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Abstract

Bovine African Trypanosomosis is an infectious parasitic disease affecting livestock produc-

tivity and thereby impairing the economic development of Sub-Saharan Africa. The most

important trypanosome species implicated is T. congolense, causing anemia as most impor-

tant pathological feature. Using murine models, it was shown that due to the parasite’s effi-

cient immune evasion mechanisms, including (i) antigenic variation of the variable surface

glycoprotein (VSG) coat, (ii) induction of polyclonal B cell activation, (iii) loss of B cell mem-

ory and (iv) T cell mediated immunosuppression, disease prevention through vaccination

has so far been impossible. In trypanotolerant models a strong, early pro-inflammatory

immune response involving IFN-γ, TNF and NO, combined with a strong humoral anti-VSG

response, ensures early parasitemia control. This potent protective inflammatory response

is counterbalanced by the production of the anti-inflammatory cytokine IL-10, which in turn

prevents early death of the host from uncontrolled hyper-inflammation-mediated immunopa-

thologies. Though at this stage different hematopoietic cells, such as NK cells, T cells and B

cells as well as myeloid cells (i.e. alternatively activated myeloid cells (M2) or Ly6c- mono-

cytes), were found to produce IL-10, the contribution of non-hematopoietic cells as potential

IL-10 source during experimental T. congolense infection has not been addressed. Here,

we report for the first time that during the chronic stage of T. congolense infection non-

hematopoietic cells constitute an important source of IL-10. Our data shows that hepato-

cyte-derived IL-10 is mandatory for host survival and is crucial for the control of trypanoso-

mosis-induced inflammation and associated immunopathologies such as anemia,

hepatosplenomegaly and excessive tissue injury.
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Author summary

Bovine African Trypanosomosis is a parasitic disease of veterinary importance that

adversely affects the public health and economic development of sub-Saharan Africa. The

most important trypanosome species implicated is T. congolense, causing anemia as most

important pathological feature and major cause of death. Using murine models, it was

shown that the disease is characterized by a well-timed and balanced production of pro-

inflammatory cytokine promoting factors followed by an anti-inflammatory response,

involving IL-10. The latter is required to attenuate infection-associated pathogenicity and

to prevent early host death from uncontrolled hyper-inflammation mediated immunopa-

thologies. However, the cellular source of IL-10 in vivo and the window within which

these cells exert their function during the course of African trypanosomiasis remain

poorly understood, which hampers the design of effective therapeutic strategies. Using a

T. congolense infection mouse model, relevant for bovine trypanosomosis, we demonstrate

that during the chronic stage of infection hepatocyte-derived IL-10, but not myeloid cell-

derived IL-10, regulates the main infection-associated immunopathologies and ultimately

mediates host survival. Hence, strategies that tilt the balance of hepatocyte cytokine pro-

duction in favor of IL-10 could majorly impact the wellbeing and survival of T. congo-
lense-infected animals. Given the unmet medical need for this parasite infection, our

findings offer promise for improved treatment protocols in the field.

Introduction

African trypanosomes are extracellular protozoan parasites transmitted by the bite of infected

tsetse flies (genus Glossina), causing sleeping sickness in humans and Nagana disease in cattle in

sub-Saharan Africa. About 60 million people are at risk and Nagana causes three million cattle

deaths every year due to fever, weight loss and anemia. By affecting the agricultural production

and animal husbandry, Animal African trypanosomosis (AAT) has a high socio-economic

impact in vast areas of the tropics and subtropics where the transmission occurs [1–3]. As such,

it is considered to be the livestock disease with the highest impact on agricultural production

and animal husbandry in Africa, whereby the annual economic loss in livestock production is

estimated at 4 billion US$ [1]. Trypanosoma congolense is considered to be the most pathogenic

trypanosome species in cattle [4]. Although anemia is the most prominent pathological feature

of AAT [2,5], sporadic episodes of fever as well as leukopenia, weight loss and hepatosplenome-

galy, in conjunction with appetite loss, lethargy and emaciation, can contribute to death through

eventual congestive heart failure. Importantly, trypanotolerance in cattle has been described as

the capacity of an animal to better control parasitaemia and to have a better capacity to limit

anemia development and weight loss, whereby anaemia control is more important for survival

and productivity than parasite control [5,6]. Murine models are considered valuable tools to

study the interactions between parasites and hosts that contribute to immuno-pathogenicity

and allow discriminating between trypanosusceptible versus trypanotolerant animals. Experi-

mental T. congolense infections in mice have shown that C57BL/6 mice are able to control the

first peak of parasitemia and develop a chronic infection lasting for 4 months, and are therefore

considered as relatively trypanotolerant animals [7], while trypanosusceptible BALB/c mice die

within 10 days post infection [7]. The infection is characterized by two stages; during the early

stage there is a strong inflammatory immune response mediated by T cells and involving classi-

cally IFN-γ-activated myeloid cells (so-called M1) required for the efficient control of the first

most prominent parasitemia peak through their production of trypanotoxic molecules, such as
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nitric oxide (NO) and Tumor Necrosis Factor (TNF), and the phagocytosis of antibody-opso-

nized parasites that occurs mainly in the liver [8–12]. This is followed by the production of the

anti-inflammatory cytokine IL-10, which is essential to dampen the inflammatory immune

response after parasitemia has been cleared and to prevent tissue damage as well as death of the

host due to a hyper-inflammation syndrome [13–16]. Hence, IL-10 allows the development of a

so-called ‘‘trypanotolerant” phenotype [11,17]. Accordingly, IL-10-deficient C57BL/6 mice

infected with T. congolense develop a severe inflammatory response-like syndrome due to exces-

sive production of inflammatory cytokines such as TNF and IFN-γ, resulting in a drastic reduc-

tion in survival time [14,17–19]. Conversely, absence of the upstream regulator of the

inflammatory cascade, i.e. macrophage migration inhibitory factor (MIF), has been shown to

correlate with an attenuated inflammatory immune response and a concordantly reduced

immunopathology during the course of infection, which is associated with an extended survival

time [20]. This phenotype coincides with increased systemic levels of IL-10 during the later

stages of infection [20]. Hence, a well-timed and balanced order of pro-inflammatory cytokine

promoting factors followed by an anti-inflammatory response is required to attenuate infec-

tion-associated pathogenicity. However, the in vivo cellular source of IL-10 and the window

within which these cells exert their function during the course of African trypanosomiasis, as

well as the associated molecular mechanism(s) implicated in its production, remain poorly

understood. Hence, knowledge about the inflammation resolution process is necessary to

understand the host-parasite interplay and might pave the way to improve or develop more effi-

cient therapies that reduce the devastating effect of chronic protozoan infections [21].

Here, we aimed at refining the cellular contribution of IL-10 during experimental African

trypanosomiasis using the T. congolensemodel in C57BL/6 mice. Thus far, both naturally occur-

ring CD4+ Foxp3+ Tregs as well as myeloid cells (Ly6C- patrolling monocytes and alternatively

activated macrophages (M2)) were found to be sources of IL-10, that limit to some extent the

development of immuno-pathogenicity (including liver injury) during infection [14,15,19].

However, it remains unclear if non-hematopoietic cells, such as hepatocytes, could also be a

potential source of IL-10 during the course of the infection. Using IL-10 reporter mice, we con-

firmed that hepatocytes can produce IL-10 upon exposure to T. congolense parasites or parasite-

derived products in vitro as well as during T. congolense infection. Therefore, we investigated

the in vivo anti-inflammatory potential of hepatocyte-derived IL-10 during T. congolense infec-

tion, using hepatocyte-specific IL-10-deficient mice. We demonstrate that hepatocyte-derived

IL-10 regulates the main infection-associated immunopathologies, such as anemia, weight loss,

chronic systemic inflammation, hepatosplenomegaly and liver damage during chronic infection

with T. congolense. Hence, although other cells can produce IL-10 during experimental T. con-
golense infection, hepatocyte-derived IL-10 is crucial to control inflammation-induced immu-

nopathogenicity during the chronic stage of infection that ultimately mediates host survival.

