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ABSTRACT Heritability is a population parameter of importance in evolution, plant and animal breeding, and human medical genetics. It
can be estimated using pedigree designs and, more recently, using relationships estimated from markers. We derive the sampling variance
of the estimate of heritability for a wide range of experimental designs, assuming that estimation is by maximum likelihood and that the
resemblance between relatives is solely due to additive genetic variation. We show that well-known results for balanced designs are
special cases of a more general unified framework. For pedigree designs, the sampling variance is inversely proportional to the variance of
relationship in the pedigree and it is proportional to 1/N, whereas for population samples it is approximately proportional to 1/N?, where N
is the sample size. Variation in relatedness is a key parameter in the quantification of the sampling variance of heritability. Consequently,
the sampling variance is high for populations with large recent effective population size (e.g., humans) because this causes low variation in
relationship. However, even using human population samples, low sampling variance is possible with high N.

ERITABILITY (h2), the proportion of phenotypic varia-

tion that is explained by additive genetic variation, is an
important parameter in plant and animal breeding, evolution-
ary genetics, and human and medical genetics. It is central in
quantifying the role of genetics in complex traits, predicting
response to selection in natural and artificial breeding pro-
grams, and determining the limits of trait or disease pre-
diction using information from relatives or DNA markers.
Traditionally, the estimation of heritability is from pedigree
data, by modeling the observed resemblance between rela-
tives (Falconer and Mackay 1996; Lynch and Walsh 1998).
More recently, genetic variation has been estimated using
genetic marker information (Ritland 2000; Thomas 2005;
Visscher et al. 2006; Yang et al. 2010; Robinson et al. 2013;
Berenos et al. 2014). These designs estimate the genetic var-
iance explained by the markers, which may be less than the
additive genetic variance (Yang et al. 2010), but in this article
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we refer to the parameter estimated as the heritability re-
gardless of whether it is estimated from relationships de-
fined by pedigree or by markers. In general, designs to
estimate heritability can be grouped by their use of (i) the
expected identity-by-descent (IBD) sharing between relatives,
i.e., using pedigree relationships, (ii) marker-based estimated
IBD relationships between relatives for known pedigree rela-
tionships, and (iii)) marker-based estimated genomic relation-
ship matrices for unknown pedigree relationships. For a review
of these designs with a particular focus on human populations,
see Vinkhuyzen et al. (2013).

Even with large sample sizes, the standard error of heri-
tability estimates is often disappointingly large and it varies
greatly between experimental designs. Therefore it is impor-
tant to calculate the expected standard error before com-
mitting resources to collecting the data. Given a particular
experimental design and the population value of h2, its
sampling variance can be determined using a number of
methods. After the data have been collected, the (asymptotic)
sampling variance of the estimate can be derived from the
analysis, for example, from mean squares in balanced de-
signs, from the information matrix when using maximum
likelihood or from the posterior density in Bayesian analysis.
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Prior to collecting data on phenotypes, the sampling vari-
ance can be predicted using statistical theory, typically for
balanced designs, or obtained from computer simulation
for more complex pedigree structures. In this study, we
provide a single framework for calculating the asymptotic
sampling variance of the heritability across a wide range of
designs, for a class of models with two random variables
and when analysis is by maximum likelihood (ML). We
derive the sampling variance using the expected value of
the information matrix. We show that previous results are
special cases of the general framework and that the vari-
ance in relationships in the sample is a key parameter in all
experimental designs.

Model and Assumptions

We assume a linear model with no fixed effects (or fixed
effects that have been adjusted for without error) and two
random components, a genetic effect (g), and a residual ef-
fect (e). There are N individuals, each with a single obser-
vation, Y,

y =g+e, withvar(g) = Gaé and var(e) = Io2,
where y, g, and e are vectors of length N of the phenotypic
observations, genetic value, and residuals, respectively. G is
the genetic relationship matrix (GRM), either from pedigree
relationships, in which case it is the usual numerator rela-
tionship matrix (twice the kinship matrix), or derived from
SNP similarity (Vanraden 2008; Stranden and Garrick 2009;
Yang et al. 2010). The genetic, residual, and total variances
are 042, 0.2, and o2, respectively. The N X N covariance
matrix of all observations (V) is

var(y) =V = [Gh* +I(1 — h?)]o*

where h2 = O'gz/ (a'g2 + 02) = O'gz/ o2, the heritability.

