAX’s entities in the network. Intruder attempts to
resend legitimate user requests later, intercepts/modifies these requests, or impersonates the
connecting entities using i constant rather than ci, cs, as and ds. The results displays that these
attacks cannot penetrate the security goals in our scheme. Goal section describes verified goals
in PAX, and provides 10 goals of secrecy (such as S_ID, O_ID, S_R and O_R represent the first
secret (sec1) and known only for both ci and cs) and eight goals of authentication (such as UNspm,
UNopm and TScs represent the first authentication between ci and cs).

• Simulation Result
In this section, the simulation result is based on CL-AtSe backend in the AVISPA. Figure 19
displays the simulation result with the CL-AtSe backend, PAX clearly and accurately achieves
the SAFE result in the SUMMARY section, bounded number of sessions in the DETAILS section,
the goals of the scheme achieved (as_specified) in the GOAL section as well as statistical numbers
such as time, number of nodes, and analysed states in the STATISTICS section. Based on this
result, we note that our scheme is capable of preventing passive and active attacks such as replay,
MITM, and impersonating, and that the goals of the scheme in Figure A5 successfully prevented
the violation of legitimate users information in the network authorisation.

Int. J. Environ. Res. Public Health 2019, 16, 1490 27 of 36
Int. J. Environ. Res. Public Health 2019, 16, 5 27 of 34

Figure 18. PAX’s framework in AVISPA.

SUMMARY
SAFE

DETAILS
BOUNDED_NUMBER_OF_SESSIONS
TYPED_MODEL

PROTOCOL
/home/span/span/testsuite/results/PAX.if

GOAL
As~Specified

BACKEND
CL-AtSe

STATISTICS

Analysed : 6912 states
Reachable : 6912 states
Translation: 2.12 seconds
Computation: 139.21 seconds

Figure 19. PAX’s result in CL-AtSe.

6. Comparison Studies with Other Research

In this Section, we explain how our project addresses the gaps in related works ([2,6,8,9,16–18]).
PAX has not suffered from PERMIS’s problems [16] because each request to the healthcare provider
has been signed randomly with the ECDSA algorithm, which includes both the roles (RNs) and the
pseudonyms (UNs). In PAX, the policies are stored on the attributes server as Sigs and pseudonym
rather than as explicit attributes in XACML (each user in PAX has attributes separate from other
users that prevent the inheritance of attributes). Compared with [8], PAX has solved all requests
standardization and structure problems by including XACML v3.0 and ECDSA. XACML v3.0 offers
standardization, and generic and rich policy language and is unified with the context of subjects’
requests. It does not have problems converting requests from different sources. We also use ECDSA to
generate very small keys relative to RSA to improve server performance. Furthermore, PAX does not
need the keys complexity in PIPE [6] because XACML has the flexibility to handle practitioners and
patients’ requests as well as we use only one high-performance signature algorithm. In our project, all
the attributes in the requests and policies are not clearly written as in [2]. Moreover, data is anonymous
to the patient when the data transferred from the source to the target because it is linked with a
random pseudonym.
Instead of one situation (emergency) as in HCPP, our project used several realistic situations such as
doctor advisors, physician researchers, emergency doctors, and patients’ relatives for healthcare users
and used the XACML v3.0 policy language, which is effective for authorising users. Our project does
not require continuous mining [9] of patient data but relies on an internal pseudonym to access medical
records. XACS [17] offers protection only against external attacks, whereas PAX offers protection
against internal and external attacks by preventing attackers from identifying the personal information
of legitimate users or patients’ data. Finally, The access control model in [18] deals with real attributes,
whereas PAX integrates signatures and pseudonyms within XACML’s policies and requests to prevent
the exchange of users’ attributes clearly during the authorisation process in healthcare applications [18].
Table 3 compares the security features provided in PAX and related works.

Figure 18. PAX’s framework in AVISPA.

Int. J. Environ. Res. Public Health 2019, 16, 5 27 of 34

Figure 18. PAX’s framework in AVISPA.

SUMMARY
SAFE

DETAILS
BOUNDED_NUMBER_OF_SESSIONS
TYPED_MODEL

PROTOCOL
/home/span/span/testsuite/results/PAX.if

GOAL
As~Specified

BACKEND
CL-AtSe

STATISTICS

Analysed : 6912 states
Reachable : 6912 states
Translation: 2.12 seconds
Computation: 139.21 seconds

Figure 19. PAX’s result in CL-AtSe.

6. Comparison Studies with Other Research

In this Section, we explain how our project addresses the gaps in related works ([2,6,8,9,16–18]).
PAX has not suffered from PERMIS’s problems [16] because each request to the healthcare provider
has been signed randomly with the ECDSA algorithm, which includes both the roles (RNs) and the
pseudonyms (UNs). In PAX, the policies are stored on the attributes server as Sigs and pseudonym
rather than as explicit attributes in XACML (each user in PAX has attributes separate from other
users that prevent the inheritance of attributes). Compared with [8], PAX has solved all requests
standardization and structure problems by including XACML v3.0 and ECDSA. XACML v3.0 offers
standardization, and generic and rich policy language and is unified with the context of subjects’
requests. It does not have problems converting requests from different sources. We also use ECDSA to
generate very small keys relative to RSA to improve server performance. Furthermore, PAX does not
need the keys complexity in PIPE [6] because XACML has the flexibility to handle practitioners and
patients’ requests as well as we use only one high-performance signature algorithm. In our project, all
the attributes in the requests and policies are not clearly written as in [2]. Moreover, data is anonymous
to the patient when the data transferred from the source to the target because it is linked with a
random pseudonym.
Instead of one situation (emergency) as in HCPP, our project used several realistic situations such as
doctor advisors, physician researchers, emergency doctors, and patients’ relatives for healthcare users
and used the XACML v3.0 policy language, which is effective for authorising users. Our project does
not require continuous mining [9] of patient data but relies on an internal pseudonym to access medical
records. XACS [17] offers protection only against external attacks, whereas PAX offers protection
against internal and external attacks by preventing attackers from identifying the personal information
of legitimate users or patients’ data. Finally, The access control model in [18] deals with real attributes,
whereas PAX integrates signatures and pseudonyms within XACML’s policies and requests to prevent
the exchange of users’ attributes clearly during the authorisation process in healthcare applications [18].
Table 3 compares the security features provided in PAX and related works.

Figure 19. PAX’s result in CL-AtSe.

6. Comparison of Our Study with Other Research

In this section, we explain how our project addresses the gaps in related works [2,6,8,9,16–18].
PAX has not suffered from PERMIS’s problems [16] because each request to the healthcare provider
has been signed randomly with the ECDSA algorithm, which includes both the roles (RNs) and the
pseudonyms (UNs). In PAX, the policies are stored on the attributes server as Sigs and pseudonym
rather than as explicit attributes in XACML (each user in PAX has attributes separate from other
users that prevent the inheritance of attributes). Compared with [8], PAX has solved all requests
standardization and structure problems by including XACML v3.0 and ECDSA. XACML v3.0 offers
standardization, and generic and rich policy language and is unified with the context of subjects’
requests. It does not have problems converting requests from different sources. We also use ECDSA to
generate very small keys relative to RSA to improve server performance. Furthermore, PAX does not
need the keys complexity in PIPE [6] because XACML has the flexibility to handle practitioners and

Int. J. Environ. Res. Public Health 2019, 16, 1490 28 of 36

patients’ requests and we use only one high-performance signature algorithm. In our project, all the
attributes in the requests and policies are not clearly written as in [2]. Moreover, data is anonymous
to the patient when the data is transferred from the source to the target because it is linked with a
random pseudonym.

Instead of one situation (emergency) as in HCPP, our project used several realistic situations such
as doctor advisors, physician researchers, emergency doctors, and patients’ relatives for healthcare
users and used the XACML v3.0 policy language, which is effective for authorising users. Our
project does not require continuous mining [9] of patient data but relies on an internal pseudonym
to access medical records. XACS [17] offers protection only against external attacks, whereas PAX
offers protection against internal and external attacks by preventing attackers from identifying the
personal information of legitimate users or patients’ data. Finally, The access control model in [18]
deals with real attributes, whereas PAX integrates signatures and pseudonyms within XACML’s
policies and requests to prevent the exchange of users’ attributes clearly during the authorisation
process in healthcare applications [18]. Table 3 compares the security features provided in PAX and
related works.

Table 3. Comparison of security features.

Security Feature Chadwick et al. Quantin et al. Riedl et al. Gajanayake et al. Sun et al. Jo & Chung Seol et al. PAX[16] [8] [6] [2] [9] [17] [18]

Mutual authentication X
Preserving anonymity X X X X

Pseudonym X X X X
Anti DoS X X X X

Anti dataset attack X X
Anti MITM X X X X X X
Anti replay X X X X X X X

Anti privileged insider X X
Anti traceability X X X

Anti impersonation X
Anti timing X X
Anti leakage X X X

Authorisation policies X X X X X

7. Conclusions and Future Work

The security and privacy of medical records have become essential requirements for the
establishment of any healthcare system in recent years. To ensure the provision of security and
privacy, this paper proposes a PAX authorisation system that supports pseudonym, anonymity and
XACML. Specifically, the proposed system uses a random pseudonym to separate personal information
about patients’ data, anonymity to hide subjects’ information, and XACML to create distributed access
control policies to authorise subjects’ requests to objects’ records in EHR. Different from a large
amount of theoretical investigation in the existing literature, this paper achieves the security and
privacy preservation by utilizing the pseudonym and anonymity techniques, which can reduce the
unnecessary time consumption and the burden on the server. Security analyses using the theoretical
method or formal methods (BAN and AVISPA) demonstrate that PAX is safe, maintains the privacy
of healthcare users and alleviates the risk of penetrating compared to existing research. We believe
that the PAX system provides a security high-level that maintains patients’ privacy, and the system
especially protects patients’ information from indirect users (advisors, patients’ relatives, researchers,
and emergency doctors), who have been considered a serious security threat to any healthcare system
because they can carry out internal attacks using the privileges granted to them. To further develop
the proposed PAX system, we intend to add some features to support security and privacy in EHR.

