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Objective. Breast cancer (BC) affects women all over the world. /is study aimed at screening out potential biomarkers through
performing an in-depth analysis of data from the previous research and database. Design. /is study made full use of RNA
sequencing (RNA-seq) data from cancer genomic maps (TCGA) and screened key genes related to stemness by mergingWGCNA
with BC mRNAsi. Results. /e related mRNAsi data were downloaded, and the transcriptional levels of mRNAsi in cancers
contrasted with normal samples. /e results showed that there was a significantly higher mRNAsi expression in BC tissues
(P � 1.791e − 43). Seven modules were obtained following the investigation through cluster analysis. /e turquoise module
showed a relatively high positive correlation withmRNAsi at 0.79; this module was chosen as themost interesting and was used for
subsequent analysis. By setting related cutoffs, 38 key genes were screened, and the coexpression of these genes was explored next.
/e results showed that the lowest correlation was between CDC20 and KIF11 (0.54), and the highest connection was between
BUB1 and CKAP2L (0.86). Furthermore, ten hub genes with the most nodes were sorted using a histogram. Using other databases
to explore the prognosis value of key genes, the results showed that lower expression of key genes was significantly connected with
longer overall survival (OS), distant metastasis-free survival (DMFS), and relapse-free survival (RFS). /e immune infiltration
relationship between hub genes and six kinds of basic immune cells was investigated; it was revealed that partial ones were
positively or negatively related. Conclusion. /is study is the first to show the important role of stemness-related genes in the
prognosis of BC. However, future clinical trials are needed to confirm these results and promote the application of these key genes
in prognosis evaluation.

1. Introduction

Breast cancer (BC) easily metastasizes to the bones and
lungs, has the highest incidence rate, and is the second
leading cause of death among women [1, 2]. /e disease
accounts for 23% of all cancer deaths, according to the
World Health Organization (WHO) 2012 reports [3]. One in
every three women in Asia is at the risk of BC in their
lifetime [3]. Early diagnosis and intervention are particularly
important. /e malignancy is caused by complex inherited

and environmental factors./e known hazard factors for BC
include high alcohol consumption and physical inactivity.
Unfortunately, few symptoms curtail early diagnosis and
often lead to serious consequences if the disease is diagnosed
at the advanced stage [4].

Several studies in recent years have shown that stem cell-
like cell populations, which are distinct from the cancer bulk
cells (bCSC), are a major factor influencing recurrence and
progression of BC [5]. Breast cancer is generally divided into
5 intrinsic molecular subtypes, including luminal A, luminal
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B, HER-2 enriched, basal-like, and Claudin-low speaking
according to the sequencing of the BC genome and tran-
scriptome [6]. Remarkable progress has been achieved in the
treatment of early breast cancer including a combination of
drugs, radiation therapy, and surgery [7]; however, due to
huge cytotoxicity and poor efficacy on advanced tumors, BC
patients have a disappointing 5-year survival rate. /e
PDE3A gene, which is regarded as a mediator of cancer
stemness, could predispose breast cancer patients to me-
tastases [8]. Cancer stem-like properties in BC have a vital
role in overcoming resistance [9]. Zaoui et al. found that
breast-associated adipocytes potentiate the invasiveness of
breast cancer cells [10]. /e microenvironment of BC tissues
has attracted much attention recently, in which oxidative
stress is considered as a determining factor in the prolif-
eration and growth of breast cancer cells [11]. Similarly, the
study also reported that cancer stem cells are recognized as a
key regulator of malignancy as a result of causing metastasis,
relapse, and therapy resistance [12].

Microarray technology and bioinformatics analysis have
been widely used to throughput and simultaneously detect
thousands of genes at the genome level. A study based on
various platform analysis of methylomes, transcriptomes,
and transcription factor binding sites to quantify stemness
and an mRNA expression-based stemness index (mRNAsi)
from various cancers were obtained. /erefore, the mRNAsi
data were download for our analysis [13]. /e weighted gene
coexpression network analysis (WGCNA) and its set of
coexpressed genes were explored by making use of RNA
sequencing (RNA-seq) data from cancer genomic maps [14]
(TCGA). Overall, this study attempted to filter determined
key genes related to stemness and select biomarkers for
diagnosis.