General Formula for Sampling Variance

We can decompose the symmetric GRM as
G = TDT’,

with TT' = T'T = I and T~! = T’ because T is orthogonal
and D a diagonal matrix containing eigenvalues (A;) of G.
Inference on h? from data y does not change upon a linear
transformation of y. We can therefore transform y by using
the eigenvectors of G, which for the simple model used here
are also eigenvectors of V (Thompson and Shaw 1990,
1992; Lippert et al. 2011; Blangero et al. 2013; Raffa and
Thompson 2014).
Define y* = T"'y = T'y. Then

yv'r — T’g+T’e — gi: _|_e-,'c7

with
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var(y*) = P = [T'GTh? + T'T(1 ~ h?)] o
= [Dh* +1(1 - h?)]o?

The log likelihood with respect to h? and o2 is
logL = — 1 {log|P| +y7",P_ y*}
2
)+ log(Aih* +1-h%) (D

+ (/)2 [ (k® 1 -],

as shown previously (Thompson and Shaw 1990; Raffa
and Thompson 2014). Equation 1 is very similar to that in
Blangero et al. (2013), but with added parameter o2. Ele-
ments of the (Fisher) information matrix (F) are obtained by
taking the second derivative of (1) taken at the maximum
with respect to h? and o2, and then the negative value of its
expectation over y¥*, using

E( 12> :Var( :) = (Ah?* +1-h?)o?

= (1+h*(A; —1))0?

;{leog

The derivation of the first element of F (Fy;) is given here.
The other two elements are derived analogously,

8logL/5h2 = —% > -
/o) (v = 1) / (Ah? +1-02)%)]
slogI2 /ol = — 2 [~ 3" =17 /(> + 1-12)?

+2(1/0?)2 (v =1 /(i + 1-h2)°)

1)/(Ah* +1 - h?)

—~

and so
F11 = —E(SIOgL2/5h4)
2() 2
=3 X[-v?/ (4 R0
+2(0—1) /(1+h2(/\i—1))2}
:_Z[ /1+h2( ))2].
The resulting elements of the 2 X 2 matrix F

areF11 = %Cl7 F12 = F21 1b/0’ F22 =

stants a and b,

a= Z[()\i—l)z/(l +h2(A—

3N/o* with  con-

D).

and

b=> [A\—1)/(1+Rr*N—1)].



These elements are similar to those presented in Thompson
and Atkins (1994), who parameterized the likelihood in
a genetic and residual variance component, whereas we
have parameterized in heritability and phenotypic variance.
Thompson and Atkins do not have the factor § and have \;?
and A; in the equations above where we have (A; — 1)? and
(A; — 1), respectively, the difference due to the choice of
parameters in the model. In the article that developed the
method of estimation of variance component in linear mixed
models using restricted maximum likelihood (Patterson and
Thompson 1971), the authors presented both the log likeli-
hood and the information matrix in terms of eigenvalues of
the covariance matrix.

The asymptotic sampling (co)variance for the estimates
of heritability and phenotypic variance are from F~1. There-
fore, the asymptotic sampling variance of the estimate of the
heritability is

var(h )Nz/ (a—b2/N). ©)

Hence, under the assumptions given, this is a completely
general expression for the asymptotic sampling variance
of an estimate of heritability and depends only on the
eigenvalues of the GRM, the population value of heritability,
and the experimental sample size.

Special Cases

With additional assumptions or for balanced designs, terms
for a and b 51mp11fy and simple solutions for the sampling
variance of i can be derived. We go through a number of
these special cases in this section that encompass pedigree
and marker-based GRM.

Phenotypic variance (o?) known

In many applications, the sampling variance of the total
phenotypic variance is small or known before the experiment is
conducted, and therefore it is useful to consider the sampling
variance of heritability under the assumption that the pheno-
typic variance is known without error. For example, Blangero
et al. (2013) assume that o2 is known in their derivations of the
expected likelihood-ratio-test statistic (ELRT). If we assume
here that the phenotypic variance is known without error then
the resulting sampling variance of the estimate of heritability is

Val’(flz‘()'z known) =2/a. 3)

This expression is smaller than that in (2); hence assuming
that phenotypic variance is known when it is not will lead to
an underestimate of the sampling variance of heritability.
This underestimate will be small when b2/N is small relative
to the term a.

h2—0

For a small heritability, a — > (A;— 1)*
and

;b — Z(Ai_ N)7

Var<f12‘h2—>0) ~ 2/[N X var(A;)]. 4

Assuming that the phenotypic variance is known and h? is
small gives

Var(ﬁ2’0-2 known, h2—>0) ~~ 2/ [N X var(\;)

+NER) -1,

which is close to (4) because the mean eigenvalue will be 1
in the absence of inbreeding when the GRM is from pedigree
identity-by-descent and very close to 1 when the GRM is
estimated from SNP data (Janss et al. 2012). Hence, when
the population value of heritability is small, its sampling
variance is only a function of the variation in relatedness
and sample size.