1. PAX requires an authentication mechanism that is more stringent to identify legitimate users
in the network and prevent counterfeit requests. We intend to use a one-time password based
on users’ attributes, temporary parameters, and Sigs to support the authentication of legitimate
users in PAX.

Int. J. Environ. Res. Public Health 2019, 16, 1490 29 of 36

2. Patients’ data requires devices (such as WSN) to be aggregated accurately and continuously
and sent to the CS and DS. However, data collection and storage on the server requires
security mechanisms.

3. We will focus on patients’ data without the use of cryptographic mechanisms in examining the
patients’ daily condition, use patients’ real data to test PAX with large data, and allow PAX to
distinguish between patients’ history, daily status, and purpose of data access. We will also
encrypt the patients’ old medical records (within a certain period) that are not frequently retrieved
by healthcare providers in a manner that does not affect the efficiency of the server in providing
the service to users.

4. We will investigate the application of a light hash algorithm to generate patients’ pseudonyms,
which support increased randomization while maintaining system performance as an additional
security measure to protect the privacy of medical records in EHR.

5. We intend to build an evaluation system to assess PAX in the exchange of requests among
network entities Ci, CS, AS and DS in terms of authorisation request delay, cost of signature and
verification, storage and throughput.

Author Contributions: conceptualization, M.A. and Z.Z.; methodology, M.A.; software, M.A.; formal analysis,
Z.Z.; writing—original draft preparation, M.A.; writing—review and editing, M.A., Z.Z. and J.Z.; supervision,
Z.Z. and J.Z.; project administration, M.A.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

Ci Client entity
CS, AS, DS Central server, Attributes server and Data server
MS Master secret/Master signature
SS One secret sharing
SID, OID Subject ID, Object ID
SR, OR Subject role, Object role
URi User’s role (patient, patient relative or provider)
CNi Client’s number
RNi Role’s number
UNi User’s number
SP, OP Subject ’s pseudonym and Object ’s pseudonym
Ssp, Sop Signature of SP and Signature of OP
RNsp, UNsp RNi, UNi for SP
RNop, UNop RNi, UNi for OP
N, SN Random nonces and random secret nonce
TS Timestamp
CiSj Signature generated by Ci and j is signature number
CSSj Signature generated by CS
ASSj Signature generated by AS
DSSj Signature generated by DS
‖, ⊕, tm Concatenation operation, Exclusive or operation and Temporary

Int. J. Environ. Res. Public Health 2019, 16, 1490 30 of 36

Appendix A

The following scripts represent roles in AVISPA tool:

Int. J. Environ. Res. Public Health 2019, 16, 5 30 of 34

role clienti(Ci,CS:agent,KCpu,KCSpu:public_key,H:hash_func,
S_ID,O_ID,S_R,O_R:message,SND,RCV:channel(dy))

played_by Ci def=
local

State:nat,
TSc,TScs,TSctm,TScstm,Nc,SNc,SNctm:text,
CiS1,CiS2,CiS3,CiS4,CiS5,CiS6,CiS1tm,CiS2tm,CiS4tm,
CiS6tm,CSS2tm,CSS3tm,CSS5:text,
SP,OP,UNspl,UNspm,UNsph,UNopl,UNopm,UNoph,
RNspl,RNspm,RNsph,RNopl,RNopm,RNoph:text,
RNspn,RNopn,UNspn,UNopn:text,AS,DS:agent,
MS,SS,SSs,Decision,Data:text

const
Section~1,sec2,sec3,sec4,sec5,sec6,auth1,auth2:protocol_id

init
State := 0

transition
1.State=0 /\ RCV(start) =|> State’:=1

/\Nc’:=new()/\SNc’:=new()/\TSc’:=new()
/\CiS1’:={H(RNspm.UNspm.Nc’.TSc’)}_inv(KCpu)
/\CiS2’:={H(RNopm.UNopm.Nc’.TSc’)}_inv(KCpu)
/\CiS3’:={H(SNc’)}_inv(KCpu)/\ CiS4’:={H(RNoph
.UNoph.TSc’)}_inv(KCpu)
/\CiS1tm’:=xor(CiS1’,CiS3’)/\CiS2tm’:=xor(CiS2’,CiS3’)
/\TSctm’:=xor(TSc’,xor(SNc’,xor(RNspm,UNspm)))
/\SNctm’:=xor(UNspm,xor(UNopm,xor(SNc’
,xor(CiS4’,CiS1tm’))))
/\CiS4tm’:=xor(CiS4’,xor(UNspm,xor(UNopm,CiS2tm’)))
/\RNspn’:=xor(RNspl,xor(CiS1tm’,SNctm’))
/\RNopn’:=xor(RNopl,xor(CiS2tm’,SNctm’))
/\UNspn’:=xor(UNspl,xor(CiS1tm’,SNctm’))
/\UNopn’:=xor(UNopl,xor(CiS2tm’,SNctm’))

%Ci sends XACML’s request to CS
/\SND(CS.CiS1tm’.RNspn’.UNspn’.Nc’.TSctm’.SNctm’
.CiS2tm’.RNopn’.UNopn’.Nc’.CiS4tm’)
/\secret({S_ID,O_ID,S_R,O_R},sec1,{Ci,AS})
/\secret({SNc’,CiS3’,TSc’},sec2,{Ci,CS})
/\secret({CiS1’,CiS2’},sec3,{Ci,CS,AS})
/\secret({RNspm,UNspm,RNopm,UNopm},sec4,{Ci,CS})

%Ci receives first authorisation response from CS
2. State = 1/\RCV(Ci.CSS2tm’.UNspn’.TScstm’)=|>

State’:= 2
/\UNspl’:=xor(UNspn’,xor(CSS2tm’,TScstm’))
/\TScs’:=xor(TScstm’,xor(SNc,UNopm))
/\CiS6’:={H(SP)}_inv(KCpu)
/\SSs’:=xor(CiS1,xor(CiS3,xor(CSS2tm’,xor(CiS4,CiS6’))))
/\MS’:= {(SS.SSs’)}
/\CiS6tm’:=xor(CiS6’,xor(CiS3,MS’))
/\secret({OP,CiS4},sec5,{Ci,AS,DS})
/\secret({SP,CiS6,MS’,SS},sec6,{Ci,AS})
/\TSc’:=new()/\TSctm’:=xor(TSc’,xor(SNc,UNspm))
/\UNspn’:=xor(UNspl’,xor(CiS6tm’,TSctm’))

%Ci sends Shamir’s response to CS
/\SND(CS.CiS6tm’.UNspn’.TSctm’)
/\witness(Ci,CS,auth1,{UNspm,UNopm,TScs})

%Ci receives decision & data from CS
3.State=2/\RCV(Ci.CSS2tm’.CSS3tm’.UNspn’.TScstm’

.Decision.Data)=|> State’:=3
/\UNspl’:=xor(UNspn’,xor(CSS2tm’,TScstm’))
/\TScs’:=xor(TScstm’,xor(SNc,UNopm))
/\CSS5’:=xor(CiS1’,xor(CiS3’,xor(CSS2tm’,CiS4’)))
/\CiS5’:={H(Data)}_inv(KCSpu)
/\CiS1’:=xor(CSS2tm’,xor(CiS3,xor(CiS5’,CiS4)))
/\CiS2’:=xor(CSS3tm’,xor(CiS3,xor(CiS5’,CiS4)))
/\CiS3’:=xor(CiS2’,xor(CSS2tm’,xor(CiS5’,CiS4)))
/\CiS4’:=xor(CiS1’,xor(CiS3’,xor(CiS5’,CSS2tm’)))
/\request(Ci,CS,auth2,{SNc,CiS3,CiS4,TSc})

end role

Figure A1. Ci role of PAX in HLPSL.

role centralServer(CS,Ci,AS:agent,KCSpu,KCpu,KASpu:public_key,
H:hash_func,SND,RCV:channel(dy))

played_by CS def=
local

State:nat,TSc,TScs,TSas,TSctm,TScstm,TSastm,Nc,Ncs,SNc,
SNcs,SNctm,SNcstm:text,CSS1,CSS2,CSS3,CSS4,CSS5,CSS2tm,
CSS3tm,CiS1,CiS2,CiS4,CiS1tm,CiS2tm,CiS4tm,CiS6tm:text,
ASS2,ASS3,ASS7,ASS2tm,ASS3tm:text,Decision,Data:text,
UNspl,UNspm,UNopl,UNopm,RNspl,RNspm,RNopl,RNopm,
RNspn,RNopn,UNspn,UNopn:text

const
Section~2,sec3,sec4,sec7,auth1,auth2,auth3,auth4:protocol_id

init
State := 0

transition
%CS receives XACML’s request from Ci
1.State=0 /\ RCV(CS.CiS1tm’.RNspn’.UNspn’.Nc’.TSctm’.SNctm’