2. Methods

2.1. Gene Information and Bioinformatics Analysis.
Information on gene expression (1164 tissues, workflow
type: HTSeqCounts) and clinical data (1054 cases, data
format: BCR XML) was obtained from level 3 gene ex-
pression information (FPKM normalized) of the TCGA BC
cohort. Also, the mRNAsi expression level we obtained
before is an indicator showing the resemblance between
stem cells and tumor cells and therefore can be regarded as a
quantitative indicator. /ese samples were combined into a
matrix file using a merge script in the Perl language. /e
clinicopathological data collected included age, stage, grade,
T-stage, M-stage, N-stage, survival status, and survival
duration in days. Additionally, boxplots relevant to clinical
and sample data were applied to foresee expression differ-
ences of discrete variables, which were examined using the R
(version 3.5.3) and R Bioconductor packages. /e Ensembl
database (http://asia.ensembl.org/index.html) was used to
transform gene names from Ensembl IDs to corresponding
gene symbols. Data matrix and data processing were made
using the Perl language (P< 0.5). /e listwise deletion
technique was used to deal with missing data; the entire
sample was excluded if any value was absent. /e Krus-
kal–Wallis test was used to determine the significance of

differences between subtypes by examining the connection
between clinical factors and mRNAsi.

2.2. Identification of Differentially Expressed Genes (DEGs).
/e “edgeR” R package was utilized to measure the iden-
tification of DEGs between BC and noncancerous samples.
/e adjusted P value and Benjamini and Hochberg false
discovery rate method were used to correct the discovery of
statistically significant genes and limitations of false posi-
tives. |log 2FC|> 1 combined with P value <0.05 was con-
sidered statistically significant. Other noncompliant data
were not be adopted.

2.3. WGCNA and Module Preservation. WGCNA describes
the association between genes across the entire microarray
sample. /e heterogeneity accuracy of bioinformatics sta-
tistics is the basis of coexpression network analysis [15], so
the genes with the most differential expression were
screened. Artificial threshold parameters were set to avoid
information loss and filter RNA-seq information to decrease
outliers because of the successive nature of coexpressed data.
A weighted adjacency matrix was then constructed and
transformed into a topological overlapmatrix (TOM), which
can evaluate the direct correlation of gene pairs and the
degree of association with other genes in the dataset as well
as the network connectivity. /e suitable minimum gene
module dimension was set for the gene tree, to merge similar
genes into an independent module. A modular eigengene
(ME), which can be deemed to be the main component of a
modular gene expression profile, is defined as the feature
expression profile within the module of interest. Module
significance (MS), defined as the average GS, played a vital
role in measuring relevance between the module and sample
traits. Marker genes, regarded as the heart of the network
architecture, are highly connected central nodes. For each
gene, a module membership (MM) was determined by as-
sociating the module’s gene expression profile with the ME
of a particular module. /e threshold for filtering key genes
in the module is defined as cor. gene GS> 0.5 and cor. gene
MM> 0.8.

2.4. KEGG and GO Enrichment Analyses. /e Kyoto En-
cyclopedia of Genes and Genomes (KEGG) [16] is a da-
tabase resource aimed at exploring key genes’ functions
and their biological functions. Gene ontology (GO)
function analysis (biological processes (BP), cellular
components (CC), and molecular functions (MF)) is an
essential tool for analyzing biological process and an-
notate genes. /e “clusterProfiler” R package was used to
perform GO functional annotations and KEGG pathway
enrichment analysis.

2.5. Protein-Protein Interaction (PPI) Network Construction.
An online database (STRING; http://string-db.org) [17] was
used to search for the retrieval of interacting genes and
predicting the PPI network information. Analyzing the
interactions and functions between DEGs may provide
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information about the mechanisms of generation and de-
velopment of disease (PPI score> 0.4). Interestingly, the
number of adjacent nodes of each gene can be calculated,
based on the genes sorted by a histogram. Typically, genes
with the most nodes are considered key genes.

2.6. Modification Species Analysis of Stemness-Related DEGs.
/e cBioPortal [18] is an open free asset that visualizes,
analyzes, and downloads large-scale cancer genomics
datasets; it was used to performmodification species analysis
in stem-associated DEG in TCGA BC samples. Furthermore,
various datasets could be selected for different purposes.

