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Statistical framework to support 
the epidemiological interpretation 
of SARS‑CoV‑2 concentration 
in municipal wastewater
Xiaotian Dai1, David Champredon2, Aamir Fazil2, Chand S. Mangat3, Shelley W. Peterson3, 
Edgard M. Mejia3, Xuewen Lu1 & Thierry Chekouo1*

The ribonucleic acid (RNA) of the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) 
is detectable in municipal wastewater as infected individuals can shed the virus in their feces. Viral 
concentration in wastewater can inform the severity of the COVID-19 pandemic but observations 
can be noisy and sparse and hence hamper the epidemiological interpretation. Motivated by a 
Canadian nationwide wastewater surveillance data set, unlike previous studies, we propose a 
novel Bayesian statistical framework based on the theories of functional data analysis to tackle the 
challenges embedded in the longitudinal wastewater monitoring data. By employing this framework 
to analyze the large-scale data set from the nationwide wastewater surveillance program covering 
15 sampling sites across Canada, we successfully detect the true trends of viral concentration out of 
noisy and sparsely observed viral concentrations, and accurately forecast the future trajectory of viral 
concentrations in wastewater. Along with the excellent performance assessment using simulated 
data, this study shows that the proposed novel framework is a useful statistical tool and has a 
significant potential in supporting the epidemiological interpretation of noisy viral concentration 
measurements from wastewater samples in a real-life setting.

The ribonucleic acid (RNA) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is detectable 
in municipal wastewater as infected individuals can shed the virus in their feces1,2. The National Microbiology 
Laboratory (NML) at Public Health Agency of Canada (PHAC), in partnership with Statistics Canada, is actively 
monitoring SARS-CoV-2 virus concentrations in wastewater treatment plants (WWTP) across major Canadian 
cities in order to inform public health actions.

Wastewater surveillance has proven to be a useful tool for disease outbreak monitoring before the COVID-
19 pandemic3,4. A number of research groups have studied the COVID-19 pandemic from the perspective of 
wastewater-based epidemiology: Ling et al.1 detected viral RNA in patients’ urine and fecal samples; Medema 
et al.2 reported that SARS-CoV-2 RNA was present in sewage at the beginning of the COVID-19 pandemic in 
Netherlands; Ahmed et al.5 also reported the detection of SARS-CoV-2 in wastewater plants in Australia; Peccia 
et al.6 monitored the viral RNA concentrations in primary sewage sludge in the New Haven (Connecticut, USA) 
and claimed the viral RNA concentrations to be a leading indicator of the rise and fall in the number of positive 
clinical cases and local COVID-19 hospital admissions; Acosta et al.7 assessed the numerical relationship between 
hospitalized COVID-19 cases and SARS-CoV-2 RNA gene-targets (N1 and N2) in the wastewater from three 
adult tertiary-care hospitals in Calgary (Alberta, Canada).

Compared to previous COVID-19 wastewater-based epidemiology research, our study depends on a large-
scale and nationwide collection of municipal wastewater at 15 sampling sites across five Canadian cities: Edmon-
ton, Halifax, Montréal, Toronto, and Vancouver. This PHAC program relies on wastewater surveillance to monitor 
trends in SARS-CoV-2 prevalence and track community infections throughout the COVID-19 pandemic. The 
wastewater surveillance data were collected from 15 WWTPs in the five cities starting from October, 2020 up 
until November, 2021. We focus on developing a novel and accurate statistical framework to model the dynamic 
trajectory of SARS-CoV-2 concentration in wastewater. There are two main challenges in the interpretations of 
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wastewater-based epidemiology signals. The first challenge is that the viral concentrations in wastewater samples 
can be influenced by many known and unknown factors. The known factors are sample storage temperature8, 
WWTP influent volume7, in-sewer processes such as the presence of sewer biofilms9,10 to name a few. The 
unknown factor includes but not limited to the unavoidable technical and statistical errors in wastewater sam-
pling and experimental replicates. The main research question here is that whether increases in wastewater viral 
concentration measurements indicate a significant increase of viral shedding and potentially a disease outbreak 
in the region serviced by a particular WWTP. In this article, the proposed framework accounts for the effects of 
known factors by incorporating them as covariates in a joint statistical model. Moreover, in order to reduce the 
influence of unknown factors, the measurements of viral concentrations is done on multiple technical replicate 
samples. The proposed framework also uses a method called the functional principal component analysis11,12, a 
state-of-the-art statistical method developed for analysing curve data, to detect the major trends in viral concen-
tration trajectory while removing small fluctuations that are likely to be caused by technical errors. The second 
challenge of interpreting wastewater-based epidemiology signals is that the wastewater samples are usually taken 
and measured on sparse and irregular time intervals. For example, the PHAC program samples wastewater data 
from 15 WWTP sites across Canada, and each PHAC-associated lab have different weekly schedule of taking 
samples and reporting viral concentrations. The data generated from longitudinal wastewater monitoring studies 
cannot be directly interpreted without appropriate statistical interpolations6. In this article, the proposed frame-
work applies the functional principal component analysis for sparse longitudinal observations12 to interpolate 
dense and regularly-observed viral concentrations through detecting trends and borrowing information across 
WWTP sites.