Results

Hepatocyte-specific IL10-deficiency correlates with reduced survival,

increased tissue pathogenicity and increased systemic inflammation during

T. congolense infection

Considering the essential role of IL-10 in limiting the pathogenicity and, thus, the susceptibility

to infection, we evaluated if besides leukocytes (i.e. regulatory T cells and myeloid cells) also

hepatocytes could be a potential source of IL-10 during African trypanosome infection. There-

fore, we investigated in more detail the role of hepatocyte-derived IL-10 in the outcome of

experimental T. congolense infection, a model in which the systemic levels of IL-10 progressively

increase during the course of infection in order to sustain host survival [19]. Using IL-10-eGFP

Hepatocyte-IL-10 attenuates African trypanosomiasis-associated pathogenicity

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008170 February 3, 2020 3 / 29

https://doi.org/10.1371/journal.ppat.1008170


reporter (Vert-X) mice, we confirmed that besides leukocytes (S1 Fig), also hepatocytes from

chronically T. congolense infected animals can produce IL-10 (Fig 1A–1C). In addition, IL-10

was detected in the supernatant of hepatocyte cultures from chronically T. congolense infected

wild type (WT) but not hepatocyte-specific IL-10-deficient (TgAlbCre-IL10-/-) mice (Fig 1D).

Interestingly, induction of IL-10 was observed in in vitro cultures of hepatocytes from non-

infected WT mice stimulated with either trypanosomes or trypanosome lysate, as well as soluble

VSG (sVSG) (Fig 1E), indicating a direct parasite effect. Finally, isolated hepatocytes from

chronically T. congolense infected WT mice exhibited, besides an increase in IL-10 gene expres-

sion, also an increased IL-10r expression compared to hepatocytes from uninfected animals (Fig

1F–1G). In contrast, no increase in IL-10r expression was observed in isolated hepatocytes from

chronically T. congolense infected TgAlbCre-IL10-/- mice compared to hepatocytes from unin-

fected animals (Fig 1G).

Since myeloid cells could also be a source of IL-10 in infected animals [15], we included in

subsequent experiments myeloid-specific IL-10-deficient (LysM-IL-10-/-) mice and compared

their infection parameters to TgAlbCre-IL10-/- and WT controls. Although early peak parasite-

mia was similar in all mouse strains, TgAlbCre-IL10-/- mice exhibited significantly higher

parasitemia levels during the later stage of infection as well as an increased weight gain (due to

increased spleen and liver weight), more severe anemia and a significantly reduced median

survival time (Fig 2A–2D, median survival time WT: 102 ± 26; LysM-IL-10-/-: 100 ± 14,

TgAlbCre-IL10-/: 50 ± 10 days). To confirm that the observed differences were not due to

intrinsic gross abnormalities in the TgAlbCre-IL10-/- mice, these mice were infected with

another strain of trypanosomes, namely T. brucei, which induces a more acute infection with

low systemic levels of IL-10 [22,23]. As shown in S2 Fig, compared to WT mice, TgAlbCre-

IL10-/- mice exhibited a similar parasitemia, anemia and weight loss profile and had a similar

survival profile in this model.

In order to delineate the window within which the contribution of hepatocyte IL-10 plays a

role, a kinetic study was performed in these 3 different mouse lines, whereby the blood was

investigated with respect to cytokines and white blood cell (WBC) composition (see gating

strategy S3A Fig) that can contribute to pathogenicity. As shown in Fig 3, TgAlbCre-IL10-/-

mice exhibited similar early cytokine levels as WT and LysM-IL-10-/- mice. Yet, between 38–

48 days post infection, all tested pro-inflammatory cytokines (IFN-γ, TNF, IL-6 and MIF)

increased or remained high in TgAlbCre-IL10-/- mice, but not in the other strains.

At the level of the WBCs, we observed a progressive increase in the percentage of CD45+

cells during the course of infection in all groups of mice (Fig 4A). A gradual decrease in the

absolute number of B cells (per mL blood) was observed in all groups of mice, yet TgAlbCre-

IL10-/- mice exhibited significantly lower numbers of B cells between day 38–48 post infection

compared to WT and LysM-IL-10-/- mice (Fig 4B). At the level of the T cells, no differences

were recorded for any of the groups. Regarding the Ly6Chigh monocytes, which play a key role

in pathogenicity development, we observed a similar increase in all groups as the infection pro-

gresses, whereby these cells already exhibited a significant upregulation of MHC-II at day 7 p.i.

Interestingly, at the later stages of infection their MHC-II expression was significantly higher in

TgAlbCre-IL10-/- mice compared to WT and LysM-IL-10-/- mice (Fig 4C), indicative of a higher

monocyte activation level. Likewise, the number of polymorphonuclear cells (PMN), which

were also documented to contribute to trypanosome-infection associated pathogenicity [22],

were found to progressively increase in all groups as the infection progresses, yet reaching sig-

nificantly higher levels in TgAlbCre-IL10-/- mice at the later infection stages than in WT and

LysM-IL-10-/- mice (Fig 4B). Finally, the number of Ly6Clow patrolling monocytes, which were

documented to attenuate tissue injury [24], significantly dropped in TgAlbCre-IL10-/- mice at

later infection stages (Fig 4B). Overall, TgAlbCre-IL10-/- mice clearly display an increased
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inflammatory immune response at later stages of T. congolense infection, coinciding with

reduced B cell and patrolling monocyte numbers that are required for parasite control and

attenuation of tissue injury, respectively.

Since the largest differences in pathogenicity (i.e. anemia and weight change) and blood

parameters were established between 38–48 days post infection, a more refined analysis was

performed around day 45 post T. congolense infection. This time point was selected for all fur-

ther experiments. Considering the crucial role of IL-10 in attenuating the pathogenic effects of

pro-inflammatory cytokines, the reduced survival of TgAlbCre-IL10-/-mice could be due to a

higher tissue pathogenicity in association with higher levels of these cytokines [14,19]. In

agreement, as compared to WT and LysM-IL-10-/- mice, TgAlbCre-IL10-/- mice exhibited

Fig 1. Hepatocytes from chronically T. congolense infected mice are proficient IL-10 producing cells and hepatocytes from

non-infected animals can be triggered by trypanosomes to produce IL-10. Representative FACS profile of purified

hepatocytes at day 45 post T. congolense infection showing an FSC-A versus SSC-A plot (A) and a CD45 versus FSC-A (B) plot

(revealing a purity of more than 95%), whereby hepatocytes were selected based on their CD45- profile. Of note, the selection of

the hepatocytes (CD45- cells) is based on the gating strategy used in S1A Fig, whereby debris/death cells can be excluded. (C)

Histogram plot showing the intensity of the IL-10-eGFP signal in hepatocytes from IL-10-eGFP reporter (blue) mice and, as

negative control, in hepatocytes from TgAlbCre-IL10-/- (red) mice. At day 45 post T. congolense infection, isolated hepatocytes

from WT (black symbol) and TgAlbCre-IL10-/- (white symbol) mice were cultured for 36 hours and subsequently tested in

ELISA for IL-10 protein levels (D). IL-10 secretion by purified hepatocytes from naïve WT (black bar) following stimulation

with 107 parasites or 50 μg lysate or 5 μg sVSG for 36 hours at 37˚C in a 5% CO2 incubator (E). For each condition 2.106 liver

cells per ml were used. As controls cells were left untreated. Results are representative of 2 independent experiments and shown

as mean of 3 individual mice ± SEM. At day 45 post T. congolense infection, isolated hepatocytes from WT (black symbol) and

TgAlbCre-IL10-/- (white symbol) mice, were tested in RT-PCR for IL-10 and IL-10R gene expression (F and G, respectively). Of

note, RT-PCR results are presented as fold change whereby the expression levels were normalized using S12 and expressed

relatively to the expression levels in the corresponding non-infected animals. Non-infected animals as well as TgAlbCre-IL10-/-

mice did not show any detectable IL-10 protein levels (Dashed line). Data are represented as mean of at least 3–5 mice per

group ± SEM and are representative of 2 independent experiments. (�: p�0.05, ��: p�0.01, ND: Not detected).