.CiS2tm’.RNopn’.UNopn’.Nc’.CiS4tm’)=|>State’:=1
/\RNspl’:=xor(RNspn’,xor(CiS1tm’,SNctm’))
/\RNopl’:=xor(RNopn’,xor(CiS2tm’,SNctm’))
/\UNspl’:=xor(UNspn’,xor(CiS1tm’,SNctm’))
/\UNopl’:=xor(UNopn’,xor(CiS2tm’,SNctm’))
/\CiS4’:=xor(CiS4tm’,xor(UNspm,xor(UNopm,CiS2tm’)))
/\SNc’:=xor(UNspm,xor(UNopm,xor(SNctm’,xor(CiS4’,CiS1tm’))))
/\TSc’:=xor(TSctm’,xor(SNc’,xor(RNspm,UNspm)))
/\CSS1’:={H(SNc’)}_inv(KCpu)
/\CiS1’:=xor(CiS1tm’,CSS1’)/\CiS2’:= xor(CiS2tm’,CSS1’)
/\CSS2’:={H(RNspm.UNspm.Nc’.TSc’)}_inv(KCpu)
/\CSS3’:={H(RNopm.UNopm.Nc’.TSc’)}_inv(KCpu)
/\secret({SNc’,CSS1’,TSc’},sec2,{CS,Ci})
/\secret({CSS2’,CSS3’},sec3,{CS,Ci,AS})

%CS creates authorisation request to AS
/\SNcs’:=new() /\TScs’:=new()
/\CSS4’:= {H(SNcs’)}_inv(KCSpu)
/\CSS2tm’:=xor(CSS2’,CSS4’)
/\CSS3tm’:=xor(CSS3’,CSS4’)
/\Ncs’:=xor(Nc’,xor(TSc’,xor(TScs’,SNcs’)))
/\TSctm’:=xor(TSc’,xor(SNcs’,xor(RNspm,UNspm)))
/\TScstm’:=xor(TScs’,xor(SNcs’,xor(RNopm,UNopm)))
/\SNcstm’:=xor(UNspm,xor(UNopm,xor(SNcs’,xor(CiS4’,CSS2tm))))
/\CiS4tm’:=xor(CiS4’,xor(UNspm,xor(UNopm,CSS3tm’)))
/\RNspn’:=xor(RNspl,xor(CSS2tm’,SNcstm’))
/\RNopn’:=xor(RNopl,xor(CSS3tm’,SNcstm’))
/\UNspn’:=xor(UNspl,xor(CSS2tm’,SNcstm’))
/\UNopn’:=xor(UNopl,xor(CSS3tm’,SNcstm’))

%CS sends request to AS
/\SND(AS.CSS2tm’.RNspn’.UNspn’.Ncs’.TSctm’.TScstm’.SNcstm’
.CSS3tm’.RNopn’.UNopn’.CiS4tm’)
/\secret({RNspm,UNspm,RNopm,UNopm},sec4,{CS,AS})
/\secret({SNcs’,CSS4’,TScs’,Nc’},sec7,{CS,AS})

%CS receives authorisation response from AS
2.State=1 /\ RCV(CS.ASS2tm’.UNspn’.TSastm’)=|>

State’:=2/\CSS2tm’:=xor(ASS2tm’,xor(CSS4,CSS1))
/\TScs’:=new()
/\TScstm’:=xor(TScs’,xor(SNc,UNopm))
/\UNspn’:=xor(UNspl,xor(CSS2tm’,TScstm’))
/\witness(CS,AS,auth3,{UNspm,UNopm,Nc,TSc,TSas})

%CS sends authorisation response to Ci
/\SND(Ci.CSS2tm’.UNspn’.TScstm’)

%CS receives Shamir’s response from Ci
3. State = 2 /\RCV(CS.CiS6tm’.UNspn’.TSctm’)=|>

State’:=3/\UNspl’:=xor(UNspn’,xor(CiS6tm’,TSctm’))
/\TSc’:=xor(TSctm’,xor(SNc,UNspm))
/\CiS6tm’:=xor(CiS6tm’,xor(CSS1,CSS4))
/\request(CS,Ci,auth1,{UNspm,UNopm,TScs})
/\TScs’:=new()
/\TScstm’:=xor(TScs’,xor(SNcs,UNopm))
/\UNspn’:=xor(UNspl,xor(CiS6tm’,TScstm’))

%CS sends Shamir’s response to AS
/\SND(AS.CiS6tm’.UNspn’.TScstm’)

%CS receives decision & data response from AS
4.State=3 /\RCV(CS.ASS2tm’.ASS3tm’.UNspn’.TSastm’.Decision.

Data)=|>State’:=4/\UNspl’:=xor(UNspn’,xor(ASS2tm’,TSastm’))
/\TSas’:=xor(TSastm’,xor(SNcs,UNopm))
/\ASS7’:=xor(CSS2,xor(CSS4,xor(CiS4,ASS2tm)))
/\CSS5’:={H(Data)}_inv(KASpu)
/\ASS2’:=xor(ASS2tm’,xor(CSS4,xor(ASS7,CiS4)))
/\ASS3’:=xor(ASS3tm,xor(CSS4,xor(ASS7,CiS4)))
/\CiS4’:=xor(ASS2tm’,xor(CSS4,xor(ASS7,ASS2’)))
/\request(CS,AS,auth4,{SNcs,CSS1,CiS4,TScs})
/\TScs’:=new()
/\CSS2tm’:=xor(CSS2,xor(CSS1,xor(CSS5,CiS4)))
/\CSS3tm’:=xor(CSS3,xor(CSS1,xor(CSS5,CiS4)))
/\TScstm’:=xor(TScs’,xor(SNc,UNopm))
/\UNspn’:=xor(UNspl,xor(CSS2tm’,TScstm’))

%CS sends decision & data response to Ci
/\SND(Ci.CSS2tm’.CSS3tm’.UNspn’.TScstm’.Decision.Data)
/\witness(CS,Ci,auth2,{SNc,CSS1,CiS4,TSc})

end role

Figure A2. CS role of PAX in HLPSL.Figure A1. Ci role of PAX in high-level protocol specification language (HLPSL).

Int. J. Environ. Res. Public Health 2019, 16, 1490 31 of 36Int. J. Environ. Res. Public Health 2019, 16, 5 30 of 34

role clienti(Ci,CS:agent,KCpu,KCSpu:public_key,H:hash_func,
S_ID,O_ID,S_R,O_R:message,SND,RCV:channel(dy))

played_by Ci def=
local

State:nat,
TSc,TScs,TSctm,TScstm,Nc,SNc,SNctm:text,
CiS1,CiS2,CiS3,CiS4,CiS5,CiS6,CiS1tm,CiS2tm,CiS4tm,
CiS6tm,CSS2tm,CSS3tm,CSS5:text,
SP,OP,UNspl,UNspm,UNsph,UNopl,UNopm,UNoph,
RNspl,RNspm,RNsph,RNopl,RNopm,RNoph:text,
RNspn,RNopn,UNspn,UNopn:text,AS,DS:agent,
MS,SS,SSs,Decision,Data:text

const
Section~1,sec2,sec3,sec4,sec5,sec6,auth1,auth2:protocol_id

init
State := 0

transition
1.State=0 /\ RCV(start) =|> State’:=1

/\Nc’:=new()/\SNc’:=new()/\TSc’:=new()
/\CiS1’:={H(RNspm.UNspm.Nc’.TSc’)}_inv(KCpu)
/\CiS2’:={H(RNopm.UNopm.Nc’.TSc’)}_inv(KCpu)
/\CiS3’:={H(SNc’)}_inv(KCpu)/\ CiS4’:={H(RNoph
.UNoph.TSc’)}_inv(KCpu)
/\CiS1tm’:=xor(CiS1’,CiS3’)/\CiS2tm’:=xor(CiS2’,CiS3’)
/\TSctm’:=xor(TSc’,xor(SNc’,xor(RNspm,UNspm)))
/\SNctm’:=xor(UNspm,xor(UNopm,xor(SNc’
,xor(CiS4’,CiS1tm’))))
/\CiS4tm’:=xor(CiS4’,xor(UNspm,xor(UNopm,CiS2tm’)))
/\RNspn’:=xor(RNspl,xor(CiS1tm’,SNctm’))
/\RNopn’:=xor(RNopl,xor(CiS2tm’,SNctm’))
/\UNspn’:=xor(UNspl,xor(CiS1tm’,SNctm’))
/\UNopn’:=xor(UNopl,xor(CiS2tm’,SNctm’))

%Ci sends XACML’s request to CS
/\SND(CS.CiS1tm’.RNspn’.UNspn’.Nc’.TSctm’.SNctm’
.CiS2tm’.RNopn’.UNopn’.Nc’.CiS4tm’)
/\secret({S_ID,O_ID,S_R,O_R},sec1,{Ci,AS})
/\secret({SNc’,CiS3’,TSc’},sec2,{Ci,CS})
/\secret({CiS1’,CiS2’},sec3,{Ci,CS,AS})
/\secret({RNspm,UNspm,RNopm,UNopm},sec4,{Ci,CS})

%Ci receives first authorisation response from CS
2. State = 1/\RCV(Ci.CSS2tm’.UNspn’.TScstm’)=|>

State’:= 2
/\UNspl’:=xor(UNspn’,xor(CSS2tm’,TScstm’))
/\TScs’:=xor(TScstm’,xor(SNc,UNopm))
/\CiS6’:={H(SP)}_inv(KCpu)
/\SSs’:=xor(CiS1,xor(CiS3,xor(CSS2tm’,xor(CiS4,CiS6’))))
/\MS’:= {(SS.SSs’)}
/\CiS6tm’:=xor(CiS6’,xor(CiS3,MS’))
/\secret({OP,CiS4},sec5,{Ci,AS,DS})
/\secret({SP,CiS6,MS’,SS},sec6,{Ci,AS})
/\TSc’:=new()/\TSctm’:=xor(TSc’,xor(SNc,UNspm))
/\UNspn’:=xor(UNspl’,xor(CiS6tm’,TSctm’))

%Ci sends Shamir’s response to CS
/\SND(CS.CiS6tm’.UNspn’.TSctm’)
/\witness(Ci,CS,auth1,{UNspm,UNopm,TScs})

%Ci receives decision & data from CS
3.State=2/\RCV(Ci.CSS2tm’.CSS3tm’.UNspn’.TScstm’