For each wastewater sampling site, our framework aims to answer two specific questions: (1) How to detect 
true signals of viral concentration increases/decreases out of noisy observations? In order to better inform public 
health actions, a more reliable interpretation of wastewater-based epidemiology trend is needed. The accurate 
detection of trend change depends on the proposed framework to tackle the two challenges described above. 
Also, we use the Markov chain Monte Carlo (MCMC) framework13 to estimate the probability of an increase or 
decrease in true viral concentrations. The second question is (2) How to accurately forecast the future trajectory 
of viral concentrations in wastewater? The proposed framework is employed to detect the true trends of viral 
concentration out of noisy and sparse observations and to forecast the future trajectory of viral concentrations 
in wastewater. These capabilities are demonstrated through simulated data and the Canadian nationwide waste-
water surveillance program data. Due to the scale of the data collection and the support from the PHAC, the 
proposed framework is already having real-life impacts on pandemic monitoring and can be widely applied in 
future epidemiology studies.

Materials and methods
Wastewater sampling and SARS‑CoV‑2 concentrations.  Wastewater samples were collected approx-
imately twice a week at each sampling location. Sample collection dates may differ by location. Influent samples 
were collected from WWTPs in each city. For Vancouver, the plants sampled are located in Annacis Island 
(VAI), Iona Island (VII), Lions Gate (VLG), Lulu Island (VLI); for Edmonton at Gold Bar (EGB); for Toronto 
at Ashbridges (TAB), Highland Creek (THC), Humber (THU) and North Toronto (TNT); for Halifax at Dart-
mouth (HDA), Halifax Downtown (HHA), Millcove (HMC). For Montréal, the sampling locations were not at 
the municipal WWTP but at two locations on the Island of Montréal, here labelled Montréal North (MMN) and 
Montréal South (MMS), each covering approximately one half of the population of the island. Wastewater sam-
ples were collected at the sampling site and then shipped to NML in Winnipeg (Manitoba, Canada) for analysis.

Viral RNA present in the wastewater samples was quantified using the reverse transcription-quantitative 
polymerase chain reaction (Rt-qPCR) test with the United States Centers for Disease Control and Prevention 
(US-CDC) N1 and N2 primers using the method described in Nourbakhsh et al.14. For all the wastewater samples, 
the N1 and N2 gene concentrations are measured by two technical replicates.

Statistical model.  For the purpose of data quality assurance, each wastewater sample is measured with two 
technical replicates. The virus concentration values are observed on an irregular time grid as samples were not 
collected on the same days between locations. The curves of concentration values for 15 sampling sites need to 
be imputed and mapped onto a consistent and regular time grid, so that a continuous trend of viral concentra-
tion can be estimated and different curves are comparable to each other. Also, the curves of virus concentration 
values can be affected by errors associated with technical replicates. Functional principal components analysis 
(FPCA)12 and the extension of FPCA to include covariates15 can solve the issues mentioned above by: (1) lever-
aging the correlations among a group of curves; (2) imputing missing values of the curves on a regular time grid; 
(3) estimating a smoothed mean curve and eigenfunctions from a group of noisy curves, with the eigenfunc-
tions representing and explaining direction of variability (see Yao et al.12 for details); and (4) incorporating and 
estimating the effects of covariates (e.g., sample storage temperature, daily influent volume at the wastewater 
treatment plant) on viral concentrations as fixed effects in a joint regression-like model15.