https://doi.org/10.1371/journal.ppat.1008170.g001
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Fig 2. Hepatocyte-specific IL10-deficiency correlates with reduced survival and increased anemia during T. congolense
infection. A) Parasitemia, (B) Survival, (C) weight change and (D) anemia of T. congolense infected wild type (WT, black

symbol), LysM-IL-10-/- (white symbol) and TgAlbCre-IL10-/- (red symbol) mice. Data are represented as mean (A, C-D) or

median (B) of 3–5 mice per group ± SEM and are representative of 2–3 independent experiments. (�: p�0.05, ��: p�0.01).

https://doi.org/10.1371/journal.ppat.1008170.g002

Fig 3. Hepatocyte-specific IL10-deficiency correlates with increased pro-inflammatory serum cytokine levels during the

chronic stage of T. congolense infection. Serum cytokine kinetics of T. congolense infected wild type (WT, black symbol),

LysM-IL-10-/- (grey symbol) and TgAlbCre-IL10-/- (white symbol) mice. Dashed line represents cytokine levels in non-infected

animals. Data are represented as mean of 5 mice per group ± SEM and are representative of 2 independent experiments. (�:

p�0.05, ��: p�0.01, ���: p�0.005).

https://doi.org/10.1371/journal.ppat.1008170.g003
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increased serum AST (aspartate aminotransferase, reflecting systemic tissue injury) and ALT

(alanine aminotransferase, reflecting liver injury) levels as well as creatinine (reflecting kidney

injury) levels (Fig 5A–5C). In TgAlbCre-IL10-/- mice, this observation coincides with

increased serum levels of pro-inflammatory cytokines (IFN-γ, TNF, IL-12p70, IL-6 and MIF)

which were documented to contribute to T. congolense-induced tissue destruction (Fig 5D)

Fig 4. Hepatocyte-specific IL10-deficiency correlates with decreased B cell and patrolling monocyte numbers,

increased MHC-II expression on inflammatory monocytes and increased PMN numbers in the blood during the

later stage of T. congolense infection. Kinetic of (A) the percentage of CD45+ cells, (B) the number of white blood

cells (WBC, including B cells, T cells, patrolling monocytes, polymorphonuclear cells (PMN) and inflammatory

monocytes) and (C) the MHC-II expression levels on inflammatory monocytes expressed in delta median fluorescence

intensity (delta MFI) during the course of T. congolense infection in wild type (WT, black symbol), LysM-IL-10-/- (grey

symbol) and TgAlbCre-IL10-/- (white symbol) mice. The gating strategy is described in S3A Fig. Data are

represented ± SEM (5 mice per group) and are representative of 2 independent experiments. (�: p�0.05, ��: p�0.01,
���: p�0.005).

https://doi.org/10.1371/journal.ppat.1008170.g004
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[20,25–27]. In line with previous observations, LysM-IL-10-/- mice also showed higher sys-

temic levels of TNF compared to WT mice [15].

Collectively, we observed that parasites can induce IL-10 production by hepatocytes and

that hepatocyte-derived IL-10 is crucial to attenuate systemic inflammation and T. congolense
infection-associated pathogenicity during the later stages of infection resulting in a prolonged

survival.

Hepatocyte-specific IL10-deficiency correlates with increased

hepatosplenomegaly and an altered cellular tissue composition during T.

congolense infection

During chronic infections with trypanosomatids, including African trypanosomes, hepatosple-

nomegaly develops as an additional complication associated with the disease [20,22,23,28].

This pathological feature results in the overall increase in T. congolense infection-associated

mouse body weight (Fig 2C) [20,29]. Notably, though T. congolense infections induce hepatos-

plenomegaly in all mouse strains used in this study, this feature was most pronounced in

TgAlbCre-IL10-/- mice (Fig 6A and 6B) correlating with a higher mouse weight. However,

when subtracting the level of hepatosplenomegaly (i.e. the weight of liver and spleen) from the

actual mouse weight it appears that T. congolense infected animals, compared to non-infected

animals, loose weight (which is also observed in cattle [30]) (S4 Fig). In this context,

TgAlbCre-IL10-/- mice showed an earlier and significantly higher weight loss compared to the

other groups.

Remarkably, the number of liver-associated cells, comprising both hepatocytes (CD45-

cells) and liver-associated leukocytes (CD45+ cells), significantly increased in all infected ani-

mals compared to non-infected animals, with no further increase in TgAlbCre-IL10-/- mice

(Fig 6C) despite the significantly bigger liver size in these animals (Fig 6A and 6B). However,

livers from TgAlbCre-IL10-/- mice contained significantly lower numbers of hepatocytes but

tended to have higher numbers of leukocytes compared to WT and LysM-IL-10-/- mice. Also

the spleens of all infected mice contain more WBC compared to non-infected mice, but, simi-

lar to the liver, TgAlbCre-IL10-/- spleens do not contain more WBC than WT or LysM-IL-10-/-

spleens (Fig 6D). Conversely, spleens from infected TgAlbCre-IL10-/- mice encompass signifi-

cantly higher numbers of red blood cells (RBCs, Fig 6E, see gating strategy [20]) compared to

infected WT and LysM-IL-10-/- mice. Hence, the enhanced splenomegaly observed in

TgAlbCre-IL10-/- mice might be due to a higher level of extramedullary erythropoiesis, a phe-

nomenon which was reported before to cause splenomegaly in T. congolense infected animals

[20,29].

Collectively, the absence of hepatocyte-derived IL-10 results in a more pronounced hepa-

tosplenomegaly, which correlated with an altered tissue cellular composition.

Hepatocyte-specific IL10-deficiency correlates with enhanced

erythrophagocytosis, increased hemodilution and thrombocytopenia

during T. congolense infection

We have shown before that T. congolense infection causes hemodilution, due to the low yet

chronic nature of the inflammation, which coincides with the occurrence of hepatosplenome-

galy [20]. Interestingly, infected TgAlbCre-IL10-/- mice exhibited more severe hemodilution

compared to WT and LysM-IL-10-/- mice as illustrated by an enhanced blood (Fig 7A) and

plasma (Fig 7B) volume. This increased hemodilution resulted in thrombocytopenia, encom-

passing a decrease in platelet counts per blood volume and in the absolute platelet number in

the blood of the respective mice, which is again most pronounced in TgAlbCre-IL10-/- mice
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(Fig 7C and 7D). Conversely, the total number of RBCs in the blood of infected animals is unaf-

fected compared to naive animals (S5A Fig). Yet, the composition of RBCs (using the gating

strategy described in S3B Fig) is altered during infection (S5B Fig), with a decrease in the num-

ber of mature RBCs (suggesting enhanced erythrophagocytosis or impaired RBC maturation)

Fig 5. Hepatocyte-specific IL10-deficiency correlates with an increased tissue pathogenicity and increased serum

cytokine levels at day 45 post T. congolense infection. A 45 days p.i. (A) serum ALT, (B) AST and (C) creatinine

levels as well as (D) cytokine levels of IFN-γ, TNF, IL12p70, IL-6, MIF and IL-10 were determined via ELISA for wild

type (WT, black symbol), LysM-IL-10-/- (grey symbol) and TgAlbCre-IL10-/- (white symbol) mice. Dashed line

represents cytokine levels in non-infected animals. Data are representative of 3 independent experiments and

presented as mean of 3 individual mice per group ± SEM. (�: p�0.05, ��: p�0.01).

https://doi.org/10.1371/journal.ppat.1008170.g005
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Fig 6. Hepatocyte-specific IL10-deficiency correlates with increased hepato-splenomegaly and an altered tissue

cellular composition at day 45 post T. congolense infection. A) Liver and spleen weight of T. congolense infected wild

type (WT, black symbol), LysM-IL-10-/- (grey symbol) and TgAlbCre-IL10-/- (white symbol) mice (days 45 p.i.). (B)

Representative images of liver and spleen from naïve and T. congolense infected (day 45 p.i.) WT, LysM-IL-10-/- and