.Decision.Data)=|> State’:=3
/\UNspl’:=xor(UNspn’,xor(CSS2tm’,TScstm’))
/\TScs’:=xor(TScstm’,xor(SNc,UNopm))
/\CSS5’:=xor(CiS1’,xor(CiS3’,xor(CSS2tm’,CiS4’)))
/\CiS5’:={H(Data)}_inv(KCSpu)
/\CiS1’:=xor(CSS2tm’,xor(CiS3,xor(CiS5’,CiS4)))
/\CiS2’:=xor(CSS3tm’,xor(CiS3,xor(CiS5’,CiS4)))
/\CiS3’:=xor(CiS2’,xor(CSS2tm’,xor(CiS5’,CiS4)))
/\CiS4’:=xor(CiS1’,xor(CiS3’,xor(CiS5’,CSS2tm’)))
/\request(Ci,CS,auth2,{SNc,CiS3,CiS4,TSc})

end role

Figure A1. Ci role of PAX in HLPSL.

role centralServer(CS,Ci,AS:agent,KCSpu,KCpu,KASpu:public_key,
H:hash_func,SND,RCV:channel(dy))

played_by CS def=
local

State:nat,TSc,TScs,TSas,TSctm,TScstm,TSastm,Nc,Ncs,SNc,
SNcs,SNctm,SNcstm:text,CSS1,CSS2,CSS3,CSS4,CSS5,CSS2tm,
CSS3tm,CiS1,CiS2,CiS4,CiS1tm,CiS2tm,CiS4tm,CiS6tm:text,
ASS2,ASS3,ASS7,ASS2tm,ASS3tm:text,Decision,Data:text,
UNspl,UNspm,UNopl,UNopm,RNspl,RNspm,RNopl,RNopm,
RNspn,RNopn,UNspn,UNopn:text

const
Section~2,sec3,sec4,sec7,auth1,auth2,auth3,auth4:protocol_id

init
State := 0

transition
%CS receives XACML’s request from Ci
1.State=0 /\ RCV(CS.CiS1tm’.RNspn’.UNspn’.Nc’.TSctm’.SNctm’

.CiS2tm’.RNopn’.UNopn’.Nc’.CiS4tm’)=|>State’:=1
/\RNspl’:=xor(RNspn’,xor(CiS1tm’,SNctm’))
/\RNopl’:=xor(RNopn’,xor(CiS2tm’,SNctm’))
/\UNspl’:=xor(UNspn’,xor(CiS1tm’,SNctm’))
/\UNopl’:=xor(UNopn’,xor(CiS2tm’,SNctm’))
/\CiS4’:=xor(CiS4tm’,xor(UNspm,xor(UNopm,CiS2tm’)))
/\SNc’:=xor(UNspm,xor(UNopm,xor(SNctm’,xor(CiS4’,CiS1tm’))))
/\TSc’:=xor(TSctm’,xor(SNc’,xor(RNspm,UNspm)))
/\CSS1’:={H(SNc’)}_inv(KCpu)
/\CiS1’:=xor(CiS1tm’,CSS1’)/\CiS2’:= xor(CiS2tm’,CSS1’)
/\CSS2’:={H(RNspm.UNspm.Nc’.TSc’)}_inv(KCpu)
/\CSS3’:={H(RNopm.UNopm.Nc’.TSc’)}_inv(KCpu)
/\secret({SNc’,CSS1’,TSc’},sec2,{CS,Ci})
/\secret({CSS2’,CSS3’},sec3,{CS,Ci,AS})

%CS creates authorisation request to AS
/\SNcs’:=new() /\TScs’:=new()
/\CSS4’:= {H(SNcs’)}_inv(KCSpu)
/\CSS2tm’:=xor(CSS2’,CSS4’)
/\CSS3tm’:=xor(CSS3’,CSS4’)
/\Ncs’:=xor(Nc’,xor(TSc’,xor(TScs’,SNcs’)))
/\TSctm’:=xor(TSc’,xor(SNcs’,xor(RNspm,UNspm)))
/\TScstm’:=xor(TScs’,xor(SNcs’,xor(RNopm,UNopm)))
/\SNcstm’:=xor(UNspm,xor(UNopm,xor(SNcs’,xor(CiS4’,CSS2tm))))
/\CiS4tm’:=xor(CiS4’,xor(UNspm,xor(UNopm,CSS3tm’)))
/\RNspn’:=xor(RNspl,xor(CSS2tm’,SNcstm’))
/\RNopn’:=xor(RNopl,xor(CSS3tm’,SNcstm’))
/\UNspn’:=xor(UNspl,xor(CSS2tm’,SNcstm’))
/\UNopn’:=xor(UNopl,xor(CSS3tm’,SNcstm’))

%CS sends request to AS
/\SND(AS.CSS2tm’.RNspn’.UNspn’.Ncs’.TSctm’.TScstm’.SNcstm’
.CSS3tm’.RNopn’.UNopn’.CiS4tm’)
/\secret({RNspm,UNspm,RNopm,UNopm},sec4,{CS,AS})
/\secret({SNcs’,CSS4’,TScs’,Nc’},sec7,{CS,AS})

%CS receives authorisation response from AS
2.State=1 /\ RCV(CS.ASS2tm’.UNspn’.TSastm’)=|>

State’:=2/\CSS2tm’:=xor(ASS2tm’,xor(CSS4,CSS1))
/\TScs’:=new()
/\TScstm’:=xor(TScs’,xor(SNc,UNopm))
/\UNspn’:=xor(UNspl,xor(CSS2tm’,TScstm’))
/\witness(CS,AS,auth3,{UNspm,UNopm,Nc,TSc,TSas})

%CS sends authorisation response to Ci
/\SND(Ci.CSS2tm’.UNspn’.TScstm’)

%CS receives Shamir’s response from Ci
3. State = 2 /\RCV(CS.CiS6tm’.UNspn’.TSctm’)=|>

State’:=3/\UNspl’:=xor(UNspn’,xor(CiS6tm’,TSctm’))
/\TSc’:=xor(TSctm’,xor(SNc,UNspm))
/\CiS6tm’:=xor(CiS6tm’,xor(CSS1,CSS4))
/\request(CS,Ci,auth1,{UNspm,UNopm,TScs})
/\TScs’:=new()
/\TScstm’:=xor(TScs’,xor(SNcs,UNopm))
/\UNspn’:=xor(UNspl,xor(CiS6tm’,TScstm’))

%CS sends Shamir’s response to AS
/\SND(AS.CiS6tm’.UNspn’.TScstm’)

%CS receives decision & data response from AS
4.State=3 /\RCV(CS.ASS2tm’.ASS3tm’.UNspn’.TSastm’.Decision.

Data)=|>State’:=4/\UNspl’:=xor(UNspn’,xor(ASS2tm’,TSastm’))
/\TSas’:=xor(TSastm’,xor(SNcs,UNopm))
/\ASS7’:=xor(CSS2,xor(CSS4,xor(CiS4,ASS2tm)))
/\CSS5’:={H(Data)}_inv(KASpu)
/\ASS2’:=xor(ASS2tm’,xor(CSS4,xor(ASS7,CiS4)))
/\ASS3’:=xor(ASS3tm,xor(CSS4,xor(ASS7,CiS4)))
/\CiS4’:=xor(ASS2tm’,xor(CSS4,xor(ASS7,ASS2’)))
/\request(CS,AS,auth4,{SNcs,CSS1,CiS4,TScs})
/\TScs’:=new()
/\CSS2tm’:=xor(CSS2,xor(CSS1,xor(CSS5,CiS4)))
/\CSS3tm’:=xor(CSS3,xor(CSS1,xor(CSS5,CiS4)))
/\TScstm’:=xor(TScs’,xor(SNc,UNopm))
/\UNspn’:=xor(UNspl,xor(CSS2tm’,TScstm’))

%CS sends decision & data response to Ci
/\SND(Ci.CSS2tm’.CSS3tm’.UNspn’.TScstm’.Decision.Data)
/\witness(CS,Ci,auth2,{SNc,CSS1,CiS4,TSc})

end role

Figure A2. CS role of PAX in HLPSL.Figure A2. CS role of PAX in HLPSL.

Int. J. Environ. Res. Public Health 2019, 16, 1490 32 of 36Int. J. Environ. Res. Public Health 2019, 16, 5 31 of 34

role attributesServer(AS,CS,DS:agent,KASpu,KCSpu,KDSpu:public_key,
Ssp,Sop:text,H:hash_func,SND,RCV:channel(dy))

played_by AS def=
local

State:nat, TSc,TScs,TSas,TSds,TSctm,TScstm,TSastm,TSdstm,Nc,
Ncs,SNcs,SNas,SNcstm,SNastm:text, ASS1,ASS2,ASS3,ASS4,ASS5,
ASS6,ASS7,ASS2tm,ASS3tm,ASS6tm:text, CiS4,CiS4tm,CiS6tm,CSS2,
CSS3,CSS2tm,CSS3tm,DSS2tm,DSS4tm,DSS4:text,
SP,OP,URsp,UNsp,URop,UNop,RNsp,RNop:text,
UNspl,UNspm,UNsph,UNopl,UNopm,UNoph:text,
RNspl,RNspm,RNsph,RNopl,RNopm,RNoph:text,
RNspn,RNopn,UNspn,UNopn:text,
S_ID,O_ID,S_R,O_R:message,Ci:agent,SSs,MS,Data,Decision:text

const
Section~1,sec3,sec4,sec5,sec6,sec7,sec8,sec9,sec10,auth3,auth4
,auth5,auth6:protocol_id

init State := 0
transition
%AS receives from CS
1.State = 0 /\ RCV(AS.CSS2tm’.RNspn’.UNspn’.Ncs’.TSctm’.TScstm’