For each sampling site and target gene (N1 and N2), the full model is written as

where i is the index of a sampling site (i.e., i = 1, . . . , 15 ), t is the index of a sample taken at site i (i.e., t = 1, . . . ,Ni , 
Ni is the number of time points (daily) for site i), and k is the index of a technical replicate, i.e., k = 1, 2 . µ(Tit) 
is the overall mean function of all sites and technical replicates at time Tit , which is the time of when the tth 

(1)Yik(Tit) = Yitk = µ(Tit)+

P∑

p=1

βp(Tit)Xip(Tit)+

L0∑

l0=1

ξil0φl0(Tit)+ εitk ,



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13490  | https://doi.org/10.1038/s41598-022-17543-y

www.nature.com/scientificreports/

sample at site i is taken. εitk is the error contained in each technical replicate k, site i and sample t. All the errors 
are assumed to follow an independent and identical normal distribution with E(εitk) = 0 and var(εitk) = σ 2 . 
βp(Tit) is the time-varying effect of the pth covariate at time Tit , and Xip(Tit) is the observed value of the pth 
covariate at time Tit . When P = 0 , Eq. (1) is reduced to a model without covariates. L0 is the number of basis 
functions extracted from the FPCA process. A basis function of a principal component (PC) can explain certain 
direction of variation in the observed curves, with the first L0 PCs covering a desirable proportion of the total 
variation (e.g., 90% of total variation). φl0 is the estimated basis function associated with the l0 th PC. Parameters 
ξil0 ’s are random FPCA scores with E(ξil0) = 0 and var(ξil0) = �l0 , where �l0 is the eigenvalue of the l0 th PC. In 
the FPCA process defined by12, an observed curve can be approximated by a linear combination of basis func-
tions, with FPCA scores as the coefficients and eigenvalues as the variance of the FPCA scores. In this study, �l0 
is a random variable estimated along with ξil0’s.

To model the time-varying effect of the pth covariate βp(Tit) , we map the theoretically infinite-dimensional 
time-varying effect onto a system of basis functions and use the coefficients of these functions as the inputs of a 
joint regression. For convenience, we use the eigenfunctions derived from Xip(Tit) curves as the basis functions 
here:

where X∗
ip(Tit) is a smoothed approximation of Xip(Tit) derived from the FPCA process. By replacing Xip(Tit) 

with X∗
ip(Tit) in Eq. (1), the time-varying effect of the pth covariate can then be represented by a vector of LP 

values: bp = {b1, . . . , blp , . . . , bLp } . Therefore, the full model in Eq. (1) can be rewritten as

We adopt a Bayesian framework for model estimation and inference via Markov Chain Monte Carlo (MCMC) 
sampling16. Prior distributions of unknown parameters are defined as follow:

•	 The variance of errors σ 2 is assumed to follow an inverse Gamma distribution InverseGamma(ασ ,βσ ) , where 
ασ and βσ are small values. This prior is non-informative that is we have little prior information about the 
parameter;

•	 We assume ξil0 follows a normal distribution with mean 0 and variance �l0 that is ξil0 ∼ Normal(0, �l0);
•	 The variance �l0 follows an inverse Gamma distribution with shape and sclae parameters α1

�
 and α2

�
 respec-

tively that is �l0 ∼ InverseGamma(α1
�
,α2

�
) . We choose small values for α1

�
 and α2

�
 , so the prior distribution 

is essentially non-informative. We note that φl0 is estimated from centered observed curves (i.e., µ(Tit) was 
subtracted), and the term 

∑L0
l0=1 ξil0φl0(Tit) is a zero-mean random process.