A”Ai—> 1

Equation 4 is also the result for when all A; are close to 1, such
that their variance approaches zero. This situation can occur
when the GRM is created from population SNP data on unre-
lated individuals in a population with a large effective population
size. However, as we derive below, the variance of eigenvalues
depends both on experimental sample size and effective pop-
ulation size, and so these parameters affect the sampling var-
iance of heritability. In particular, the variance in eigenvalues
is proportional to experimental sample size, so the larger the
sample size the wider the spread around a mean value of 1.

Pairs of relatives with relationship r

If there are m pairs of relatives of the same degree r, then
2m = N and there are m eigenvalues A, with value 1 + r and
m eigenvalue \, with value 1 — r (Searle 1982; Blangero
et al. 2013). Let p = rh?. Then

2(1+7%h%) [ (1-%h%)’
2(1+0%) [ (1=p)",

—r?h?) = —2mrp/ (1 - p?),

a=2mr

=2mr

b= —2mr2h2/(1

and

var(A) = (1-p%)* / (mr?). )

For pairs of monozygotic (MZ) twins (r = 1), Equation 5
becomes var(h’ ) = (1 — p*)?/m. For pairs of full-sibs (r = 3),
the sampling variance is 4(1 — p?)2/m. For bivariate normality,
the sampling variance of a correlation coefficient between two
variates with population value p is ~(1 — p2)2/N (e.g., Lynch
and Walsh 1998, p. 819), so consistent with Equation 5.

Balanced design of multiple families

For m families with n individuals of relationship r, there are
(n — 1) eigenvalues of (1 —r) and 1 eigenvalue of (1 + r(n—1))
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per family. This follows from known results on eigenvalues for
symmetrical matrices that can be written as cI + dJ, with ¢
and d constants (Searle 1982). Substituting these eigenvalues
into the equation for parameters a and b gives

a=[mrnn-1)(1+p(n- 1))]/[(1—,0)2(1 + (n—1)p)] ?

b= —mn(n— Lrp/[(1—p)(1 + p(n — 1))]

and
var(flz) ~2(1-p)%[1 + (n—l)p]z/[mn(n -1r?. (6

This is consistent with the intraclass correlation sampling
variance (e.g., Falconer and Mackay 1996, p. 180), apart
from having m in the denominator [the least-squares deri-
vation has (m — 1) instead]. Although we have assumed no
fixed effects, in practice at least a mean would be included
in the model and this absorbs one degree of freedom from
the comparison of families. The least-squares formula takes
account of this but ML estimation ignores it. Assuming that
the phenotypic variance is known gives

Var(flz) ~2(1-p)%[1 + (n—l)p]z/[mn(n -1)r?
X (14 p2(n— 1)],

smaller than (5) by a factor of 1/(1 + p?(n — 1)). For large
half-sib families, this term can be substantial.

Twin design

In human populations, the classical twin design is common
for estimating genetic and nongenetic variance components.
Let N = 2my; + 2mp, with my and mp the number of MZ
and dizygotic (DZ) pairs, respectively. In total, there are four
different eigenvalues: 2, 0, 3/2, and 1/2 (Blangero et al.
2013), with multiplicity my;, my, mp, and mp. Let ¢ =
my/(my + mp), the proportion of all twin pairs that are
MZ pairs. Using Equation 5, a — b%/N = NT, with

T=c(1+h(1-0) /(1-h%’
+%(1 —c)(l +ih4c)/(l—ih4)2
— %c(l — c)h4/ [(1 - h?) <1 — %h“)]

var (flz) = (2/N)T!

and

This analysis assumes that there are no common environ-
mental effects so the sampling variance is not appropriate for
the usual practice of estimation of heritability using maxi-
mum likelihood fitting both an additive genetic and common
environmental component (Neale and Cardon 1992).
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Within-family estimation using realized relationships
estimates from markers