2.7. Kaplan–Meier Plotter. Kaplan–Meier plotter (http://
kmplot.com/analysis/) [19] collects gene expression and
prognosis data from patients across 21 cancer types, in-
cluding BC. From this dataset, users can obtain the survival
significance of mRNAsi expression levels. /e prognosis of
multigenes was explored by setting “use multiple genes”
which involved OS (overall survival), PPS (postprogression
survival), DMFS (distant metastasis-free survival), and RFS
(relapse-free survival). Additionally, the prognosis of pa-
tients in different subgroups was analyzed by setting dif-
ferent parameters, including patients with different
pathologies, treatment modes, and datasets.

2.8. TIMER Analysis. TIMER [20] is an open-access web
interface used to systematically study the immune infiltra-
tion of various malignancies. /e abundances of six kinds of
immune cells (B cells, CD8+ T cells, CD4+ T cells, macro-
phages, neutrophils, and dendritic cells) were evaluated,
which was assessed using our statistical methods and pa-
thology. Hub genes with the most nodes have been obtained
before. Six immune infiltrates’ abundances of 10 hub genes
were acquired using this immune infiltration module (P
value <0.05).

3. Results

3.1.mRNAsi andClinical Characteristics in BC. /emRNAsi
data from Pan statistics [11] were first downloaded, and the
transcriptional levels of mRNAsi in cancers and normal
samples contrasted. Significantly higher mRNAsi expres-
sions were found in BC tissues compared with normal ones
(P � 1.791e − 43). /e connection of clinical factors and
mRNAsi expressions was then explored; the results dem-
onstrated that mRNAsi correlates significantly with the
patient’s T (P< 0.001) and stage (P< 0.001) classifications
(Figure 1(a)). /e findings above suggest that the expression
of mRNAsi was especially different and may have a pivotal
role in regulating BC development. Data cleansing to select
differential genes was carried out as the expression level of
mRNAsi in normal samples is remarkably dissimilar from
that in carcinoma. Data normalization, filtering, and dif-
ference analysis were then performed to contrast BC with
normal specimens. From this analysis, the heatmap of the

top 20 upregulated and downregulated DEGs was shown
(Figure 1(b)).

3.2.WGCNAConstructionandModulePreservationAnalysis.
WGCNA was used to build a gene coexpression network to
describe gene modules and genes connected with tumor
stem cells. Using cluster analysis, DEGs with a variance of up
to 25% were placed in one module, and 7 modules were
obtained for the subsequent analysis (Figure 2(a)). /e
turquoise module was most remarkably relevant to mRNAsi,
with a correlation near 0.79. /e blue module showed a
relatively high negative correlation with mRNAsi (−0.68)
(Figure 2(b)). Scatter plot of module eigengenes is given in
the blue, green, yellow, and turquoise modules (Figure 2(c)).
/erefore, the turquoise module was selected as the most
interesting module, and it was used for subsequent analysis.
/irty-eight key genes were screened including TPX2,
HJURP, PLK1, CDCA8, KIFC1, KIF4A, EXO1, KIF2C,
CCNB2, NCAPG, NCAPH, CENPA, KIF20A, TTK, MELK,
KIF23, RAD54L, KIF18B, BUB1, NDC80, ORC1, SGO1,
BUB1B, CKAP2L, SKA1, CDC45, CDC20, DLGAP5,
FOXM1, KIF15,AURKB, CCNA2,HASPIN, KIF18A, CEP55,
CENPO, KIF11, and GTSE1.

3.3. Functional Enrichment Analysis of Key Genes. /e dif-
ferent expression transcriptional levels of these 38 key genes
in cancers and normal samples were first analyzed; all key
genes were significantly highly expressed in BC tissues
(Figure 1(c)), and the heatmap of these 38 key genes was
shown (Figure 1(d)). /e coexpression of these 38 key genes
was investigated next. /e least was between CDC20 and
KIF11 (0.54), whereas that with the highest connection was
between BUB1 and CKAP2L (0.86) (Figure 3(a)). /e
analysis of the interactions and effects within these 38 genes
provides convincing information about the mechanisms and
development of the disease./erefore, the STRING database
was used to construct the protein-protein interaction net-
work (Figure 3(b)), and the number of adjacent nodes of
each gene is displayed in a histogram (Figure 3(c))./emost
adjacent node genes were PLK1, NDC80, NCAPG, KIF2C,
KIF20A, CDCA8, CDC20, BUB1B, BUB1, and AURKB, in-
dicating that these genes may be the hub genes in the
network. Next, cBioPortal showed that these 38 key genes
were modified in 869 of 2173 (40%) BC patients, and am-
plification was the most common modification type in BC
(Figure 4).