•	 Prior for bp : To avoid overfitting, we regularize the coefficients vector bp by using the Bayesian group lasso 
penalty17. Specifically, the prior of bp follows a multivariate generalization of the double exponential distribu-
tion: 

 where ||bp||2 is the L2 norm of bp18, δ is a penalty parameter, and the double exponential distribution can be 
rewritten as a scale mixture of normal distribution with Gamma hyperpriors: 

 where ILp is an identity matrix of dimension Lp.
Our MCMC algorithm will provide sample values of parameters and this will allow us to obtain sample values 
of Ŷi(Tit) , estimate of the unobserved true concentration value. It’s formally defined as

The replicate errors are essentially removed from the lab results. From the MCMC sample values of Ŷi(Tit) , we can 
estimate the probability that today’s estimate of the true concentration value is larger than yesterday’s estimate. We 
denote these probabilities Proba(Ŷi(Tit) > Ŷi(Ti,t−1)) which are estimated by the proportion of MCMC sample 
values that verify Ŷi(Tit) > Ŷi(Ti,t−1) . In general, we can also estimate Proba(Ŷi(Tit) > Ŷi(Ti,t−D)) , where D 
is an arbitrary time difference of observations. For instance, when D = 7 , we look at the probability of weakly 
increase. We estimate these probabilities to conclude whether or not an increase (or decrease) in the observed 
virus concentration signals a significant increase (or decrease) in the true concentration.

βp(Tit) =

Lp∑

lp=1

blpφlp (Tit),

X∗
ip(Tit) =

Lp∑

lp=1

xilpφlp (Tit),

(2)Yik(Tit) = Yitk = µ(Tit)+

P∑

p=1

Lp∑

lp=1

blp {X
∗
ip(Tit)φlp (Tit)} +

L0∑

l0=1

ξil0φl0(Tit)+ εitk .

bp ∝ exp

(
−

δ

σ
||bp||2

)
,

bp ∼ Normal(0, τ 2p σ
2
ILp ); τ

2
p ∼ Gamma(

Lp + 1

2
,
δ2

2
),

(3)Ŷi(Tit) = µ̂(Tit)+

P∑

p=1

Lp∑

lp=1

b̂lp {X
∗
p (Tit)φlp (Tit)} +

L0∑

l0=1

ξ̂il0φl0(Tit).
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To accurately forecast the future trajectory of viral concentration, we propose to use the autoregressive inte-
grated moving average (ARIMA)19 to extend the smooth basis functions φl0 ’s (and φlp ’s if there are covariates). 
The forecasts can be calculated based on the linear combination of basis functions shown in Eq.  (1).

We carry out our MCMC sampling by utilizing Stan20, a probabilistic programming language implemented 
in the R package Rstan21. The R package refund22 is used to compute eigenfunctions φl0(Tit)’s. We create an R 
package called WWmodel for our framework. It is available on GitHub (https://​github.​com/​xiaot​iand/​WWmod​el).

Results and discussion
SARS‑CoV‑2 virus concentration modeling.  SARS-CoV-2 virus concentration are measured on N1 
and N2 primer set (see “Wastewater sampling and SARS-CoV-2 concentrations”). For the N1 assay, the log 
base 10 transformation of virus concentrations of wastewater samples from 15 sampling locations are plotted in 
Fig. 1. As described in “Statistical model”, the proposed framework is based on a Bayesian model that can sample 
and estimate unknown parameters including Ŷi(Tit) , the estimate of the unobserved true concentration value 
(see Eq. 3). Ŷi(Tit) can be seen as posterior estimates of the true concentrations after removing noises incurred by 
various factors. In this manuscript, for simplicity, we designate the posterior estimates of the true concentrations 
Ŷi(Tit) as the “posterior curves” generated from the proposed framework. For each site, the number of posterior 
curves is 2500, which corresponds to the number of MCMC iterations used for posterior inference. Figure 1 
shows the distribution of posterior curves of Ŷi(Tit) at the 15 sampling locations using the comprehensive model 
with two covariates [(sample storage temperature in degree Celsius ( ◦ C) and daily influent volume into the 
WWTP in megalitre (MI)], with color saturation representing the density of posterior curves. The two sampling 
sites at Halifax (HDA and HHA) do not report sampling results regularly, and the reported virus concentrations 
are very sparse for the two sites. However, thanks to the hierarchical structure of the proposed framework those 
sites borrow information from other sites; we can impute the “missing” concentrations, but the imputed poste-
rior curves have a large variation and uncertainty, as shown in Fig. 1.