.SNcstm’.CSS3tm’.RNopn’.UNopn’.CiS4tm’)=|> State’:= 1
/\RNspl’:=xor(RNspn’,xor(CSS2tm’,SNcstm’))
/\RNopl’:=xor(RNopn’,xor(CSS3tm’,SNcstm’))
/\UNspl’:=xor(UNspn’,xor(CSS2tm’,SNcstm’))
/\UNopl’:=xor(UNopn’,xor(CSS3tm’,SNcstm’))
/\CiS4’:=xor(CiS4tm’,xor(UNspm,xor(UNopm,CSS3tm’)))
/\SNcs’:=xor(UNspm,xor(UNopm,xor(SNcstm’,xor(CiS4’,CSS2tm’))))
/\TSc’:=xor(TSctm’,xor(SNcs’,xor(RNspm,UNspm)))
/\TScs’:=xor(TScstm’,xor(SNcs’,xor(RNopm,UNopm)))
/\Nc’:=xor(Ncs’,xor(TSc’,xor(TScs’,SNcs’)))
/\ASS1’:= {H(SNcs’)}_inv(KCSpu)
/\CSS2’:=xor(CSS2tm’,ASS1’)
/\CSS3’:=xor(CSS3tm’,ASS1’)
/\ASS2’:= {H(RNspm.UNspm.Nc’.TSc’)}_inv(KCSpu)
/\ASS3’:= {H(RNopm.UNopm.Nc’.TSc’)}_inv(KCSpu)
/\ASS4’:={H(RNoph.UNoph.TSc’)}_inv(KCSpu)
/\SP’:=URsp.UNsp/\OP’:=URop.UNop
/\secret({S_ID,O_ID,S_R,O_R},sec1,{AS,Ci})
/\secret({ASS2’,ASS3’},sec3,{AS,CS,Ci})
/\secret({RNspm,UNspm,RNopm,UNopm},sec4,{AS,CS})
/\secret({OP’,CiS4’},sec5,{AS,DS,Ci})
/\secret({SP’,Ssp,MS,SSs},sec6,{AS,Ci})
/\secret({SNcs’,ASS1’,TScs’,Nc},sec7,{AS,CS})
/\secret(Sop,sec8,AS)

%AS creates Shamir’s request
/\TSas’:=new()
/\ASS2tm’:=xor(ASS2,xor(ASS1,xor(SSs,xor(CiS4’,Ssp))))
/\TSastm’:=xor(TSas’,xor(SNcs’,UNopm))
/\UNspn’:=xor(UNspl’,xor(ASS2tm’,TSastm’))

%AS sends Shamir’s request to CS
/\SND(CS.ASS2tm’.UNspn’.TSastm’)

%AS receives Shamir’s response from CS
2.State=1 /\ RCV(AS.CiS6tm’.UNspn’.TScstm’)=|>

State’:= 2/\UNspl’:=xor(UNspn’,xor(CiS6tm’,TScstm’))
/\TScs’:=xor(TScstm’,xor(SNcs,UNopm))
/\MS’:=xor(CiS6tm’,xor(Ssp,ASS1))
/\request(AS,CS,auth3,{UNspm,UNopm,Nc,TSc,TSas})

%AS creates data retrieval request
/\SNas’:=new()/\TSas’:=new()
/\ASS5’:={H(SNas’)}_inv(KASpu)
/\ASS6’:={H(RNopm.UNopm.SNas’.TSas’.CiS4)}_inv(KASpu)
/\RNopn’:=xor(RNopl,xor(TSas’,SNas’))
/\ASS6tm’:=xor(ASS6’,xor(TSas’,ASS5’))
/\TSctm’:=xor(TSc,xor(SNas’,UNoph))
/\TSastm’:=xor(TSas’,xor(SNas’,UNopm))
/\SNastm’:=xor(UNopm,xor(SNas’,xor(CiS4,ASS6tm’)))
/\CiS4tm’:=xor(CiS4,xor(UNoph,xor(SNastm’,UNopm)))
/\UNopn’:=xor(UNopl,xor(ASS6tm’,TSastm’))
/\secret({SNas’,ASS5’,TSas’},sec9,{AS,DS})
/\secret({RNoph,UNoph,ASS6’},sec10,{AS,DS})

%AS sends data retrieval request to DS
/\SND(DS.ASS6tm’.RNopn’.UNopn’.SNastm’.TSctm’.TSastm’.CiS4tm’)
/\ witness(AS,DS,auth5,{CiS4,ASS6})

%AS receives data retrieval response from DS
3.State=2/\ RCV(AS.DS.DSS2tm’.DSS4tm’.UNopn’.TSdstm’

.CiS4tm’.Data) =|> State’:=3
/\UNopl’:=xor(UNopn’,xor(DSS2tm’,TSdstm’))
/\TSds’:=xor(TSdstm’,xor(SNas,UNoph))
/\CiS4’:=xor(CiS4tm’,xor(ASS5,TSds’))
/\DSS4’:=xor(DSS4tm’,xor(ASS5,CiS4’))
/\ASS6’:=xor(DSS2tm’,xor(DSS4’,xor(TSds’,ASS5)))
/\ASS7’:={H(Data)}_inv(KDSpu)
/\request(AS,DS,auth6,{SNas,ASS5,RNoph,UNoph})

%AS creates decision & data response
/\TSas’:=new()
/\ASS2tm’:=xor(ASS2,xor(ASS1,xor(ASS7,CiS4)))
/\ASS3tm’:=xor(ASS3,xor(ASS1,xor(ASS7,CiS4)))
/\TSastm’:=xor(TSas’,xor(SNcs,UNopm))
/\UNspn’:=xor(UNspl,xor(ASS2tm’,TSastm’))

%AS sends data retrieval response (Data and Decision) to CS
/\SND(CS.ASS2tm’.ASS3tm’.UNspn’.TSastm’.Decision.Data)
/\witness(AS,CS,auth4,{SNcs,ASS1,CiS4,TScs})

end role

Figure A3. AS role of PAX in HLPSL.

role dataServer(DS,AS:agent,KDSpu,KASpu:public_key,
H:hash_func,SND,RCV:channel(dy))

played_by DS def=
local

State:nat,
TSc,TSctm,TSas,TSastm,TSds,TSdstm,SNas,SNastm:text,
OP,UNopl,UNopm,UNoph:text,
RNopl,RNopm,RNoph,RNopn,UNopn:text,
DSS1,DSS2,DSS3,DSS4:text,
DSS2tm,DSS4tm,CiS4,CiS4tm,ASS6tm:text,
Ci:agent,Data:text

const Section~5,sec9,sec10,auth5,auth6:protocol_id
init State := 0
transition
1.State = 0 /\ RCV(DS.ASS6tm’.RNopn’.UNopn’.SNastm’

.TSctm’.TSastm’.CiS4tm’)=|>State’:=1
/\UNopl’:=xor(UNopn’,xor(ASS6tm’,TSastm’))
/\CiS4’:=xor(CiS4tm’,xor(UNoph,xor(SNastm’,UNopm)))
/\SNas’:= xor(UNopm,xor(SNastm’,xor(CiS4’,ASS6tm’)))
/\TSc’:=xor(TSctm’,xor(SNas’,UNoph))
/\TSas’:=xor(TSastm’,xor(SNas’,UNopm))
/\RNopl’:=xor(RNopn’,xor(TSas’,SNas’))
/\DSS1’:={H(SNas’)}_inv(KASpu)
/\DSS2’:={H(RNopm.UNopm.SNas’.TSas’.CiS4’)}_inv(KASpu)
/\DSS3’:={H(RNoph.UNoph.TSc’)}_inv(KASpu)
/\secret({OP,CiS4’},sec5,{DS,AS,Ci})
/\secret({SNas’,DSS1’,TSas’},sec9,{DS,AS})
/\secret({RNoph,UNoph,DSS2’},sec10,{DS,AS})
/\request(DS,AS,auth5,{CiS4,DSS2})

%DS Creates data retrieval response
/\TSds’:=new()
/\DSS4’:={H(Data)}_inv(KDSpu)
/\DSS4tm’:=xor(DSS4’,xor(DSS1’,CiS4’))
/\DSS2tm’:=xor(DSS2’,xor(DSS4’,xor(TSds’,DSS1’)))
/\CiS4tm’:=xor(CiS4’,xor(DSS1’,TSds’))
/\TSdstm’:=xor(TSds’,xor(SNas’,UNoph))
/\UNopn’:=xor(UNopl’,xor(DSS2tm’,TSdstm’))

%DS sends data retrieval response to AS
/\SND(AS.DSS2tm’.DSS4tm’.UNopn’.TSdstm’.CiS4tm’.Data)
/\ witness(DS,AS,auth6,{SNas,DSS1,RNoph,UNoph})

end role

Figure A4. DS role of PAX in HLPSL.Figure A3. AS role of PAX in HLPSL.