Full-sibs have an expected pedigree relationship of 0.5 but
the actual amount of the genome shared varies around 0.5
and this realized relationship can be estimated using genetic
markers and used to estimate heritability (Visscher et al.
2006, 2007; Hemani et al. 2013). These relationships can
be estimated using identity-by-descent calculations con-
ditional on observed marker genotypes. For full-sibs and
half-sibs in human populations, the standard deviation of
realized relationships is ~0.04 and 0.03, around the
expected value of 1 and %‘, respectively. For a comprehensive
theory on the variance of realized relationships, see Hill and
Weir (2011). A feature of this design is that common envi-
ronmental factors that vary between families do not bias the
heritability estimate. Visscher et al. (2006) derived an ap-
proximate sampling variance of the estimate of heritability
from multiple families with two full-sibs each. Hill (2013)
derived the sampling variance of the estimate of genetic
variation using REML for the general case of f families each
of size n and expected relationship 6 (twice the kinship co-
efficient). We can use the same general framework as de-
veloped here to approximate the sampling variance from
within-family estimation. The difference between this de-
sign and those previously discussed is that the GRM is not
fixed. That is, the eigenvalues of the GRM are themselves
random variables and to derive the sampling variance of the
estimate of heritability we need to first derive the expected
value of the elements of the Information matrix over re-
peated samples. We provide details of an approximation in
Appendix A. Tt results in

Var( ) [2(1 t) /(f><n Var(rl]))}
X [ (1-1)* - nh4var(rl])}
(

2(1—t) /Nanar(rl]))}

X {(1 t)? —nh4var(rl])}

7

This equation shows that the sampling variance reduces by
the square of the sample size per family (n), essentially
because every individual adds a contrast with all other family
members in the sample. As detailed in Appendix A, this ap-
proximation breaks down when h? and n are large.

Random sampling from the population

One design to estimate the amount of additive genetic variation
captured by SNPs is to take a random sample of individuals
from the population, derive a GRM from SNP similarity, and
estimate variance components from (residual) maximum
likelihood (Yang et al. 2010). In this sampling scheme, indi-
viduals are not sampled or ascertained based upon partic-
ular pedigree relationships, and any pedigree relationship,
if known, is not taken into account in the analysis. The
sampled individuals are related to some extent, even if very



distantly, because the population size is finite. In human pop-
ulations, this sampling scheme corresponds to sampling indi-
viduals who are conventionally unrelated. As for the case of
realized relationships within families, the GRM is not fixed.
We approximate E(a) and E(b?) in Appendix B. The resulting
sampling variance of the estimate of heritability is

var(h*) ~ 2/ [E(@) ~E(?) /N =2/[N?v(0),  ®

where v(6) is the variance of relatedness in the population,
which is a function of effective population size (Goddard
2009; Goddard et al. 2011). Analogous to the within-family
design, the sampling variance is inversely proportional to
the square of the sample size, rather than by 1/N in pedigree
designs. Rijsdijk and Sham (2002) derived the same result
(parameterized as the noncentrality-parameter, NCP, of the
test statistic for heritability) for QTL linkage mapping in
pedigrees, assuming that the variance in relatedness is
small. Equation 8 was previously derived for SNP-based es-
timation of variance components from linear regression the-
ory, assuming that the phenotypic variance is known without
error (Vinkhuyzen et al. 2013; Visscher et al. 2014).

Statistical Power

The interest in this study is not about hypothesis testing but
about quantifying the sampling variance of the estimate of
heritability. For a detailed treatment on statistical power in
variance component estimation using (restricted) maximum
likelihood we refer to previous publications (Self and Liang
1987; Shaw 1987; Thompson and Shaw 1990; Almasy and
Blangero 1998; Williams and Blangero 1999; Rijsdijk et al.
2001; Purcell et al. 2003; Raffa and Thompson 2014). Here
we briefly consider the expected value of two test statistics
that have been used for hypothesis testing in variance compo-
nent estimation, the Wald test, and the likelihood-ratio-test
statistic. » .