TgAlbCre-IL10-/- mice. (C) Total number of liver cells (including hepatocytes and leukocytes), hepatocytes and

leukocytes in WT (black symbol), LysM-IL-10-/- (grey symbol) and TgAlbCre-IL10-/- (white symbol) mice (days 45 p.

i.). (D and E) Total number of splenic white blood cells (WBCs) and red blood cells (RBCs) in WT (black symbol),

LysM-IL-10-/- (grey symbol) and TgAlbCre-IL10-/- (white symbol) mice (days 45 p.i.). Dashed line represents cytokine

levels in non-infected animals. Data are represented as mean of at least 3–5 mice per group ± SEM and are

representative of 2 independent experiments. (�: p�0.05, ���: p�0.005).

https://doi.org/10.1371/journal.ppat.1008170.g006
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and an increase in the number of immature RBCs (reflecting enhanced extramedullary erythro-

poiesis). However, no differences were observed between TgAlbCre-IL10-/-, LysM-IL-10-/- and

WT mice in this respect. Enhanced extramedullary erythropoiesis is corroborated by the signifi-

cantly increased numbers of RBCs in the spleen of infected animals (Fig 6E), encompassing

more mature RBCs in TgAlbCre-IL10-/- mice compared to the other groups (S5B Fig). These

data argue against an impaired RBC maturation in infected mice, and indeed, all RBC matura-

tion stadia (using the gating strategy described in S3B Fig) are similar between WT and

TgAlbCre-IL10-/- mice (S6 Fig).

In addition, using an in vivo erythrophagocytosis assay [31], we observed that TgAlbCre-

IL10-/- mice exhibited an enhanced erythrophagocytosis both at the level of the spleen and

liver compared to WT mice (Fig 8). Hence, the combination of enhanced extramedullary

erythropoiesis (resulting in more splenomegaly) and enhanced erythrophagocytosis in

TgAlbCre-IL10-/- mice might explain the comparable total numbers of RBC in the blood as

compared to the other groups.

Collectively, these results indicate that hepatocyte-derived IL-10 plays an important role in

attenuating erythrophagocytosis, hemodilution as well as thrombocytopenia.

Hepatocyte-specific IL10-deficiency correlates with an increased hepatic

pro-inflammatory phenotype during T. congolense infection

To gain further mechanistic insight in the phenotype of T. congolense-infected TgAlbCre-

IL10-/- mice, we zoomed in on the liver, since the effects of this deficiency are expected to be

most apparent within that organ. In first instance, we investigated the local cytokine produc-

tion by hepatocytes and hepatic leukocytes to assess whether the systemic increase in pro-

inflammatory cytokines (Figs 3 and 5D) could be phenocopied at the tissue level in these mice.

Quantitative gene expression analysis of the hepatocyte fraction from T. congolense infected

TgAlbCre-IL10-/- mice demonstrated a strongly increased expression of the prototype inflam-

matory cytokines Il6 and Mif (but not Tnf), the inflammatory chemokine Cxcl10, and the

inflammatory enzyme Nos2 (but not Arg1) compared to hepatocytes from WT and LysM-IL-

10-/- mice, suggesting an overall more prominent pro-inflammatory profile (Fig 9A). Interest-

ingly, this inflammatory profile is only partially recapitulated in the hepatic CD45+ leukocyte

compartment of infected TgAlbCre-IL10-/- mice, with a clear upregulation of Nos2, Cxcl10,

and to a lesser extent Tnf, but not Il6 and Mif (Fig 9B). Moreover, Arg1 is higher expressed in

these cells from TgAlbCre-IL10-/- mice as compared to WT and LysM-IL-10-/- mice, although

the Arg1 mRNA levels remain below those seen in naive animals. Interestingly, CXCL10 is also

known as a hepatocyte apoptosis-promoting chemokine [32,33], an important chemokine pro-

moting hepatic inflammation in chronic or acute liver injury through recruitment of leuko-

cytes to the liver parenchyma [34–36]. Hence, its enhanced expression in both hepatocyte- and

leukocyte fractions from infected TgAlbCre-IL10-/- mice, in association with the lower expres-

sion levels of the hepatocyte renewing factor telomerase reverse transcriptase (Tert1) in hepa-

tocytes [37] (Fig 9A, lower panels), may collectively explain the lower numbers of hepatocytes

in TgAlbCre-IL10-/- mice.

At the protein level, hepatocytes from TgAlbCre-IL10-/- mice exhibited a significantly

increased secretion of IL-6, MIF and nitric oxide (NO; indicative of Nos2 enzyme activity) as

compared to hepatocytes from infected WT and LysM-IL-10-/- mice, corroborating the mRNA

data (Fig 10, upper panels). Hepatic leukocytes from TgAlbCre-IL10-/- mice produced the

highest levels of NO and IFN-γ (Fig 10, lower panels), while the levels of IL-6, TNF and MIF

were increased upon infection but not different between the groups.
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Collectively, by comparing WT, LysM-IL-10-/- and TgAlbCre-IL10-/- mice, hepatocyte-

derived IL-10 was found to be crucial to dampen the pro-inflammatory immune response at

the level of the liver, decreasing the inflammatory profile of both hepatocytes and leukocytes in

this organ. Hereby, hepatocytes from TgAlbCre-IL10-/- mice have besides a more pro-inflam-

matory gene/protein expression profile also an increased Cxcl10 and decreased Tert1 expres-

sion, which in turn may negatively affect hepatocyte survival.

Hepatocyte-specific IL10-deficient mice have an enhanced iron-

homeostasis gene expression profile during T. congolense infection

During chronic inflammation, iron homeostasis is modulated, whereby excess iron can cause

hepatocellular damage through the production of harmful reactive oxygen species (ROS) [38].

Hence, also genes involved in iron-regulation and -homeostasis were investigated in both the

hepatocyte and hepatic leukocyte fraction and were found to be modulated during T. congo-
lense infection (Fig 11). At the level of the hepatocytes (Fig 11, upper panels), these genes were

Fig 7. Hepatocyte-specific IL10-deficiency correlates with increased hemodilution and thrombocytopenia at day

45 post T. congolense infection. Both non-infected and T. congolense infected (45 days p.i.) mice were exsanguinated

via cardiac puncture and tested for (A) total blood volume and (B) total packed cell volume (PCV, black bar) and total

plasma (white bar) volume which were calculated based on the total blood (A) volume and the % PCV. (C) The

concentration of CD41+ platelets (gated as described in [20]) and (D) total number of platelets in the total blood

volume was determined was determined for both non-infected and infected animals. WT (black symbol), LysM-IL-

10-/- (grey symbol) and TgAlbCre-IL10-/- (white symbol) mice. Data are represented as mean of at least 3–5 mice per

group ± SEM and are representative of 2 independent experiments. (�: p�0.05, ��: p�0.01, ����: p�0.001).

https://doi.org/10.1371/journal.ppat.1008170.g007
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skewed towards an increased iron uptake (i.e. higher Hmox-1, Nramp2) and retention (i.e.
higher Fhc, Lcn-2) in TgAlbCre-IL10-/- mice. Accordingly, the gene expression profile of iron

regulating genes in liver leukocytes is also suggestive of an amplified iron uptake (i.e. higher

Hmox-1, Lcn-2) and iron processing (i.e. higher Fpn-1, Fhc) in TgAlbCre-IL10-/- mice com-

pared to the other two groups (Fig 11, lower panels).

Collectively, the hepatocyte and hepatic leukocyte iron-homeostasis gene analysis of

TgAlbCre-IL10-/- mice are suggestive of an enhanced iron uptake and retention, which in turn

may favour hepatic damage.