Int. J. Environ. Res. Public Health 2019, 16, 1490 33 of 36

Int. J. Environ. Res. Public Health 2019, 16, 5 31 of 34

role attributesServer(AS,CS,DS:agent,KASpu,KCSpu,KDSpu:public_key,
Ssp,Sop:text,H:hash_func,SND,RCV:channel(dy))

played_by AS def=
local

State:nat, TSc,TScs,TSas,TSds,TSctm,TScstm,TSastm,TSdstm,Nc,
Ncs,SNcs,SNas,SNcstm,SNastm:text, ASS1,ASS2,ASS3,ASS4,ASS5,
ASS6,ASS7,ASS2tm,ASS3tm,ASS6tm:text, CiS4,CiS4tm,CiS6tm,CSS2,
CSS3,CSS2tm,CSS3tm,DSS2tm,DSS4tm,DSS4:text,
SP,OP,URsp,UNsp,URop,UNop,RNsp,RNop:text,
UNspl,UNspm,UNsph,UNopl,UNopm,UNoph:text,
RNspl,RNspm,RNsph,RNopl,RNopm,RNoph:text,
RNspn,RNopn,UNspn,UNopn:text,
S_ID,O_ID,S_R,O_R:message,Ci:agent,SSs,MS,Data,Decision:text

const
Section~1,sec3,sec4,sec5,sec6,sec7,sec8,sec9,sec10,auth3,auth4
,auth5,auth6:protocol_id

init State := 0
transition
%AS receives from CS
1.State = 0 /\ RCV(AS.CSS2tm’.RNspn’.UNspn’.Ncs’.TSctm’.TScstm’

.SNcstm’.CSS3tm’.RNopn’.UNopn’.CiS4tm’)=|> State’:= 1
/\RNspl’:=xor(RNspn’,xor(CSS2tm’,SNcstm’))
/\RNopl’:=xor(RNopn’,xor(CSS3tm’,SNcstm’))
/\UNspl’:=xor(UNspn’,xor(CSS2tm’,SNcstm’))
/\UNopl’:=xor(UNopn’,xor(CSS3tm’,SNcstm’))
/\CiS4’:=xor(CiS4tm’,xor(UNspm,xor(UNopm,CSS3tm’)))
/\SNcs’:=xor(UNspm,xor(UNopm,xor(SNcstm’,xor(CiS4’,CSS2tm’))))
/\TSc’:=xor(TSctm’,xor(SNcs’,xor(RNspm,UNspm)))
/\TScs’:=xor(TScstm’,xor(SNcs’,xor(RNopm,UNopm)))
/\Nc’:=xor(Ncs’,xor(TSc’,xor(TScs’,SNcs’)))
/\ASS1’:= {H(SNcs’)}_inv(KCSpu)
/\CSS2’:=xor(CSS2tm’,ASS1’)
/\CSS3’:=xor(CSS3tm’,ASS1’)
/\ASS2’:= {H(RNspm.UNspm.Nc’.TSc’)}_inv(KCSpu)
/\ASS3’:= {H(RNopm.UNopm.Nc’.TSc’)}_inv(KCSpu)
/\ASS4’:={H(RNoph.UNoph.TSc’)}_inv(KCSpu)
/\SP’:=URsp.UNsp/\OP’:=URop.UNop
/\secret({S_ID,O_ID,S_R,O_R},sec1,{AS,Ci})
/\secret({ASS2’,ASS3’},sec3,{AS,CS,Ci})
/\secret({RNspm,UNspm,RNopm,UNopm},sec4,{AS,CS})
/\secret({OP’,CiS4’},sec5,{AS,DS,Ci})
/\secret({SP’,Ssp,MS,SSs},sec6,{AS,Ci})
/\secret({SNcs’,ASS1’,TScs’,Nc},sec7,{AS,CS})
/\secret(Sop,sec8,AS)

%AS creates Shamir’s request
/\TSas’:=new()
/\ASS2tm’:=xor(ASS2,xor(ASS1,xor(SSs,xor(CiS4’,Ssp))))
/\TSastm’:=xor(TSas’,xor(SNcs’,UNopm))
/\UNspn’:=xor(UNspl’,xor(ASS2tm’,TSastm’))

%AS sends Shamir’s request to CS
/\SND(CS.ASS2tm’.UNspn’.TSastm’)

%AS receives Shamir’s response from CS
2.State=1 /\ RCV(AS.CiS6tm’.UNspn’.TScstm’)=|>

State’:= 2/\UNspl’:=xor(UNspn’,xor(CiS6tm’,TScstm’))
/\TScs’:=xor(TScstm’,xor(SNcs,UNopm))
/\MS’:=xor(CiS6tm’,xor(Ssp,ASS1))
/\request(AS,CS,auth3,{UNspm,UNopm,Nc,TSc,TSas})

%AS creates data retrieval request
/\SNas’:=new()/\TSas’:=new()
/\ASS5’:={H(SNas’)}_inv(KASpu)
/\ASS6’:={H(RNopm.UNopm.SNas’.TSas’.CiS4)}_inv(KASpu)
/\RNopn’:=xor(RNopl,xor(TSas’,SNas’))
/\ASS6tm’:=xor(ASS6’,xor(TSas’,ASS5’))
/\TSctm’:=xor(TSc,xor(SNas’,UNoph))
/\TSastm’:=xor(TSas’,xor(SNas’,UNopm))
/\SNastm’:=xor(UNopm,xor(SNas’,xor(CiS4,ASS6tm’)))
/\CiS4tm’:=xor(CiS4,xor(UNoph,xor(SNastm’,UNopm)))
/\UNopn’:=xor(UNopl,xor(ASS6tm’,TSastm’))
/\secret({SNas’,ASS5’,TSas’},sec9,{AS,DS})
/\secret({RNoph,UNoph,ASS6’},sec10,{AS,DS})

%AS sends data retrieval request to DS
/\SND(DS.ASS6tm’.RNopn’.UNopn’.SNastm’.TSctm’.TSastm’.CiS4tm’)
/\ witness(AS,DS,auth5,{CiS4,ASS6})

%AS receives data retrieval response from DS
3.State=2/\ RCV(AS.DS.DSS2tm’.DSS4tm’.UNopn’.TSdstm’

.CiS4tm’.Data) =|> State’:=3
/\UNopl’:=xor(UNopn’,xor(DSS2tm’,TSdstm’))
/\TSds’:=xor(TSdstm’,xor(SNas,UNoph))
/\CiS4’:=xor(CiS4tm’,xor(ASS5,TSds’))
/\DSS4’:=xor(DSS4tm’,xor(ASS5,CiS4’))
/\ASS6’:=xor(DSS2tm’,xor(DSS4’,xor(TSds’,ASS5)))
/\ASS7’:={H(Data)}_inv(KDSpu)
/\request(AS,DS,auth6,{SNas,ASS5,RNoph,UNoph})

%AS creates decision & data response
/\TSas’:=new()
/\ASS2tm’:=xor(ASS2,xor(ASS1,xor(ASS7,CiS4)))
/\ASS3tm’:=xor(ASS3,xor(ASS1,xor(ASS7,CiS4)))
/\TSastm’:=xor(TSas’,xor(SNcs,UNopm))
/\UNspn’:=xor(UNspl,xor(ASS2tm’,TSastm’))

%AS sends data retrieval response (Data and Decision) to CS
/\SND(CS.ASS2tm’.ASS3tm’.UNspn’.TSastm’.Decision.Data)
/\witness(AS,CS,auth4,{SNcs,ASS1,CiS4,TScs})

end role

Figure A3. AS role of PAX in HLPSL.

role dataServer(DS,AS:agent,KDSpu,KASpu:public_key,
H:hash_func,SND,RCV:channel(dy))

played_by DS def=
local

State:nat,
TSc,TSctm,TSas,TSastm,TSds,TSdstm,SNas,SNastm:text,
OP,UNopl,UNopm,UNoph:text,
RNopl,RNopm,RNoph,RNopn,UNopn:text,
DSS1,DSS2,DSS3,DSS4:text,
DSS2tm,DSS4tm,CiS4,CiS4tm,ASS6tm:text,
Ci:agent,Data:text

const Section~5,sec9,sec10,auth5,auth6:protocol_id
init State := 0
transition
1.State = 0 /\ RCV(DS.ASS6tm’.RNopn’.UNopn’.SNastm’

.TSctm’.TSastm’.CiS4tm’)=|>State’:=1
/\UNopl’:=xor(UNopn’,xor(ASS6tm’,TSastm’))
/\CiS4’:=xor(CiS4tm’,xor(UNoph,xor(SNastm’,UNopm)))
/\SNas’:= xor(UNopm,xor(SNastm’,xor(CiS4’,ASS6tm’)))
/\TSc’:=xor(TSctm’,xor(SNas’,UNoph))
/\TSas’:=xor(TSastm’,xor(SNas’,UNopm))
/\RNopl’:=xor(RNopn’,xor(TSas’,SNas’))
/\DSS1’:={H(SNas’)}_inv(KASpu)
/\DSS2’:={H(RNopm.UNopm.SNas’.TSas’.CiS4’)}_inv(KASpu)
/\DSS3’:={H(RNoph.UNoph.TSc’)}_inv(KASpu)
/\secret({OP,CiS4’},sec5,{DS,AS,Ci})
/\secret({SNas’,DSS1’,TSas’},sec9,{DS,AS})
/\secret({RNoph,UNoph,DSS2’},sec10,{DS,AS})
/\request(DS,AS,auth5,{CiS4,DSS2})

%DS Creates data retrieval response
/\TSds’:=new()
/\DSS4’:={H(Data)}_inv(KDSpu)
/\DSS4tm’:=xor(DSS4’,xor(DSS1’,CiS4’))
/\DSS2tm’:=xor(DSS2’,xor(DSS4’,xor(TSds’,DSS1’)))
/\CiS4tm’:=xor(CiS4’,xor(DSS1’,TSds’))
/\TSdstm’:=xor(TSds’,xor(SNas’,UNoph))
/\UNopn’:=xor(UNopl’,xor(DSS2tm’,TSdstm’))

%DS sends data retrieval response to AS
/\SND(AS.DSS2tm’.DSS4tm’.UNopn’.TSdstm’.CiS4tm’.Data)
/\ witness(DS,AS,auth6,{SNas,DSS1,RNoph,UNoph})

end role

Figure A4. DS role of PAX in HLPSL.Figure A4. DS role of PAX in HLPSL.
Int. J. Environ. Res. Public Health 2019, 16, 5 32 of 34

role session(Ci,CS,AS,DS:agent,
KCpu,KCSpu,KASpu,KDSpu:public_key,H:hash_func,
S_ID,O_ID,S_R,O_R:message,Ssp,Sop:text)

def=
local SND1,RCV1,SND2,RCV2,SND3,RCV3,SND4,RCV4:channel(dy)
composition

clienti(Ci,CS,KCpu,KCSpu,H,S_ID,O_ID,S_R,O_R,SND1,RCV1)
/\centralServer(CS,Ci,AS,KCSpu,KCpu,KASpu,H,SND2,RCV2)
/\attributesServer(AS,CS,DS,KASpu,KCSpu,KDSpu,Ssp,Sop,