The Wald test is based on h /var(h ), which under the
null hypothesis that h?2 = 0, follows a x? distribution. How-
ever, if h2 > 0, the Wald test statistic follows approximately
a noncentral x? with noncentrality parameter (NCPy)

NCPyw = h4/var<f12) = %h4 (a— bz/N)
:%h“{(z:[()\i—l)z/(l+h2()\i—1))2]) ©
_ (Z[()\i—1)/(1 + hZ(Ai—l))})z/N}

If the estimation of phenotypic variance is ignored, then

NCPy = %h‘*a - %h‘* {Z [(Ai—1)2/(1 n hZ(Ai—1))2] .

(10

Alternatively, the null hypothesis that h2 = 0 can be tested
with a likelihood-ratio test. Blangero and colleagues (Blangero
et al. 2013) presented a very simple equation for the ELRT
statistic to test the null hypothesis of h? = 0,

NCPirr = —» In[1+R*(\; — 1)]. (1n
Equation 11 converges to Equation 10 when h2(\; — 1) —
0. For pairs of relatives with relationship r, NCPy, = $Nr2h* /
(1 — r2h*) and NCPigr = —%N In(1 — r2h%). These expres-
sions are equivalent when r?h* — 0. When the true param-
eter is far from the one being tested under the null, these
expressions can give quite different values. Raffa and
Thompson (2014) give an analysis based on asymmetrical
confidence intervals for the heritability.

Numerical Examples

Figure 1 shows the approximation to the standard error of
an estimate of heritability as a function of the population
value, experimental sample size, and design. Four different
designs were used: a pedigree design of unrelated full-sib
pairs, a pedigree design with MZ and DZ twins pairs with
a ratio of 1:2 MZ and DZ pairs, a within-family design using
full-sib pairs, and a population design using nominally un-
related individuals. In the last two designs, GRM are esti-
mated with SNP data. These designs are less powerful than
the pedigree-based experimental designs, but make fewer
assumptions. At N = 10,000 the sampling variance of the
population design approaches that of the pedigree designs,
and at N = 100,000 it becomes the most powerful design.
Sample sizes of 100,000 are realistic in human population
and even larger samples sizes are expected in the next few
years. Therefore, strong inference on heritability can be
drawn using random samples from the population, while
not having to make assumptions about the resemblance be-
tween relatives due to common environmental factors. The
within-family design, which is the most robust with respect
to assumptions of the model, remains inaccurate even when
the analysis is on 50,000 full-sib pairs. However, in species
such as fish with huge full-sib family sizes, accurate estima-
tion could be achieved (Odegard and Meuwissen 2012; Hill
2013).

Figure 2 shows results for the population design for spe-
cies with different N, values of 1000, 10,000, and 100,000.
It shows the increase in sampling variation with increasing
effective population size, which is due to the decrease in the
variation in relatedness. For the within-family design the
sampling variance of heritability does not depend on the ef-
fective population size.

Discussion

We have presented a general framework to quantify the
sampling variance of heritability as a function of its popula-
tion value, the sample size (N), and experimental design.
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N =100 N = 1000

o 084 X
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@ Figure 1 Standard error of estimates of
14 0.2

heritability from different experimental
designs in human populations, as a func-

tion of the population value of the heri-
tability (x-axis), experimental sample size,
and experimental design. For the within-
family design (Within-family estimation
using realized relationships estimates
from markers), the variance in realized
relationships was assumed to be 0.0392.
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For the population design (Random sam-
pling from the population), the variance
is relatedness was approximated assum-
ing N. = 10,000, a genome length of
35 M, and an average chromosome
length of 1 M (Goddard 2009).

0.00 0.25 0.50 0.75 1.00 0.00
heritability

Figure 1 shows that the sampling variance is relatively in-
sensitive to the true value of h? except when h? — 1. The
results recapitulate results from balanced designs and show
that for pedigree designs, the sampling variance tends to be
proportional to 1/N. In contrast, for designs that use genetic
markers to estimate relatedness within families or estimate
relatedness among randomly sampled individuals, the sam-
pling variance is proportional to 1/N2. Consequently, very
large samples of “unrelated” individuals are powerful for
estimating h2. The key feature of the experimental design
is the variation in relatedness. This is small within families
of full-sibs and consequently the sampling variance of h? is
large.