3.4. Functional Annotation of Turquoise Modules. Gene
enrichment was carried out using the “clusterProfiler” R
software package to illuminate the functional similarity of
the module genes. /e results showed that changes in BP of
stemness-related genes were significantly enriched inmitotic
sister chromatid segregation, mitotic nuclear division,
chromosome segregation, organelle fission, nuclear division,
and nuclear chromosome segregation. Changes in MF were
mainly enriched in microtubule motor activity, microtubule
binding, motor activity, tubulin binding, ATPase activity,
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Figure 1: Continued.
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and protein serine/threonine kinase activity. Changes in CC
of DEGs were mainly enriched in the spindle, chromosome,
centromeric region, kinetochore, chromosomal region,
condensed chromosome, and condensed chromosome,
centromeric region (Figure 3(d)). /e KEGG pathway
analysis showed that the DEGs were mainly enriched in the
cell cycle, oocyte meiosis, progesterone-mediated oocyte

maturation, human T-cell leukemia virus 1 infection, cel-
lular senescence, and p53 signaling pathway (Figure 3(e)).

3.5. Prognosis Value of Key Genes in BC. /e publicly
available Kaplan–Meier plotter datasets were used to de-
termine what role key genes play in BC patients. /e
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Figure 1: (a)/e connection between clinical factors andmRNAsi expression./e results demonstrate that mRNAsi correlated significantly
with the patient T and stage classifications. (b) /e heatmap of top 20 upregulated and downregulated DEGs between the BC and normal
samples. (c) /e different expression transcriptional levels of 38 key genes in cancers and normal samples. All key genes had significantly
higher expressions in BC tissues. (d) /e heatmap of key genes in the turquoise module.
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Kaplan–Meier curve and log-rank test analyses (Figure 5)
indicate that lower expression of key genes was also sig-
nificantly associated with longer overall survival (OS)
(HR� 1.37, 95% CI: 1–1.88, P � 0.047), distant metastasis-
free survival (DMFS) (HR� 1.58, 95% CI: 1.14–2.2,
P � 0.0056), and relapse-free survival (RFS) (HR� 1.71, 95%
CI: 1.46–2, P � 1.3e − 11). /ese results suggest that key
genes play an important role in cancer patients’ prognosis.

3.6. Immune Infiltrates Correlation with the Most Adjacent
Node Genes in BC. /is study had obtained adjacent node
genes prior. /e associations between immune infiltrates
and these node genes were interactively explored using the
Timer database which provides 6 major analytic modules.
/e results indicated that partial genes are connected with
certain immune cells, positively as well as negatively; these
correlations do not seem very extreme. /e specific rela-
tionship between immune infiltration and key genes needs
further exploration (Figure 6).

4. Discussion

/is study conducted a comprehensive and detailed as-
sessment of key genes associated with CSC characteristics by

integrating WGCNA with the corrected mRNAsi of BC,
based on Pan et al. statistics. Moreover, the associations of
these genes with clinicopathologic characteristics, function,
immune infiltrates, and expression differences were ex-
plored. CSCs play a vital role in tumor progression, ther-
apeutic resistance, and recurrence and thus may provide a
new kind of targeted therapy. Breast cancer has high
morbidity and mortality. We attempt to identify upstream
genes for early identification and early treatment of BC./is
may attract much attention in the diagnosis of BC and may
uncover potential biomarkers or targets as determinants for
prognosis.