Anti-MIF Nb treatment attenuates effects of Hepatocyte-specific

IL10-deficiency during T. congolense infection

Finally, we wished to ascertain whether the increased inflammatory cytokine production is

responsible for the increased pathogenicity of T. congolense infection in TgAlbCre-IL10-/-

mice. In this respect, we have reported before that MIF plays a key role in T. congolense infec-

tion associated pathogenicity [39] and we demonstrated here that MIF levels were significantly

upregulated in TgAlbCre-IL10-/- mice during later stages of infection both systemically and in

Fig 8. Hepatocyte-IL10 deficiency enhances erythrophagocytosis during T. congolense infection. At 40 days p.i., 109

pHrodo labelled RBCs isolated from non-infected WT mice were injected i.v. in WT (black bar) or TgAlCre-IL10-/-

(open bar) mice. 18 h later, mice were sacrificed and liver (A) and spleen (B) myeloid phagocytic cells (MPC), namely

CD11b+Ly6CintLy6G+ PMNs, CD11b+Ly6ChighLy6G- monocytes and CD11b+Ly6C-Ly6G-F4/80+ macrophages

(identified as described in [20]) were tested for delta median fluorescence intensity (MFI) of the intracellular pHrodo

signal determined by subtracting the PE signal of cells from mice receiving unlabeled RBCs from the PE signal of cells

from mice receiving pHrodo-labeled RBCs. Results are representative of 2 independent experiments and presented as

mean of 3 individual mice ± SEM. �: p�0.05, ��: p�0.01.

https://doi.org/10.1371/journal.ppat.1008170.g008
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the liver (Figs 3 and 10A). Moreover, in contrast to IL-6, MIF is an upstream regulator of the

inflammatory cascade whose blockade may be more efficient at attenuating the inflammatory

immune response [40]. Hence, we evaluated whether neutralization of MIF, using a half-life

extended anti-MIF Nb [39], could attenuate the pathology observed in TgAlbCre-IL10-/- mice.

To this end, TgAlbCre-IL10-/- mice were treated starting from day 30 p.i. (i.e. a time point

Fig 9. Gene expression profiles of pro- and anti-inflammatory cytokines/mediators as well as chemokines and

Tert-1 in hepatocytes and liver-associated leukocytes from T. congolense infected animals. Gene expression levels of

pro-inflammatory and anti-inflammatory cytokines/mediators as well as chemokines in hepatocytes (A, upper panel)

and liver leukocytes (B, lower panels) fraction of T. congolense infected (day 45 p.i.) WT (black symbol), LysM-IL-10-/-

(grey symbol) and TgAlbCre-IL10-/- (white symbol) mice. Results are presented as fold change whereby the expression

levels were normalized using S12 and expressed relatively to the expression levels in the corresponding non-infected

animals. Gene expression levels of Tert1 in the hepatocyte fraction of WT (black symbol), LysM-IL-10-/- (grey symbol)

and TgAlbCre-IL10-/- (white symbol) mice. Data are represented as mean of at least 3–5 mice per group ± SEM and are

representative of 2 independent experiments. (�: p�0.05, ��: p�0.01, ���: p�0.005).

https://doi.org/10.1371/journal.ppat.1008170.g009
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when anemia difference between the groups became apparent, see Fig 3D) with 250 μg of a

half-life extended anti-MIF Nb for ~3 weeks (twice per week) and infection parameters (ane-

mia and parasitemia) were monitored. The anti-MIF Nb treatment did not affect parasitemia

development in TgAlbCre-IL10-/- mice (Fig 12A, upper panel), but it clearly prevented anemia

from further progressing (Fig 12A, lower panel). Since inflammatory cytokines play a key role

in anemia development and since MIF can be an initiator of inflammatory cytokine produc-

tion, we also evaluated the systemic levels of various pro-inflammatory cytokines. Interest-

ingly, treatment of TgAlbCre-IL10-/- mice with an anti-MIF Nb resulted in a significant

reduction in systemic TNF, IL-6 and MIF levels and this to levels comparable to those

observed in WT mice (Fig 12B).

Collectively, blocking MIF in TgAlbCre-IL10-/- mice, using an anti-MIF Nb, was found to

attenuate anemia and excessive systemic inflammatory cytokine levels, without affecting para-

site burden.

Discussion

Trypanosomatids are very proficient in evading the host’s immune response, yet, these escape

mechanisms are associated with a chronic inflammatory state that culminates into increased tis-

sue damage and finally into host death [41]. IL-10 was shown to be essential to attenuate the

inflammatory response and prevent early death of the host due to a hyper-inflammation syn-

drome [19]. Hence, a well-timed balance between the levels of pro-inflammatory cytokines

(required for initial parasite control) and anti-inflammatory cytokines (required to dampen

Fig 10. Cytokine profile of liver cell cultures following T. congolense infection. At day 45 post T. congolense infection, fractionated

liver cells (hepatocytes and leukocytes) were isolated and cultured for 36 hours and subsequently tested in ELISA for cytokine levels of

IFN-γ, TNF, IL-6 and MIF as well as NO. Cytokine protein levels of hepatocytes (A, upper panels) and liver leukocytes (B, lower panels).

WT (black symbol), LysM-IL-10-/- (grey symbol) and TgAlbCre-IL10-/- (white symbol) mice. Dashed line represents cytokine levels in

non-infected animals. Non-infected animals did not show any detectable cytokine levels. Data are represented as mean of at least 3–5

mice per group ± SEM and are representative of 2 independent experiments. (�: p�0.05, ��: p�0.01, ���: p�0.005).

https://doi.org/10.1371/journal.ppat.1008170.g010
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excessive pro-inflammatory effects) is essential to prevent excessive tissue damage. Previous

research has shown that leukocytes (i.e. Tregs. alternatively activate macrophages and Ly6C-

patrolling monocytes) can constitute a source of IL-10 required to dampen some specific

aspects of immunopathology (e.g. liver injury) during the early stages of infection [14,15,19,24].

Using hepatocyte-specific IL-10 deficient (TgAlbCre-IL10-/-) mice and IL-10-eGFP reporter

mice we now show for the first time that hepatocytes from T. congolense infected mice can also

produce IL-10 (see Fig 1C). Moreover, we provide evidence that parasite-derived components,

can trigger IL-10 production by hepatocytes from non-infected animals, indicating that they

can sense and respond to the presence of trypanosomes. In this context, in another parasitic

model, it was recently shown that hepatocytes can respond to Leishmania infantum infection by

the activation of inflammatory mechanisms and the production of IL-10 in order to balance the

inflammatory response and avoid cell damage [42].

The potential of hepatocytes to produce IL-10 was found to be crucial to control immuno-

pathology during the chronic stage of T. congolense infection. Indeed, although TgAlbCre-

IL10-/- mice behaved similar to WT and LysMCre-IL-10-/- mice during the early stages of

infection, they succumbed much earlier to the infection coinciding with increased tissue path-

ogenicity. This was evidenced by the increased ALT (suggesting liver injury), AST (suggesting

systemic injury) and creatinine (suggesting kidney failure) levels, as well as by a more severe

chronic anemia. The enhanced pathogenicity correlated with a significant systemic increase in

all pro-inflammatory cytokines documented to play a pathogenic role during T. congolense
infection [20,27,43]. In addition, at later stages of infection, the numbers of PMN as well as the

expression of MHC-II on Ly6C+ inflammatory monocytes, both documented to contribute to

tissue injury [22,26], were found to be significantly increased in the blood of TgAlbCre-IL10-/-

mice compared to the other groups, further strengthening the notion that these mice were in a

higher inflammatory state. In contrast, the numbers of Ly6C- patrolling monocytes,

Fig 11. Iron-homeostasis associated gene expression profiles of hepatocytes and liver-associated leukocytes from T. congolense
infected animals. Gene expression levels of iron-homeostasis associated genes in hepatocytes (A, upper panels) and the liver associated

leukocyte (B, lower panels) fraction of WT (black symbol), LysM-IL-10-/- (grey symbol) and TgAlbCre-IL10-/- (white symbol) mice.