H,SND3,RCV3)
/\dataServer(DS,AS,KDSpu,KASpu,H,SND4,RCV4)

end~role

role environment()
def=
const

ci,cs,as,ds,i:agent,
kCpu,kCSpu,kASpu,kDSpu,ki:public_key,
s_id,o_id,s_r,o_r:message,ssp,sop:text,
h:hash_func,sec1,sec2,sec3,sec4,sec5,sec6,sec7,sec8,sec9,sec10,
auth1,auth2,auth3,auth4,auth5,auth6,auth7,auth8:protocol_id

intruder_knowledge={i,ci,cs,as,kCpu,kCSpu,kASpu,kDSpu,ki,inv(ki)}
composition

session(ci,cs,as,ds,kCpu,kCSpu,kASpu,kDSpu,h,s_id,o_id,s_r,
o_r,ssp,sop)

%Check replay attack
/\session(ci,cs,as,ds,kCpu,kCSpu,kASpu,kDSpu,h,s_id,o_id,s_r,
%o_r,ssp,sop)

%Check MITM attack
%/\session(cs,ci,as,ds,kCSpu,kCpu,kASpu,kDSpu,h,s_id,o_id,s_r,
%o_r,ssp,sop)

%Check impersonate Ci
%/\session(i,cs,as,ds,ki,kCSpu,kASpu,kDSpu,h,s_id,o_id,s_r,
%o_r,ssp,sop)

%Check impersonate CS
%/\session(ci,i,as,ds,kCpu,ki,kASpu,kDSpu,h,s_id,o_id,s_r,
%o_r,ssp,sop)

%Check impersonate AS
%/\session(ci,cs,i,ds,kCpu,kCSpu,ki,kDSpu,h,s_id,o_id,s_r,
%o_r,ssp,sop)

%Check impersonate DS
%/\session(ci,cs,as,i,kCpu,kCSpu,kASpu,ki,h,s_id,o_id,s_r,
%o_r,ssp,sop)

end~role

goal
secrecy_of Section~1,sec2,sec3,sec4,sec5,sec6,sec7,sec8,sec9,sec10
authentication_on auth1,auth2,auth3,auth4,auth5,auth6,auth7,auth8

end goal
environment()

Figure A5. Session, environment, and goal role of PAX in HLPSL.

References

1. Anjum, A., Choo, K.-K. R., Khan, A., Haroon, A., Khan, S., Khan, S. U., Ahmad, N., Raza, B. et al. (2018). An
efficient privacy mechanism for electronic health records. computers & security, 72, 196–211.

2. Gajanayake, R., Iannella, R., & Sahama, T. (2014). Privacy oriented access control for electronic health records.
Electronic Journal of Health Informatics, 8, 15.

3. Al-Zubaidie, M., Zhang, Z., & Zhang, J. (2019). Ramhu: A new robust lightweight scheme for mutual users
authentication in healthcare applications. Security and Communication Networks, 2019, 1–26.

4. Calvillo-Arbizu, J., Roman-Martinez, I., & Roa-Romero, L. M. (2014). Standardized access control
mechanisms for protecting ISO 13606-based electronic health record systems. In Biomedical and Health
Informatics (BHI), 2014 IEEE-EMBS International Conference on (pp. 539–542). IEEE.

5. Alhaqbani, B., & Fidge, C. (2008). Privacy-preserving electronic health record linkage using pseudonym
identifiers. In E-health Networking, Applications and Services, 2008. HealthCom 2008. 10th International Conference
on (pp. 108–117). IEEE.

6. Riedl, B., Grascher, V., Fenz, S., & Neubauer, T. (2008). Pseudonymization for improving the privacy in
e-health applications. In Hawaii International Conference on System Sciences, Proceedings of the 41st Annual (pp.
255–255). IEEE.

7. Neubauer, T., & Heurix, J. (2011). A methodology for the pseudonymization of medical data. International
Journal of Medical Informatics, 80, 190–204.

8. Quantin, C., Jaquet-Chiffelle, D.-O., Coatrieux, G., Benzenine, E., & Allaert, F.-A. (2011). Medical record
search engines, using pseudonymised patient identity: An alternative to centralised medical records.
International Journal of Medical Informatics, 80, e6–e11.

Figure A5. Session, environment, and goal role of PAX in HLPSL.

Int. J. Environ. Res. Public Health 2019, 16, 1490 34 of 36

References

1. Anjum, A.; Choo, K.-K.R.; Khan, A.; Haroon, A.; Khan, S.; Khan, S.U.; Ahmad, N.; Raza, B. An efficient
privacy mechanism for electronic health records. Comput. Secur. 2018, 72, 196–211. [CrossRef]

2. Gajanayake, R.; Iannella, R.; Sahama, T. Privacy oriented access control for electronic health records.
Electron. J. Health Inform. 2014, 8, 15.

3. Al-Zubaidie, M.; Zhang, Z.; Zhang, J. Ramhu: A new robust lightweight scheme for mutual users
authentication in healthcare applications. Secur. Commun. Netw. 2019, 2019, 1–26. [CrossRef]

4. Calvillo-Arbizu, J.; Roman-Martinez, I.; Roa-Romero, L.M. Standardized access control mechanisms for
protecting ISO 13606-based electronic health record systems. In Proceedings of the 2014 IEEE-EMBS
International Conference on Biomedical and Health Informatics (BHI), Valencia, Spain, 1–4 June 2014;
pp. 539–542.

5. Alhaqbani, B.; Fidge, C. Privacy-preserving electronic health record linkage using pseudonym identifiers.
In Proceedings of the 10th International Conference on E-Health Networking, Applications and Services,
Singapore, 7–9 July 2008; pp. 108–117.

6. Riedl, B.; Grascher, V.; Fenz, S.; Neubauer, T. Pseudonymization for improving the privacy in e-health
applications. In Proceedings of the 41st Annual Hawaii International Conference on System Sciences,
Waikoloa, HI, USA, 7–10 January 2008; p. 255.

7. Neubauer, T.; Heurix, J. A methodology for the pseudonymization of medical data. Int. J. Med. Inform. 2011,
80, 190–204. [CrossRef] [PubMed]

8. Quantin, C.; Jaquet-Chiffelle, D.-O.; Coatrieux, G.; Benzenine, E.; Allaert, F.-A. Medical record search engines,
using pseudonymised patient identity: An alternative to centralised medical records. Int. J. Med. Inform.
2011, 80, e6–e11. [CrossRef]

9. Sun, J.; Zhu, X.; Zhang, C.; Fang, Y. HCPP: Cryptography based secure EHR system for patient privacy and
emergency healthcare. In Proceedings of the 2011 31st International Conference on Distributed Computing
Systems (ICDCS), Minneapolis, MN, USA, 20–24 June 2011; pp. 373–382.

10. Riedl, B.; Grascher, V.; Neubauer, T. Applying a threshold scheme to the pseudonymization of health data.
In Proceedings of the 13th Pacific Rim International Symposium on Dependable Computing, Melbourne,
Australia, 17–19 December 2007; pp. 397–400.

11. Rezaeibagha, F.; Win, K.T.; Susilo, W. A systematic literature review on security and privacy of electronic
health record systems: Technical perspectives. Health Inf. Manag. J. 2015, 44, 23–38. [CrossRef]

12. Wimalasiri, J.S.; Ray, P.; Wilson, C. Security of electronic health records based on web services. In Proceedings
of the 7th International Workshop on Enterprise Networking and Computing in Healthcare Industry, Busan,
Korea, 24–25 June 2005; pp. 91–95.

13. Koczkodaj, W.W.; Mazurek, M.; Strzałka, D.; Wolny-Dominiak, A.; Woodbury-Smith, M. Electronic health
record breaches as social indicators. Soc. Indic. Res. 2019, 141, 864–871. [CrossRef]

14. U.S. Department of Health and Human Services Breaches Affecting 500 or More Individuals. 2018. Available
online: https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf# (accessed on 2 December 2018).

15. Fernández-Alemán, J.L.; Señor, I.C.; Lozoya, P.Á.O.; Toval, A. Security and privacy in electronic health
records: A systematic literature review. J. Biomed. Inform. 2013, 46, 541–562. [CrossRef] [PubMed]

16. Chadwick, D.; Zhao, G.; Otenko, S.; Laborde, R.; Su, L.; Nguyen, T.A. Building a modular authorisation
infrastructure. In The UK E-Science All Hands Meeting; University of Kent: Canterbury, UK, 2006.