The root mean squared errors (RMSE) of the posterior curves at each site for the model without covariates 
(i.e. P = 0 ) and the comprehensive model with two covariates are shown in Table 1. The RMSEs are calculated 
by comparing the posterior curves and the actual observations across 15 sampling sites. The standard errors of 
the RMSEs are also included in parenthesis. As shown in Table 1, the RMSE is slightly improved (lower) with 
the inclusion of two covariates, while the differences are not significant. This is probably due to the regulariza-
tion of covariates’ effects, which makes the framework robust to the inclusion of a large number of candidate 
covariates (i.e., avoid overfitting). The modelling results of the primer gene N2 are included in the Supplementary 
Information (see Fig. S1).

As mentioned in “Statistical model”, the objective is to identify whether an increase in the observed virus 
concentration signals an increase in the true concentration. This is done by computing the probability to get an 
increase in true viral concentration from the past concentration at lag D: Proba(Ŷi(Tit) > Ŷi(Ti,t−D)) . Figure 2 
shows the probability of an increase in the true concentrations for D = 7 . The time lag D is in calendar days, so 
D = 7 means a timestamp difference of one calendar week. A high value of Proba(Ŷi(Tit) > Ŷi(Ti,t−D)) (i.e., 
a value close to 1) suggests that there is a high chance of an increase in the true concentration value, and a low 
value of Proba(Ŷi(Tit) > Ŷi(Ti,t−D)) (e.g., one close to 0) suggests that there is a high chance of a decrease in the 
true concentration value. On the other hand, a Proba(Ŷi(Tit) > Ŷi(Ti,t−D)) value of around 0.5 suggests that the 
differences in the observed values at two timestamps are not significant. We also include the probability of an 
increase in the true concentrations for D = 1 and D = 20 (see Figs. S2, S3 in the Supplementary Information). 
As shown in Fig. 2, Figs. S2 and S3, the increasing signal will become clearer as the time lag D gets moderately 
larger (a large value of D may not be meaningful in practice). In Fig. 2, we can see that as we approach the end 
of the year 2021, we are also getting closer to the end of the third wave of the COVID-19 pandemic beginning 
October, 2020. At all locations, the probabilities strongly indicate an increase during the ascending phases of all 
three waves. In the future, the posterior estimates of true concentrations or the probabilities of increases can be 
used as a cleaner predictor of a spike of clinical cases rather than relying on observed concentrations which can 
be noisy as a result of technical and statistical errors6,7.

As detailed in “Statistical model”, the proposed framework can also be used to forecast future concentration 
values, and then produce signals for future pandemic waves simply by extending the basis functions φl0(Tit) ’s 

Table 1.   RMSE for both models. The standard errors of the RMSEs are in parenthesis. Larger standard errors 
indicate larger variations in posterior curves. This variation can be reflected in the widths of ribbons in Fig. 1.

EGB HDA HHA HMC MMN

Model w/covariates 15.57 (0.01) 14.75 (0.07) 12.81 (0.04) 5.19 (0.03) 23.73 (0.01)

Model w/out covariates 14.75 (0.01) 12.79 (0.03) 10.47 (0.01) 4.08 (0.03) 22.05 (0.01)

MMS TAB THC THU TNT

Model w/covariates 6.65 (0.00) 20.26 (0.01) 42.92 (0.05) 67.47 (0.08) 21.17 (0.02)

Model w/out covariates 6.56 (0.00) 20.16 (0.01) 38.91 (0.02) 63.01 (0.08) 21.13 (0.02)

VAI VII VLG VLI VNL

Model w/covariates 19.18 (0.02) 9.34 (0.01) 17.48 (0.02) 22.99 (0.01) 16.52 (0.03)