All organs and tissues develop from pluripotent stem cells.
Recent evidence suggests that strategies that induce differen-
tiation of CSCs could make a difference in the eradication of
tumor cells, which means suppressing certain transcription
factors could affect tumor recurrence [21]. Breast cancer stem
cell pools are associated with many elements, of which lipid
metabolism cannot be ignored [22]. Typical BC therapies in-
clude surgery, radiation, and chemotherapy. However, stem
cells maintain extremely high reproduction and migration
rates; therapies that do not target stem cells are linked with
higher tumor recurrence rates [22]. /is study sheds new light
on screening potential upstream targeting genes./e stem cell-
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Figure 2: (a) Using cluster analysis, DEGs with a variance of up to 25% were placed in one module, and 7 modules were obtained for further
analysis. (b) /e turquoise module was most remarkably relevant to mRNAsi, with a correlation near to 0.79. /e blue module showed a
relatively high negative correlation withmRNAsi, with a correlation of −0.68. (c) Scatter plot of module eigengenes in the blue, green, yellow,
and turquoise modules.
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like characteristics and loss of the differentiated phenotype are
a display of cancer progression; there was an extremely higher
expression level in tumor samples compared to normal ones.
Our results demonstrated that mRNAsi correlates significantly
with the patient T2 and 4 and Stage 2 and 4 classification,
suggesting that stem cell properties rise in the middle and large
phases of cancer course.

/e key genes were selected from the turquoise module
rooted at GS and MM. /e coexpression within these

modules of the connection with the least correlation was
between CDC20 and KIF11 (0.54), whereas that with the
highest connection was between BUB1 and CKAP2L (0.86).
Furthermore, from the histogram map, the most adjacent
node genes which may be considered as point keys in the
network were PLK1, NDC80, NCAPG, KIF2C, KIF20A,
CDCA8, CDC20, BUB1B, BUB1, and AURKB. /rough
Oncomine, it was found that genes were all upregulated, of
which NCAPG and KIF20A were particularly clear. Chen
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et al. found that non-SMC condensin I complex subunit G
(NCAPG) may be the key genes of TNBC [23]. Gong et al.
showed that the overexpression of NCAPG could promote
HCC cell proliferation and reduce HCC cell apoptosis [24].
Studies have reported that Cdc20 is a pivotal mitotic factor
governing anaphase initiation, and Cdc20-APC/C is fast
becoming highlighted as a key instrument in tumor pro-
gression [25]. Evidence has shown that CDC20, a significant
cell division regulator, exhibits an oncogenic function and

plays vital roles in tumorigenesis and progression of solid
tumors [26]. We hypothesize that NCAPG and CDC20 are
potential drug therapeutic targets, needing further
exploration.

/e cBioPortal was used to explore modification species
analysis of stemness-related DEGs; 38 key genes were found
to be modified in 869 of 2173 (40%) BC patients, and
amplification is the most common type of modification in
BC. /e functions and pathways of 20 stemness-related
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genes were analyzed; GO and KEGG showed that changes in
KEGG were significantly enriched in the cell cycle, oocyte
meiosis, progesterone-mediated oocyte maturation, human

T-cell leukemia virus 1 infection, cellular senescence, and
p53 signaling pathway. Our study highlights a key gene
CDC20, which is recognized to be closely connected with the
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Figure 6: Immune infiltration based on six kinds of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and
dendritic cells) of hub genes.
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cell cycle [25]. Immunotherapy is an emerging epidemic, so
we also investigated the immune infiltrate correlation with
key genes; the results showed they were extremely connected
with immune cells. Zhang et al. found that a negative im-
mune regulator interleukin-1 receptor type 2 (IL1R2) is
upregulated in breast cancer (BC) tissues, especially in breast
tumor-initiating cells (BTICs) [27].

In conclusion, key genes were found to play indis-
pensable roles in BC stem cell maintenance, which agrees
with previous studies. /e important role of stemness-re-
lated genes in the prognosis of BC was also demonstrated.
However, there are limitations to our study. (1) Clinical trials
are needed in the future to confirm these results and pro-
mote the application of these key genes in prognosis eval-
uation. (2) /e conclusions are based on retrospective data,
and more research is required to certificate these findings.
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[11] Č. Gašparović, L. Milković, N. Dandachi et al., “Chronic
oxidative stress promotes molecular changes associated with
epithelial mesenchymal transition, NRF2, and breast cancer
stem cell phenotype,” Antioxidants (Basel), vol. 8, no. 12,
p. 633, 2019.