17. Jo, S.-M.; Chung, K.-Y. Design of access control system for telemedicine secure XML documents. Multimed.
Tools Appl. 2015, 74, 2257–2271. [CrossRef]

18. Seol, K.; Kim, Y.-G.; Lee, E.; Seo, Y.-D.; Baik, D.-K. Privacy-preserving attribute-based access control model
for xml-based electronic health record system. IEEE Access 2018, 6, 9114–9128. [CrossRef]

19. Dolev, D.; Yao, A. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–208.
[CrossRef]

20. Sánchez, Y.K.R.; Demurjian, S.A.; Baihan, M.S. Achieving rbac on restful apis for mobile apps using
fhir. In Proceedings of the 2017 5th IEEE International Conference on Mobile Cloud Computing, Services,
and Engineering (MobileCloud), San Francisco, CA, USA, 6–8 April 2017; pp. 139–144.

http://dx.doi.org/10.1016/j.cose.2017.09.014
http://dx.doi.org/10.1155/2019/3263902
http://dx.doi.org/10.1016/j.ijmedinf.2010.10.016
http://www.ncbi.nlm.nih.gov/pubmed/21075676
http://dx.doi.org/10.1016/j.ijmedinf.2010.10.003
http://dx.doi.org/10.1177/183335831504400304
http://dx.doi.org/10.1007/s11205-018-1837-z
https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf#
http://dx.doi.org/10.1016/j.jbi.2012.12.003
http://www.ncbi.nlm.nih.gov/pubmed/23305810
http://dx.doi.org/10.1007/s11042-014-1938-x
http://dx.doi.org/10.1109/ACCESS.2018.2800288
http://dx.doi.org/10.1109/TIT.1983.1056650

Int. J. Environ. Res. Public Health 2019, 16, 1490 35 of 36

21. Alturki, M. Achieving a secured collaborative environment in e-sihi system users perspective on a framework
to improve patients information. In Proceedings of the International Conference on Informatics, Health &
Technology (ICIHT), Riyadh, Saudi Arabia, 21–23 February 2017; pp. 1–4.

22. Jin, X.; Krishnan, R.; Sandhu, R.S. A unified attribute-based access control model covering DAC, MAC and
RBAC. DBSec 2012, 12, 41–55.

23. Zhang, Y.; Zhang, B. A new testing method for xacml 3.0 policy based on abac and data flow. In Proceedings
of the 2017 13th IEEE International Conference on Control & Automation (ICCA), Ohrid, Macedonia, 3–6 July
2017; pp. 160–164.

24. Brossard, D.; Gebel, G.; Berg, M. A systematic approach to implementing abac. In Proceedings of the 2nd
ACM Workshop on Attribute-Based Access Control, Scottsdale, AZ, USA, 24 March 2017; pp. 53–59.

25. Lu, Y.; Sinnott, R.O. Semantic privacy-preserving framework for electronic health record linkage.
Telemat. Inform. 2018, 35, 737–752. [CrossRef]

26. Grace, P.; Surridge, M. Towards a model of user-centered privacy preservation. In Proceedings
of the 12th International Conference on Availability, Reliability and Security, Reggio Calabria, Italy,
29 August–1 September 2017; p. 91.

27. Beltran, V.; Martinez, J.; Skarmeta, A. User-centric access control for efficient security in smart cities.
In Proceedings of the Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6–9 June 2017;
pp. 1–6.

28. Turkmen, F.; den Hartog, J.; Ranise, S.; Zannone, N. Formal analysis of xacml policies using smt.
Comput. Secur. 2017, 66, 185–203. [CrossRef]

29. Deng, F.; Wang, S.; Zhang, L.; Wei, X.; Yu, J. Establishment of attribute bitmaps for efficient xacml policy
evaluation. Knowl. Based Syst. 2018, 143, 93–101. [CrossRef]

30. Han, J.-H.; Kim, Y.-J.; Jun, S.-I.; Chung, K.-I.; Seo, C.-H. Implementation of ECC/ECDSA cryptography
algorithms based on Java card. In Proceedings of the 22nd International Conference on Distributed
Computing Systems Workshops, Vienna, Austria, 2–5 July 2002; pp. 272–276.

31. Rafik, M.B.O.; Mohammed, F. The impact of ECC’s scalar multiplication on wireless sensor networks.
In Proceedings of the 2013 11th International Symposium on Programming and Systems (ISPS), Algiers,
Algeria, 22–24 April 2013; pp. 17–23.

32. Sghaier, A.; Zeghid, M.; Machhout, M. Fast hardware implementation of ecdsa signature scheme.
In Proceedings of the International Symposium on Signal, Image, Video and Communications (ISIVC),
Tunis, Tunisia, 21–23 November 2016; pp. 343–348.

33. Dikshit, P.; Singh, K. Efficient weighted threshold ecdsa for securing bitcoin wallet. In Proceedings of the
Asia Security and Privacy (ISEASP), Surat, India, 29 January–1 February 2017; pp. 1–9.

34. Sojka-Piotrowska, A.; Langendoerfer, P. Shortening the security parameters in lightweight wsn applications
for iot-lessons learned. In Proceedings of the 2017 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops), Kona, HI, USA, 13–17 March 2017; pp. 636–641.

35. Dou, Y.; Weng, J.; Ma, C.; Wei, F. Secure and efficient ecc speeding up algorithms for wireless sensor networks.
Soft Comput. 2017, 21, 5665–5673. [CrossRef]

36. Liu, Y.; Yang, C.; Wang, Y.; Zhu, L.; Ji, W. Cheating identifiable secret sharing scheme using symmetric
bivariate polynomial. Inf. Sci. 2018, 453, 21–29. [CrossRef]

37. Ahmadian, Z.; Jamshidpour, S. Linear subspace cryptanalysis of harn’s secret sharing-based group
authentication scheme. IEEE Trans. Inf. Forensics Secur. 2018, 13, 502–510. [CrossRef]

38. Stinson, D.R.; Wei, R. Combinatorial repairability for threshold schemes. Des. Codes Cryptogr. 2018, 86, 195–210.
[CrossRef]

39. Zhou, J.; Cao, Z.; Dong, X.; Vasilakos, A.V. Security and privacy for cloud-based iot: Challenges.
IEEE Commun. Mag. 2017, 55, 26–33. [CrossRef]

40. Vatsalan, D.; Sehili, Z.; Christen, P.; Rahm, E. Privacy-preserving record linkage for big data: Current
approaches and research challenges. In Handbook of Big Data Technologies; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 851–895.

41. Yu, S. Big privacy: Challenges and opportunities of privacy study in the age of big data. IEEE Access 2016,
4, 2751–2763. [CrossRef]

42. Bogos, S.; Gaspoz, J.; Vaudenay, S. Cryptanalysis of a homomorphic encryption scheme. Cryptogr. Commun.
2018, 10, 27–39. [CrossRef]

http://dx.doi.org/10.1016/j.tele.2017.06.007
http://dx.doi.org/10.1016/j.cose.2017.01.009
http://dx.doi.org/10.1016/j.knosys.2017.12.004
http://dx.doi.org/10.1007/s00500-016-2142-x
http://dx.doi.org/10.1016/j.ins.2018.04.043
http://dx.doi.org/10.1109/TIFS.2017.2757454
http://dx.doi.org/10.1007/s10623-017-0336-6
http://dx.doi.org/10.1109/MCOM.2017.1600363CM
http://dx.doi.org/10.1109/ACCESS.2016.2577036
http://dx.doi.org/10.1007/s12095-017-0243-8

Int. J. Environ. Res. Public Health 2019, 16, 1490 36 of 36

43. Burrows, M.; Abadi, M.; Needham, R.M. A logic of authentication. Proc. R. Soc. Lond. A 1989, 426, 233–271.
[CrossRef]

44. Mahmood, K.; Chaudhry, S.A.; Naqvi, H.; Kumari, S.; Li, X.; Sangaiah, A.K. An elliptic curve cryptography
based lightweight authentication scheme for smart grid communication. Future Gener. Comput. Syst. 2018,
81, 557–565. [CrossRef]

45. Amin, R.; Islam, S.H.; Biswas, G.; Khan, M.K.; Kumar, N. A robust and anonymous patient monitoring
system using wireless medical sensor networks. Future Gener. Comput. Syst. 2018, 80, 483–495. [CrossRef]

46. Team, T.A. Avispa v1.1 User Manual. 2006. Available online: http://www.avispa-project.org (accessed on
10 September 2018).

47. Iqbal, U.; Shafi, S. A provable and secure key exchange protocol based on the elliptical curve diffe–hellman for
wsn. In Advances in Big Data and Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2019; pp. 363–372.

48. Gupta, S.; Parne, B.L.; Chaudhari, N.S. An efficient handover aka protocol for wireless network using
chameleon hash function. In Proceedings of the 2018 4th International Conference on Recent Advances in
Information Technology (RAIT), Dhanbad, India, 15–17 March 2018; pp. 1–7.

49. Babu, K.R.; Padmanabhan, V. Automated validation of dnssec. In Progress in Computing, Analytics and
Networking; Springer: Berlin/Heidelberg, Germany, 2018; pp. 51–59.

50. Xu, G.; Liu, J.; Lu, Y.; Zeng, X.; Zhang, Y.; Li, X. A novel efficient maka protocol with desynchronization for
anonymous roaming service in global mobility networks. J. Netw. Comput. Appl. 2018, 107, 83–92. [CrossRef]

51. Dey, S.; Hossain, A. Session-key establishment and authentication in a smart home network using public key
cryptography. IEEE Sens. Lett. 2019. [CrossRef]

52. Das, A.K.; Sutrala, A.K.; Odelu, V.; Goswami, A. A secure smartcard-based anonymous user authentication
scheme for healthcare applications using wireless medical sensor networks. Wirel. Pers. Commun. 2017,
94, 1899–1933. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1098/rspa.1989.0125
http://dx.doi.org/10.1016/j.future.2017.05.002
http://dx.doi.org/10.1016/j.future.2016.05.032
http://www.avispa-project.org
http://dx.doi.org/10.1016/j.jnca.2018.02.003
http://dx.doi.org/10.1109/LSENS.2019.2905020
http://dx.doi.org/10.1007/s11277-016-3718-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Security in EHR Systems
	Privacy of Critical Medical Cases
	Our Contributions
	Structure of the Paper

	Related Work
	Overview of Security and Privacy Techniques in EHR Systems
	Our Proposed Authorisation Model
	Network Model
	Implementation of PAX
	PAX Authorisation Protocols

	Discussion
	Direct and Indirect Users Scenarios in PAX
	Security Analysis
	Theoretical Security Analysis
	Proof of PAX Security Protocol
	Proof of PAX Security Mechanism

	Comparison of Our Study with Other Research
	Conclusions and Future Work
	
	References