There are a number of limitations to our study. First, we
have assumed that the parameter whose sampling variance
we derive is the same in different experimental designs.
Even in the absence of confounding factors such as common
environmental effect or nonadditive genetic factors, this is
not necessarily the case. For the pedigree and within-family
design, the parameter given our model assumptions is the
narrow-sense heritability. But for the population design it is
the proportion of phenotypic variance captured by genetic
markers. If these markers are not sufficiently correlated with
the genetic variants that cumulatively contribute to the total
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0.50 0.75 1.00
heritability

narrow sense heritability, then the use of a marker-based
GRM will estimate additive genetic variation that is less
than the total additive genetic variance. This can occur if the
properties of the markers used to create the GRM are dif-
ferent from the segregating causal variants, for example, if
the GRM is based upon common SNPs and the causal variants
have lower heterozygosity, leading to loss of information due
to imperfect linkage disequilibrium (Yang et al. 2010). Al-
though a “marker heritability” is conditional on the markers
used to estimate relatedness, it is a valid population param-
eter with predictable sampling properties (as shown in this
study). In human populations, it has been used to address the
question of “missing heritability” from genome-wide associa-
tion studies (Yang et al. 2010).

Second, we assume that all resemblance between rela-
tives is due to additive genetic covariance, so that there are
only two random effects in the model. Additional random
effects, for example, common environmental effects, make
the covariance matrix V more complicated and generally not
diagonalizable. When there are additional variance compo-
nents, the residual variance as used in this study is partitioned
in two or more components. These additional components
are also estimated with error and will have a sampling co-
variance with the estimate of heritability. We suspect that
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210000
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Figure 2 Standard error of the estimate of heritability from random
samples of individuals from populations with different effective size
and SNP-derived relationship matrices. For each population, a genome
length of 35 M and an average chromosome length of 1 M was assumed
(Goddard 2009).

having additional variance components in the model will
tend to increase the sampling variance of the heritability,
except for some balanced designs. However, we have not
investigated general properties for designs with multiple
random effects. With more than two variance components,
computer simulation might be an efficient way to quantify
the sampling variance of heritability and the proportion of
variance due to additional random effects.

A third assumption is that estimation is by maximum
likelihood or, alternatively, that fixed effects and covariates
have been adjusted for without error. In practice, research-
ers tend to use least squares for balanced designs and
restricted maximum likelihood (REML) or Bayesian meth-
ods for unbalanced designs. The difference in sampling
variance between ML and REML is small when there are few
fixed effects relative to the sample size, as, for example, in
human genetic applications, but larger in situations where
there are many fixed effects (e.g., in livestock applications).

Recently, Raffa and Thompson (2014) extended the work
of Blangero et al. (2013) by deriving approximations to the
ELRT and confidence intervals of the heritability estimate
using Taylor series expansions of the expected likelihood-
ratio test with respect to the distribution of the eigenvalues
of a given pedigree. Their simplest approximation can be
expressed as an approximate sampling variance of the esti-
mate of heritability as 2/[(N — 1)var(A)] =~ 2/(N var(\)).
This expression is the same as our special cases h? —0 and
All A;—1. The authors show that this approximation is not
accurate when the assumptions break down, in particular
when eigenvalues are not closely distributed around the

mean of 1, and provide a better approximation using the
logarithm of the eigenvalues (Raffa and Thompson 2014).
They also show that confidence intervals of the estimates of
heritability are not symmetrical when the variance in eigen-
values is large and that Wald statistic-based confidence
intervals can be too narrow, implying that the use of the
derived standard errors in our study to construct a confi-
dence interval can be anticonservative. Although the deriva-
tions from Raffa and Thompson were for a pedigree design,
they should also apply to other experimental designs, such
as those where GRMs are estimated from marker data.

In conclusion, we have proposed a general unified frame-
work to assess the sampling variance of the estimate of
heritability using pedigree or marker-based relationships
and have quantified how the sampling variance depends
on sample size and the variation in relatedness.
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Appendix A: Derivation of the Sampling Variance of Heritability from Within-Family Designs

As before, y = g + e, with var(g) = Go,? and var(e) = Io.2. If all individuals belong to a family, E(G) = I on diagonals and 6
on off-diagonals. We extract the family mean (u) from an individual’s breeding value soy = u + g* + e, where var(g*) =
(G — 8))oy? = Wo 2. If we treat u as fixed, then var(y — u) = Wo,2 + Io 2. The mean eigenvalue of W is (1 — 6) and the
variance of eigenvalues is n X var(r;) where ry; is the realized relationship between individuals i and j within the same family.