Results are presented as fold change whereby the expression levels were normalized using S12 and expressed relatively to the expression

levels in the corresponding non-infected animals. Data are represented as mean of at least 3–5 mice per group ± SEM and are

representative of 2 independent experiments. (�: p�0.05, ��: p�0.01, ���: p�0.005).

https://doi.org/10.1371/journal.ppat.1008170.g011
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documented to be important to attenuate tissue damage caused by an extensive Ly6C+ mono-

cyte-associated inflammatory immune response [24], were found to be significantly reduced

in TgAlbCre-IL10-/- mice compared to WT and LysM-IL-10-/- mice. Furthermore, the number

of circulating B cells was found to be similar in both groups of mice and was only significantly

reduced in TgAlbCre-IL10-/- mice at later stages of infection. Since antibodies are required to

keep the parasitemia in check [11,44], the reduced B cell presence in the blood could in turn

explain the higher parasitemia levels observed in TgAlbCre-IL10-/- mice at later stages of infec-

tion. It is however important to realize that B cell counts in the blood do not reveal whether B

cell activation, the formation of plasma cells and antibody secretion, the induction of germinal

center reactions, or the activation of CD4+ T follicular helper cell numbers and function,

which are known to restrict T. congolense parasitemia [11,44], are impaired. However, this is

highly likely since trypanosomes cause a general B cell depletion pathology, which is initiated

by the very rapid disappearance of immature B cells in the bone marrow, as well as transitional

and IgM+ marginal zone B cells from the spleen, followed by a gradual depletion of Follicular

B cells (FoB) [45,46]. Though the cause of B cell depletion is currently unknown, it was shown

that the kinetics of this B cell loss and parasite outgrowth depends on different factors such as

parasite virulence and the level of inflammation [45,46]. Therefore, the observed reduced B

cell numbers in TgAlbCre-IL10-/- mice at the later phase of infection is most likely due to a

higher/persistent inflammatory immune response [45,47]. In turn, this higher and persistent

inflammatory immune response can also contribute to multiple organ failure and host death

[19,23]. Hence, during the chronic stage of the infection, hepatocyte-derived IL-10 seems to be

more crucial to dampen the inflammatory immune response than leukocyte-derived IL-10. A

more in-depth analysis of the liver at this stage of infection revealed that TgAlbCre-IL10-/-

mice had less hepatocytes, but the remaining hepatocytes showed a strongly increased pro-

inflammatory gene expression and protein secretion as compared to WT or LysMCre-IL10-/-

mice. Moreover, the protein and gene expression levels of IL-6 and Mif, two cytokines docu-

mented to play a key role in T. congolense-associated pathology (i.e. susceptibility versus toler-

ance) and liver injury in particular [20,48–50], were drastically increased in hepatocytes from

TgAlbCre-IL10-/- mice compared to the other groups. Interestingly, we have shown before

that MIF is a key player in T. congolense-associated pathogenicity [20]. Indeed, absence of the

pro-inflammatory regulator MIF, using Mif-deficient mice, was shown to attenuate the inflam-

matory immune response during the chronic stage of infection resulting in a reduced infec-

tion-associated pathogenicity (i.e. anemia, liver and tissue injury) and prolonged survival by

promoting IL-10 production [20,22]. Notably, hepatocyte-derived MIF was also shown in

another model (i.e. alcoholic liver disease) to be a driving force for liver injury [50]. Overall, an

interesting picture emerges whereby hepatocytes are a source of two cytokines that counterbal-

ance each other and exert opposing effects during chronic T. congolense infection: MIF attenu-

ates IL-10 production and promotes pathogenicity; while IL-10 keeps the MIF production in

check and softens pathogenicity. Hence, therapeutic approaches that tilt the balance of “hepa-

tocyte” cytokine production in favour of IL-10 are likely to majorly impact the wellbeing and

survival of T. congolense-infected animals. Given that, in contrast to IL-6, MIF is an upstream

regulator of the inflammatory cascade whose blockade may be more efficient at attenuating

the inflammatory immune response [40]. This notion was strengthened by the fact that inter-

fering with MIF signaling using a Nb-based approach indeed attenuates the excessive inflam-

matory immune response as well as the most prominent pathological feature associated with

T. congolense infections, i.e. anemia, in TgAlbCre-IL10-/- mice.

Our results further strengthen the notion that during the course of T. congolense infection,

a sequential transition occurs in the cells that produce IL-10. During the early stages, leuko-

cytes seem to play a decisive role as IL-10 producing cells, yet during the later stage hepatocytes
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become important IL-10 producing cells in an attempt to counteract the host’s inflammatory

response. As a matter of fact, at this later stage of T. congolense infection, hepatocyte-derived

IL-10 plays a decisive role to dampen excessive tissue damage and immunopathology. More-

over, hepatocytes from WT infected mice, but not TgAlbCre-IL10-/- infected mice, exhibited

an increased IL-10R gene expression, suggesting that autocrine/paracrine IL-10R signalling on

hepatocytes may be required to allow efficient control over inflammation. Additional

Fig 12. Half-life extended anti-MIF Nb treatment attenuates anemia and pro-inflammatory cytokine levels in

Hepatocyte-IL10 deficient mice during T. congolense infection. At 30 days p.i., TgAlbCre-IL10-/- mice (4–5 mice/

group) were treated i.p. with 250 μg half-life extended anti-MIF Nbs (grey bars) or left untreated (white bars) for 3

weeks (twice a week). Wild type mice (black bars) were left untreated and included as negative controls. A. Parasitemia

(upper panel) and anemia (lower panel) progression expressed in percentage relative to levels recorded prior to

initiating the treatment were monitored for 3 weeks. B. Serum cytokine levels recorded 3 weeks post treatment. Data

are represented as mean of at least 4–5 mice per group ± SEM. (�: p�0.05, ��: p�0.01, ���: p�0.005).

https://doi.org/10.1371/journal.ppat.1008170.g012
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experimentation will be required to prove this point. One of the important features that is reg-

ulated by hepatocyte-derived IL-10 is the expression of iron homeostasis-associated genes, sug-

gesting an enhanced liver iron-uptake/retention in TgAlbCre-IL10-/- mice. Indeed, TgAlbCre-

IL10-/- mice exhibited an increased expression of Hmox-1 (indicating enhanced iron uptake)

as well as Fpn-1 (indicating enhanced iron export) and Fhc (indicating enhanced iron reten-

tion). These modulations in iron-homeostasis regulating genes are suggestive for an enhanced

erythrophagocytosis and a reduced iron availability for erythropoiesis [51], which was also

reflected by the lower number of mature RBCs in the blood (S5A Fig). In this context, we con-

firmed that TgAlbCre-IL10-/- mice exhibited an enhanced erythrophagocytosis, yet, the eryth-

ropoiesis efficiency was not affected. This strengthens the notion that iron is retained into liver

cells in the absence of hepatocyte IL-10, which may then further fuel oxidative stress and liver

injury [52]. Moreover, the increased hepatosplenomegaly in TgAlbCre-IL10-/- mice leads to

hemodilution, which in combination with a reduced erythropoiesis aggravates one of the most

prominent immunopathological features of T. congolense-infected animals: anemia. In this

context, MIF might again be an important player as it was shown previously to be a driving

force in suppressing erythropoiesis and promoting hemodilution leading to the observed

“apparent” anemia during T. congolense infection [20].

Overall, the crucial role of hepatocytes at the chronic stage of infection might be linked to

their inherent ability to contribute to liver regeneration [37]. Given that hepatocytes play a key

role in liver homeostasis, identification of target molecules or pathways that are modulated

between trypano-susceptible and -tolerant animals might open perspectives to develop a more

specific approach to alleviate infection-associated pathogenicity and allow a restoration of nor-

mal organ functions. Since MIF was shown to be a key player in trypanosomosis-associated

pathogenicity and found to be strongly induced in hepatocytes from TgAlbCre-IL10-/- mice

compared to the other groups, and interfering with MIF signaling using a Nb-based approach

attenuates the excessive inflammatory immune response as well as the most prominent patho-

logical feature associated with T. congolense infections, i.e. anemia, in TgAlbCre-IL10-/- mice,

this could be a prime candidate for further studies in this model. Therefore, using MIF block-

ing Nbs at later stages of infection might be a novel way to attenuate T. congolense associated

pathology and allow animals to remain productive.

Materials and methods

Ethics statement

All experiments, maintenance and care of the mice complied with the European Convention

for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes

guidelines (CETS n˚ 123) and were approved by the Ethical Committee for Animal Experi-

ments (ECAE) at the Vrije Universiteit Brussel (Permit Numbers: 14-220-05 and 14-220-06).