Model w/out covariates 16.69 (0.01) 9.06 (0.00) 17.57 (0.02) 22.72 (0.01) 16.52 (0.03)

https://github.com/xiaotiand/WWmodel


5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:13490  | https://doi.org/10.1038/s41598-022-17543-y

www.nature.com/scientificreports/

to future time points Tit = T + 1,T + 2, . . . . To test the forecasting algorithm, virus concentrations of gene N1 
during the calendar month after May 23rd, 2021 are held out and used as testing data. The historic N1 concen-
tration values observed before May 23rd, 2021 are used as training data and used to build a forecasting model 
using our proposed framework. Figure 3 shows that, for the majority of the sampling locations, the forecasts are 
fairly predictive, 72% of the actual observations (blue dots) are within the range of the extended posterior curves 
(brown curves). Figure 3 suggests that the proposed framework can also successfully predict a downturn. The 
Supplementary Information shows another example of forecasting a new wave of the pandemic (see Fig. S6). 
In Fig. S6, the historic N1 concentration values observed before August 1st, 2021 are used as training data and 
used to build a forecasting model to forecast the concentrations in August, 2021.

Interpretation of wastewater‑based epidemiology.  According to Detsky and Bogoch23, the second 
and third waves of COVID-19 infections happened during the period September 2020 through August 2021. 
Here we investigate the pandemic waves from the perspective of the wastewater-based epidemiology. The num-
ber of weekly confirmed COVID-19 cases peaked in December, 2020 and April, 2021 in Canada23, which is 
consistent with the probability of weekly increase in wastewater viral concentrations for most major Canadian 
cities as shown in Fig. 2. The correlation between wastewater signals and reported cases may be weaker during 
the wave of the Omicron variant, as the clinical testing efforts have been scaled down across Canada and many 
other countries. This is why the interpretation of wastewater-based epidemiology has become more important 
for public health decision making and would be an indicator for disease outbreak.

The third wave of COVID-19 infections overwhelmed the capacity of healthcare system in Ontario province, 
Canada23, and the most populated city of Ontario is Toronto. This is reflected in Fig. 1 as the sampling sites 
TAB, THC, THU, and TNT all show a large spike of SARS-CoV-2 concentrations in wastewater samples around 
April, 2021. Improvement in infection control practices in long-term care facilities after the first two waves var-
ied across Canada, with Quebec province showing significant improvement23, and the most populated city of 
Quebec is Montréal. This is also reflected in Fig. 1 as the sampling sites MMN and MMS show a smaller spike of 
SARS-CoV-2 concentrations in wastewater samples around April, 2021 compared to Toronto sites. The Atlantic 
provinces (including Halifax) fared very well due to its swift responses to new cases with rapid community trac-
ing and testing23. As shown in Fig. 1, the wastewater signals observed by the three Halifax sites (HDA, HHA, 
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Figure 1.   Black open circles represent the Log10 transformation of SARS-CoV-2 concentration observations 
for the N1 assay. Red shaded areas represent the range (lightest area), 50% (darkest area) and 80% credible 
intervals (slightly lighter area) of posterior curves at each date, from the model with covariates. Each panel 
represents a sampling location.
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and HMC) are very sparse, but the overall trends of the interpolated SARS-CoV-2 concentrations suggest that 
the viral concentrations in Halifax’s municipal wastewater are lower than those of other cities.

Simulated data.  Here we present a simulated data example using a statistical simulation design. Another 
simulated data example using an epidemic/mechanistic simulation design proposed by Nourbakhsh et al.14 is 
included in the Supplementary Information. See “Materials and methods” and Fig. S7 of the Supplementary 
Information.

The simulated data contain eight hypothetical sampling sites ( I = 8 ). The basis functions ( φl0 ) and eigenval-
ues are generated from the observed virus concentrations (on a log-scale) in the Canadian municipal WWTP 
samples. At each site and each time point, two replicates of measurements are simulated.

For each site, the observed concentration values are generated as:

where µit =
∑4

l0=1 ξil0φl0(Tit) , ξil0 ∼ Normal(0, �l) , and εitk is an independent error with εitk ∼ Normal(0, σit) . 
The standard deviation of the error term σit is proportional to the true concentration µit (i.e., σit/|µit | is a 
constant). In other words, a larger concentration value can contain a larger observational error, which mimics 
the real-life situation. We vary σit/|µit | = 0.1, 0.5 and 1 to test the robustness of the proposed framework with 
respect to the estimation of coefficients. Also, each simulated observed concentration Yik(Tit) has around 10% 
of missing data time points. Then we applied our framework to the simulated data for each sampling site. The 
simulated data and posterior curves (i.e., posterior estimations of µit ) for the setting of σit/|µit | = 1 are shown 
in Fig. 4, and those for σit/|µit | = 0.5 and 0.1 are included in the Supplementary Information (see Figs. S4, S5).