[12] S. Pan, Y. Zhan, X. Chen, B. Wu, and B. Liu, “Identification of
biomarkers for controlling cancer stem cell characteristics in
bladder cancer by network analysis of transcriptome data
stemness indices,” Frontiers in Oncology, vol. 9, 2019.

[13] J. Li, C. Liu, Y. Chen et al., “Tumor characterization in breast
cancer identifies immune-relevant gene signatures associated
with prognosis,” Frontiers in Genetics, vol. 10, p. 1119, 2019.

[14] J. Liu, Y. Chen, C. Gao et al., “Tumor characterization in
breast cancer identifies immune-relevant gene signatures
associated with prognosis,” Frontiers in Genetics, vol. 10, 2019.

[15] M. Niemira, F. Collin, A. Szalkowska et al., “Molecular sig-
nature of subtypes of non-small-cell lung cancer by large-scale
transcriptional profiling: identification of key modules and
genes by weighted gene co-expression network analysis
(WGCNA),” Cancers, vol. 12, no. 1, p. 37, 2019.

[16] E. Altermann and T. R. Klaenhammer, “PathwayVoyager:
pathway mapping using the Kyoto Encyclopedia of genes and
genomes (KEGG) database,” BMC Genomics, vol. 6, p. 60,
2005.

[17] D. Szklarczyk, A. Franceschini, S. Wyder et al., “STRING v10:
protein-protein interaction networks, integrated over the tree
of life,” Nucleic Acids Research, vol. 43, no. D1, p. D447, 2015.

[18] P. Wu, Z. J. Heins, J. T. Muller et al., “Integration and analysis
of CPTAC proteomics data in the context of cancer genomics
in the cBioPortal,” Molecular & Cellular Proteomics, vol. 18,
no. 9, p. 1893, 2019.

[19] D. Li, J. Zhong, G. Zhang, L. Lin, and Z. Liu, “Oncogenic role
and prognostic value of MicroRNA-937-3p in patients with
breast cancer,” OncoTargets and Derapy, vol. Volume 12,
p. 11045, 2019.

[20] T. Li, J. Fan, B. Wang et al., “TIMER: a web server for
comprehensive analysis of tumor-infiltrating immune cells,”
Cancer Research, vol. 77, no. 21, p. e108, 2017.

[21] M. Rahmati, B. Johari, M. Kadivar, E. Rismani, and
Y. Mortazavi, “Suppressing the metastatic properties of the
breast cancer cells using STAT3 decoy oligodeoxynucleotides:
a promising approach for eradication of cancer cells by dif-
ferentiation therapy,” Journal of Cellular Physiology, vol. 235,
no. 6, p. 5429, 2020.

Journal of Oncology 11

http://cancergenome.nih.gov/


[22] B. J. Hershey, R. Vazzana, D. L. Joppi, and K. M. Havas, “Lipid
droplets define a sub-population of breast cancer stem cells,”
Journal of Clinical Medicine, vol. 9, no. 1, p. 87, 2019.

[23] J. Chen, X. Qian, Y. He, X. Han, and Y. Pan, “Novel key genes
in triple-negative breast cancer identified by weighted gene
co-expression network analysis,” Journal of Cellular Bio-
chemistry, vol. 120, no. 10, p. 16900, 2019.

[24] C. Gong, J. Ai, Y. Fan et al., “NCAPG promotes the prolif-
eration of hepatocellular carcinoma through PI3K/AKT sig-
naling,” OncoTargets and Derapy, vol. Volume 12, p. 8537,
2019.

[25] J. Chi, H. Li, Z. Zhou et al., “A novel strategy to block mitotic
progression for targeted therapy,” EBioMedicine, vol. 49, p. 40,
2019.

[26] L. H. Alfarsi, R. E. Ansari, M. L. Craze et al., “CDC20 ex-
pression in oestrogen receptor positive breast cancer predicts
poor prognosis and lack of response to endocrine therapy,”
Breast Cancer Research and Treatment, vol. 178, no. 3, p. 535,
2019.

[27] L. Zhang, J. Qiang, X. Yang et al., “IL1R2 blockade suppresses
breast tumorigenesis and progression by impairing USP15-
dependent BMI1 stability,” Advanced Science, vol. 7, no. 1,
Article ID 1901728, 2019.

12 Journal of Oncology