Parasites, mice and infections

Eight to twelve weeks old female C57BL/6 mice were purchased from Janvier, France. IL-10-/-

(B6.129P2-Il10tm1Cgn/J), AlbCre (B6.Cg-Tg(Alb-cre)21Mgn/J, JAX stock #003574), LysMCre
(B6.129P2-Lyz2tm1(cre)Ifo/J, JAX stock #004781) and Vert-X (B6(Cg)-Il10tm1.1Karp/J) were pur-

chased from Jackson Laboratory, USA. LyzMCre/+ IL-10fl/fl (i.e. LysM-IL10) and AlbCre/+ IL-
10fl/fl (i.e. TgAlbCre-IL10) mice were generated in house by crossing the LysMCre and AlbCre
mice with IL-10fl/fl mice (a kind gift of W. Muller, University of Manchester, Manchester,

United Kingdom), respectively. The genotyping profile of the LysM-IL10-/- and TgAlbCre-

IL10-/- mice is included (S7 Fig).
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Clonal T. congolense parasites (Tc13) were kindly provided by Dr. Henry Tabel (University

of Saskatchewan, Saskatoon) and stored at -80˚C. Female mice (7–8 weeks old) were infected

intraperitoneally (i.p.) with 2 x 103 Tc13 trypanosomes. Parasite and red blood cell (RBC)

numbers in blood were determined via hemocytometer by tail-cut (2.5 μl blood in 500 μl

RPMI). Anemia was expressed as the percentage of reduction in RBC counts compared to

non-infected animals. Packed cell volume (PCV) was measured following collection of anti-

coagulated blood in heparinized capillaries and centrifugation at 9500×g for 7 min. using a

micro-centrifuge (Fisher BioBlock Scientific). Also the weight of the mice was followed during

the course of infection and the percentage weight change compared to non-infected animals at

the corresponding time.

Treatment experiments consisted of injecting TgAlbCre-IL10-/- mice (4–5 mice/group) i.p.

at day 30 post infection (p.i.) with 250 μg (in 200 μl PBS) of a half-life extended anti-MIF Nb

[39] and this for 3 weeks (twice a week). At regular time points blood was collected for parasi-

temia and RBC analysis and when the untreated TgAlbCre-IL10-/- mice started dying blood

was collected for cytokine analysis. Of note, anemia levels at day 30 p.i. of each individual

mouse were used to normalize the progression of anemia.

Serum and cell isolation

Blood from non-infected control and infected mice was harvested via tail-cut using heparin-

ized capillaries and centrifuged at 8000×g for 15 min. Serum was harvested and stored at

-20˚C. Hepatocytes and liver leukocytes from infected and non-infected mice were purified as

described in [53]. Briefly, liver cells were obtained by perfusing the liver with 10 ml of cold

PBS via the inferior vena cava, mechanical disruption of the liver, followed by passing cell sus-

pensions over a 70 μm nylon mesh filter and a 33% Percoll gradient separation, after which

cells were resuspended in complete medium (RPMI supplemented with 5% FCS, 2mM L-glu-

tamine, 100 U/ml penicillin and 100 μg/ml streptomycin (all from Invitrogen Life Technolo-

gies)). Next, the fractionated cell suspension was centrifuged (7 min., 300×g, 4˚C) and the

pellet treated with erythrocyte-lysis buffer. Following centrifugation (7 min., 300×g, 4˚C) the

pellet was resuspended in 2–5 ml complete medium, cells counted and adjusted at 107 cells/ml

for flow-cytometric analysis, cell culturing and RT-PCR analysis. Of note, the 33% Percoll gra-

dient yielded hepatocytes (in the upper layer) with at least 95% purity (see Fig 1A and 1B).

Spleen cells from infected and non-infected mice were obtained by homogenizing (dis-

rupted mechanically) the organs in 10 ml RPMI/5%FCS medium, passing the suspension

through a 70 μm nylon mesh filter and centrifugation (7 min., 300×g, 4˚C). Cells were counted

and brought at 107 cells/ml in RPMI/5% FCS medium for RBC analysis via flow cytometry.

Remaining cells were pelleted (7 min., 300×g, 4˚C) and subsequently treated with RBC lysis

buffer (0.15 M NH4Cl, 1.0 mM KHCO3, 0.1 mM Na2-EDTA) and processed as described for

the liver (see above) for analysis of white blood cells (WBCs).

Flow cytometry

To analyze the RBC composition, the blood and spleen cells were analysed omitting RBC lysis.

Briefly, total blood (2.5 μl diluted in 500 μl RPMI/5% FCS) and 106 spleen cells (in 100 μl) were

incubated (15 min., 4˚C) with Fc-gamma blocking antibody (anti-CD16/32, clone 2.4G2, BD

Biosciences), and subsequently stained with labelled antibodies (summarized in S1 Table) or

matching control antibodies. Samples were washed with FACS medium (5% FCS in HBS),

measured on FACSCanto II flow cytometer (BD Bioscience) and data were analysed using

FlowJo software (Tree Star Inc., Ashland, OR) by excluding CD45+ cells and gating on Ter-

119+ cells. After RBC lysis, the remaining cells (106 cells/100 μl) within the spleen (comprising
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leukocytes, WBCs) and liver (comprising leukocytes and hepatocytes) were analyzed as

described above. The results were analysed after exclusion of aggregated and death cells

(7AAD+, BD Pharmingen) and selection of CD45+ cells (leukocytes) and CD45- cells (hepato-

cytes). The total number of cells in each population was determined by multiplying the per-

centages of subsets within a series of marker negative or positive gates by the total cell number

determined for each tissue.

Erythrophagocytosis assay

The pHrodo-labelling of red blood cells (RBCs) was described in [31]. 109 pHrodo-labelled

RBCs isolated from non-infected wild type (WT) mice were injected i.v. in WT or TgAlbCre-

IL-10-/- mice. 18 h later, mice were sacrificed, and liver and spleen cells isolated as described

above. Next, via FACS (see S1 Table), liver and spleen CD11b+Ly6CintLy6G+ PMNs,

CD11b+Ly6ChighLy6G- monocytes and CD11b+Ly6C-Ly6G-F4/80+ macrophages were tested

for delta median fluorescent intensity (MFI) of the intracellular pHrodo signal determined by

subtracting the PE signal of cells from mice receiving unlabelled RBCs from the PE signal of

cells from mice receiving pHrodo-labelled RBCs.

In vitro cultures

Liver leukocytes and splenic cell populations isolated from infected and non-infected mice

were diluted in complete medium (RPMI-1640 medium, 5% FBS, 1% sodium pyruvate

(Gibco), 1% non-essential amino acids (Gibco), 1% glutamate, 1% penicillin-streptomycin),

plated in 48-well plates (Nunc) at 2.106 cells per ml and incubated at 37˚C in a 5% CO2 incuba-

tor for 36–48 h before supernatant was recovered and stored at -20˚C for further analysis. The

isolated hepatocytes were cultured in DMEM (Thermo-Scientific), supplemented with 5% FBS

and 100 mg ml-1 penicillin/streptomycin, at 2.106 cells per ml and incubated at 37˚C in a 5%

CO2 incubator for 36–48 h before supernatant was recovered and stored at -20˚C for further

analysis.

For the in vitro co-cultures of hepatocytes and liver leukocytes with parasites or parasite

lysate or parasite derived sVSG, parasites were isolated as described in [54,55]. Briefly, mice

with a systemic T. congolense (Tc13) parasitemia were exsanguinated and parasites were puri-

fied from heparinized blood by DEAE-cellulose (DE-52, Whatman) chromatography and

sVSG was isolated via ion-exchange chromatography and gel filtration. Lysate was prepared by

3 repetitive freeze thawing cycles (-80˚C, 37˚C). The concentration of both sVSG and lysate

was determined spectrophotometrically (Nanodrop) following Prosep-Remtox (Immuno-

source, Schilde, Belgium) treatment and samples confirmed to be LPS free by using the Limu-

lus Amebocyte Lysate Kinetic-QCL Kit (Cambrex, East Rutherford, NJ, USA) in accordance

with the manufacturer’s instructions. Both sVSG and lysate were either used immediately or

stored at −20˚C. Finally, 2.106 liver cells per ml were incubated at 37˚C in a 5% CO2 incubator

with 107 parasites or 50 μg lysate or 5 μg sVSG or left untreated (negative control) for 36 hours

after which the culture supernatant was collected and stored at -80˚C for further cytokine

ELISA analysis.