In Fig. 4, the red curve is the simulated true concentration values µit , the blue dots are the simulated con-
centration values after adding noise. The truth curve is unknown to the proposed framework, and the simulated 
observations are used to build the black curves which successfully unveil the truth. The variation in the black 
curves (i.e. estimated curves) is reasonable, compared to the relatively large scale of noises. We also compare 
the RMSEs for three different noise ratio settings. In Fig. 5, the RMSEs are calculated by comparing the true 
concentrations µit with the posterior curves. When we increase the scale of noises, the RMSEs increase gradually, 
which suggests that the proposed framework is relatively robust to the scale of noises. The SEs of the RMSEs are 
very small in scale compared to the RMSEs.

Yik(Tit) = µit + εitk ,
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Figure 2.   Time series of the probability of weekly increase, that is Proba(Ŷi(Tit) > Ŷi(Ti,t−7)) ( D = 7 ) 
calculated with the comprehensive model (including covariates) for all sampling locations. The horizontal 
dashed line indicates the 50% probability.
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Figure 3.   The historic data observed before May 23rd, 2021 (blue points) are used as training data and used 
to fit the full model (blue line represents the mean posterior curve). The mean posterior curve beyond the last 
observation date used for fitting is shown in red (red area for the 95% CrI). The red points represent the data 
forecasted. The forecasting horizon is one calendar month.

Figure 4.   The simulation results of the statistical design with σit/|µit | = 1 . The posterior curves are in black, 
the truth line is a red line, and simulated observations are blue dots.
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Conclusion
Unlike other studies, this study did not attempt to correlate wastewater virus concentrations with clinical cases6,7. 
Clinical surveillance has its own biases (e.g., under-reporting when prevalence is high, changing testing guide-
lines) and may not always be considered as an appropriate gold standard with which to compare wastewater 
signals. Here, we focused on exploiting exclusively the information provided by the viral concentration in waste-
water along with other covariates (e.g., sample temperature, influent volume).

Relying exclusively on wastewater-based data has drawbacks because many additional factors can influence 
the observed virus concentrations in the WWTP samples (e.g., dilution due to rainfall or snowmelt, sample dete-
rioration during transport, pollutants shed in wastewater affecting the RNA decay, presence of bioflim in sewer 
system, etc.). We currently have no access to these information in this nationwide study. However, in periods of 
high prevalence that overwhelm traditional clinical surveillance, wastewater-based data may be among the only 
data sources that can provide relatively reliable information about the state of the epidemic (as many experienced 
during the Omicron wave in late 2021/early 2022).

In this study, we focused on developing an framework to model the true concentration levels out of noisy 
and sparse observations. The proposed framework aims to answer the key question of whether an increase in the 
observed value indicates an actual increase in the true concentration level and if it can therefore provide accu-
rate information on the disease burden in a community included in the catchment area of a given WWTP. For 
public health decision making in government agencies like PHAC, the ability to have a good grasp on dynamic 
COVID-19 pandemic trends is critical. The proposed framework is not only applicable to the current healthcare 
crisis, but it can also have broader impact on future wastewater-based epidemiology monitoring effort. As more 
and more resources are spent on collecting longitudinal wastewater data24, the proposed framework can be a 
perfect fit for such studies in terms of identifying and interpolating the true trajectory when researchers only 
have access to noisy and sparse observations.

Data availibility
The data that support the findings of this study are available upon reasonable request. Correspondence should be 
addressed to Xiaotian Dai (xiaotian.dai@ucalgary.ca) or Thierry Chekouo (thierry.chekouotekou@ucalgary.ca).

Figure 5.   Comparing the RMSEs of the three different noise ratio settings with σit/|µit | = 0.1 , 0.5, and 1, 
respectively. The SEs of the RMSEs are very small compared to the RMSEs.
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