As in Hill(2013), we derive the sampling variance for a single family of size n. Under our assumed model of no
environmental effects shared by family members, t = 0h2. As before, the elements of the information matrix are F; = 1/
2a,Fi, =Fy; = %b/ 02 Fyy = %n/ o*. We approximate the elements of the information matrix by taking a second-order Taylor
series about the mean eigenvalue of (1 — ). Then, approximately,

E(a)/n = 02/(1—t)2 + (14 26h*)n x var(rl-j)/(l—t)4

E(b)/n = —9/(1 —t)— h2n X Var(rl-j)/(l—t)g.
Using these to construct the (F~1); ; gives
var(h?) ~ [2(1—t)2/(n2 X var(rij))} [(1—t)2 - nh4var(rl~j)} :

Using this approximation, the determinant of the information matrix, and therefore the approximation of the sampling
variance of heritability, can be negative, when n > (1 — t)2/(h* X var(r;)). For example, for full-sibs (var(r;) ~0.0382) and
h? = 0.8 (and t = 0.4), a sampling size of n = 390 full-sibs would result in a predicted sampling variance of the estimate of
heritability that is negative. Presumably a higher-order Taylor series would correct this, but at the expense of having
a relatively simple expression.

If we now use the eigenvalue decomposition of W, as in Thompson and Atkins (1994) and as used in our other designs but
parameterizing the variance components instead of h? and o2, then the element of the Information matrix (S in the Hill

notation) are
1 1 2
S11 = Ea = E |:)\i2/(0'§ -Q—/\ﬂ)’é) j| ,

1 1 2
S19 = Eb = E [/\i/<0'§ +)\l‘0'§) },

If we take expectations of a, b, and ¢, where the expectation is over the eigenvalues of W [with mean = (1 — ), variance =
var(\)n X var(r;)], then, from a second-order Taylor series about the mean:

E(a)/n = (1—6)2/(1—t)2 + [var(,\)/u—t)“} [(1—;@)2 —2(1-0)h%(1 - hz)} ,
E(b)/n=(1— 9)/(1—t)2 + [var(A)/(1—t)4] [(1—0)h* — 202(1 - h?)],
E(c)/n = 1/(1—t)2 + [var()\)/u—r)“} [3hY].

Finally, the sampling variance of the estimate of 0,2 is, approximately,

v(aé) ~ [2(1—t)2/(n X Var(/\))} [(1—t)2 + 3h4var()\)}/[(1—t)2 + - h4var()\)]
= [2(1_t)2/n2Var(I‘ij)} {(1—02 + 3nh4var(rg)}/[(1—t)2 - nh4var(rij)}.

These terms are similar but not identical to Hill(2013). The difference is because we use ML whereas Hill used REML and we
have assumed that the family mean is fixed. For very large n the above expression converges to that given by Hill(2013).
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Appendix B: Derivation of E(a) and E(b) for Population Designs

Letx; = A; — 1, sothata = 3x;2/ (1 + x;h?)?], and b = 3x; / (1 + x;h?). A second-order Taylor series expansion around x —
0 gives E(a) = N var(\) and E(b%) = E(a).
The variance of eigenvalues is derived from the GRM (G)

G = TDT’
with diagonal matrix D containing the eigenvalues A. G can also be written as
G=I+A,

with I the identify matrix and A a matrix containing small relationships between distantly related individuals. Element A;; are
random with E(A;) = 0 and var(4d;) = v(6), the variance in relatedness in the population. v(6) is a function of effective
population size (Goddard 2009; Goddard et al. 2011),

G? = TD’T’
tr(G?) =Y "AF = N[1 +var(A)], since E(A\) =1

G*P=[1+A%=1+2A+A%
with
tr(G*) = N+ 0+ tr(A%) =N + N? v(9),

since tr(A?) is the sum of squares of element in A, each with expectation v(6).
Hence, we have E(a) = E(b?) = N var(\) = N2 v(6). Therefore, var(A) = Nv(6) and proportional to experimental sample
size. Finally,

var(h®) ~ 2/[E(a) — E(b®) /N] = 2/[E(a)(1 — 1/N)] ~ 2/E(a) = 2/ [N* v(6)].

The variance in relatedness is v(6) = 23r;2, the sum of linkage disequilibrium correlations r2 over all pairs of SNPs that are
used to construct the GRM (Goddard 2009; Goddard et al. 2011).
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