Quantification of cytokines

All serum cytokines except MIF were quantified using the V-PLEX Custom Mouse Cytokine

kit (catalogue number K152A0H) from Meso Scale Discovery (Rockville, MD, USA) according

to the manufacturer’s protocol. The MIF protein was quantified using a kit from R&D Systems

according to the manufacturers description. Alternatively, culture medium concentrations of
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MIF, TNF, IFN-γ and IL-10 (R&D Systems) as well as IL-6 (Pharmingen) were determined by

ELISA as recommended by the suppliers.

Real-time quantitative polymerase chain reaction (RT-QPCR) analysis

One μg of total RNA prepared from 107 cells (RNeasy plus mini kit, Qiagen) was reverse tran-

scribed using oligo(dT) and Superscript II Reverse Transcription following the manufacturer’s

recommendations (Roche Molecular Systems). RT-QPCR was performed in an iCycler iQ,

with iQ SYBR Green Supermix (Bio-Rad) as described in [56]. Primer sequences are listed in

S2 Table. PCR cycles consisted of 1-minute denaturation at 94˚C, 45-second annealing at

55˚C, and 1-minute extension at 72˚C. Fold change in gene expression was expressed as com-

pared to non-infected animals after normalization against the Ct value of the ribosomal S12
(Mrps12) protein as household gene.

Aspartate transaminase (AST), alanine transaminase (ALT) and creatinine

measurement

Serum AST and ALT levels were determined as described by the suppliers (Boehringer Mann-

heim Diagnostics). Serum creatinine levels were determined as described by the suppliers

(Abcam).

Statistics

The GraphPad Prism 7 software was used for statistical analyses. For samples that complied

with the D’Agostino-Pearson test, a student t-test for paired analyses or one-way ANOVA

with multiple comparisons was performed and a Log-rank (Mantel-Cox) test was used for sur-

vival. Alternatively, a non-parametric Mann-Whitney (two groups) and Kruskal-Wallis (three

or more groups) was performed for experiments that did not comply with the D’Agostino-

Pearson test. Values are expressed as mean ± SEM. Values of p�0.05 are considered statisti-

cally significant, where � = p� 0.05, �� = p� 0.01 and ��� = p� 0.001.

Supporting information

S1 Table. Fluorescently labeled antibodies used.

(DOCX)

S2 Table. Primer used for RT-PCR analysis.

(DOCX)

S1 Fig. Leukocytes are proficient IL-10 producing cells during the chronic phase of T. congo-
lense infection. Representative FACS profile of purified leukocytes at day 45 post T. congolense
infection. The gating strategy used to discriminate between leukocytes and potential contaminating

hepatocytes/debris is based on an FSC-A versus SSC-A (A) and a CD45 versus FSC-A (B) plot,

whereby leukocytes were selected based on their CD45+ profile. (C) Histogram plot showing the

intensity of the IL-10-eGFP signal in leukocytes from IL-10-eGFP reporter (blue) mice and, as neg-

ative control, in leukocytes from TgAlbCre-IL10-/- (red) mice. At day 45 post T. congolense infec-

tion, isolated hepatocytes from WT (black symbol) and TgAlbCre-IL10-/- (white symbol) mice

were cultured for 36 hours and subsequently tested in ELISA for IL-10 protein levels (D) or tested

in RT-PCR for IL-10 and IL-10R gene expression (E and F, respectively). Of note, RT-PCR results

are presented as fold change whereby the expression levels were normalized using S12 and

expressed relatively to the expression levels in the corresponding non-infected animals. Non-

infected animals did not show any detectable IL-10 protein levels (Dashed line). Data are
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represented as mean of at least 3–5 mice per group ± SEM and are representative of 2 independent

experiments. (�: p�0.05, ��: p�0.01, ���: p�0.005). ND: Not detected.

(TIF)

S2 Fig. Hepatocyte-specific IL10-deficiency does not affect survival and tissue pathogenic-

ity during T. brucei infection. A) Parasitemia, (B) Survival, (C) weight change, (D) anemia of

T. brucei infected wild type (WT, black symbol) and TgAlbCre-IL10-/- (red symbol) mice.

Data are represented as mean (A, C-G) or median (B) of 3–5 mice per group ± SEM and are

representative of 2–3 independent experiments.

(TIF)

S3 Fig. Gating strategy used to identify different leukocytes and red blood cells (RBCs) within

the blood during T. congolense infection. Representative FACS profiles on blood of T. congolense
infected animals to identify different leukocyte (A) and RBC (B) subsets. For the leukocyte, first, a

CD45 versus FSC-A plot allows identifying CD45+ cells, after which these cells put in a CD11b ver-

sus FSC plot to identify CD11b+ cells and CD11b- cells (lymphocytes). The CD11b- cells (lympho-

cytes) were then plot in a CD19 versus MHC-II plot to identify B cells (CD19+MHC-II+) and T

cells (CD19-MHC-II-). The CD11b+ cells were plotted in a Ly6C versus Ly6G plot to identify

inflammatory monocytes (Ly6C+Ly6G-) and PMN (Ly6CintLy6G+). Alternatively, the CD11b+

cells were plotted in an Ly6C versus MHC-II plot to identify patrolling monocytes (Ly6C-MH-

C-II-). Regarding the RBC subsets, a Ter119 versus FSC-A plot allows identification of RBCs (i.e.

Ter-119+ cells). These cells be plot in a CD71 versus Ter-119 plot to identify immature

(Ter119+CD71+) and mature (Ter119+CD71-) cells, or in a CD44 versus FSC-A plot to identify

nucleated erythroblasts (pro- and basophilic (I), polychromatic (II), orthochromatic (III) erythro-

blasts) from nucleated reticulocytes (IV) and enucleated erythrocytes (V).

(TIF)

S4 Fig. Absolute weight loss of T. congolense infected mice. Absolute weights of T. congolense
infected wild type (WT, black symbol) and TgAlbCre-IL10-/- (red symbol) mice, when consid-

ering (subtracting) the increase in hepatosplenomegaly. Data are represented as mean of 3–5

mice per group ± SEM and are representative of 2–3 independent experiments.

(TIF)

S5 Fig. During the chronic phase of T. congolense infection the RBC composition of the

blood and spleen is changed. (A) Total number of RBCs as well as mature and immature RBCs

in the blood of T. congolense infected (Day 45 p.i.) mice, which were calculated based on the

total blood volume (Fig 6A). WT (black symbol), LysM-IL-10-/- (grey symbol) and TgAlbCre-

IL10-/- (white symbol) mic. (B) Total number of RBCs as well as mature and immature RBCs in

the spleen of T. congolense infected (Day 45 p.i.) mice, Dashed line represents cytokine levels in

non-infected animals. Data are represented as mean of at least 3–5 mice per group ± SEM and

are representative of 2 independent experiments. (�: p�0.05, ���: p�0.005).

(TIF)

S6 Fig. Hepatocyte-IL10 deficiency does not alter the splenic RBC differentiation during

T. congolense infection. Percentage of the different erythroid populations (defined as

described in S3B Fig) in spleen of WT (black bar) and TgAlbCre-IL10-/- (open bar) mice at 40

days p.i. Results are representative of 2 independent experiments and shown as mean of 3 indi-

vidual mice ± SEM.

(TIF)

S7 Fig. Genotyping profile of TgAlbCre-IL10-/- and LysMCre-IL10-/- mice. Prior to per-

forming experiments mice were genotyped using the conditions described by the supplier
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(Jackson mice). Upper left panel: IL10fl/fl genotyping profile, Upper right panel: LysMCre gen-

otyping profile, Lower panel: TgAlbCre genotyping profile.

(TIF)
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