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Abstract: Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality
worldwide. The consequences of a TBI generate the activation and accumulation of inflammatory
cells. The peak number of neutrophils entering into an injured brain is observed after 24 h; however,
cells infiltrate within 5 min of closed brain injury. Neutrophils release toxic molecules including free
radicals, proinflammatory cytokines, and proteases that advance secondary damage. Regulatory
T cells impair T cell infiltration into the central nervous system and elevate reactive astrogliosis and
interferon-γ gene expression, probably inducing the process of healing. Therefore, the neutrophil-
to-lymphocyte ratio (NLR) may be a low-cost, objective, and available predictor of inflammation
as well as a marker of secondary injury associated with neutrophil activation. Recent studies have
documented that an NLR value on admission might be effective for predicting outcome and mortality
in severe brain injury patients.
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1. Introduction

Traumatic brain injury (TBI) is one of the major causes of morbidity and mortality
worldwide; it is a health problem that affects all ages and populations. Brain injury has two
stages: primary injury due to mechanical damage and secondary injury that corresponds
to a decrease in blood flow and oxygenation, edema, ischemic reperfusion injury, metabolic
and endocrine dysfunction, oxidative stress, and impairment of ionic homeostasis. All
these processes lead to activation and accumulation of inflammatory cells. The mechanism
of inflammatory damage is still under investigation (Figure 1).
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Figure 1. Selected factors that influence the immune response in TBI. The activity of the immune 
system depends on the homeostasis of the organism as well as on variable external factors; TBI-
traumatic brain injury. 
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Figure 1. Selected factors that influence the immune response in TBI. The activity of the immune
system depends on the homeostasis of the organism as well as on variable external factors; TBI-
traumatic brain injury.
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The immune cells, i.e., neutrophils, monocytes, as well as astrocytes and microglia, are
crucial elements of acute cellular reactions. The inflammatory reaction after a TBI may be
stimulated by damage associated with molecular patterns rapidly released after an injury.
Disruption of the blood–brain barrier (BBB) is observed early after a TBI incident and a
significant elevation in leukocyte migration aggravates a focal inflammatory response,
leading to a worsening of secondary damage [1].

Several studies have reported that neutrophil count is usually elevated and lympho-
cytes present no significant changes during the acute phase after a brain injury [2,3]. These
inflammation responses are closely correlated with poor outcomes for patients after injury.

The purpose of this article is to review the association between neutrophils and leuko-
cytes and their neutrophil-to-lymphocyte ratio (NLR) related to outcome and mortality
after a brain injury [4].

2. Neutrophils in TBI

Neutrophils, one of the crucial components of the innate immune system, mature from
granulocyte/monocyte progenitor cells in the bone marrow. Neutrophils are infrequently
observed in the central nervous system because of the BBB [5]. In a healthy person, a tight
junction between endothelial cells stops neutrophils from penetrating the central nervous
system [6]. A small number of neutrophils and other immune cells have been observed in
cerebrospinal fluid (CSF), meninges, and pia membranes [6,7]. Under initial conditions,
neutrophils exist only few hours. Although, human neutrophils in vivo may live more than
5 days [8]. Importantly, aged neutrophils present markers of a proinflammatory phenotype
and other important changes as elevation of CXCR4 [9]. These processes are improving the
neutrophils removal from circulation [10]

It is worth mentioning that neutrophils’ aging process is strongly controlled by mi-
crobiome [11]. Neutrophils are eliminated by macrophages in the spleen or liver, through
apoptosis. Importantly, neutrophils activation can be changed by the surrounding environ-
mental conditions, for example, hypoxia increases the lifespan of neutrophils [12].

Neutrophils have special defensive mechanisms for eliminating pathogens, which
include matrix metalloproteinases (MMPs), myeloperoxidase, neutrophils elastase (NE),
neutrophils gelatinase-associated lipocalin, and SGP28 [13,14]. Also, a neutrophil’s extra-
cellular trap (NET) is another important protective mechanism [15]. Zhu et al. documented
that NETs activation in the paraventricular nucleus is connected with sympathetic hyper-
activity after traumatic brain damage. In animal model authors observed that reactive
oxygen species in the paraventricular nucleus activate formation and chemotaxis of NETs
which finally relate to the activation of microglia cells and increased secretion of IL-1β via
the hippo/MST1 pathway [16].

In addition, neutrophils can intensify their own activation through an autocrine-
dependent manner including leukotriene B4, IL-18 and platelet-activating factor [10].
Therefore, these cells are often phagocytosed or suppressed by macrophages or lympho-
cytes, because of the possibility of generating tissue injury [17]. Moreover, neutrophils
release toxic molecules including reactive oxygen species (ROS), nitrous oxide (NOS),
NADPH oxidase, proinflammatory cytokines, and proteases, which advance secondary
damage after recruitment to an injured central nervous system (Table 1).

Table 1. Selected neutrophil-derived interleukins and chemokines, their functions in a brain injury and potential therapeutic
methods of treatment. Neutrophils release toxic molecules including reactive oxygen species (ROS), nitric oxide synthase
(NOS), NADPH oxidase, proinflammatory cytokines, and proteases, which advance secondary damage; BBB—blood brain
barrier; CXCL—chemokine (C-X-C motif) ligand; IL—interleukin; JNK—c-Jun N-terminal kinase; NLRP—nucleotide-
binding oligomerization domain; TGF—transforming growth factor.

Name Effects
Therapeutic METHODS References

Interleukins

IL-1α BBB breakdown; apoptosis angiogenesis Recombinant human IL-1Ra, NLRP3 inhibitor,
Mesenchymal stem/stromal cells therapy, ketamine [18–20]
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Table 1. Cont.

Name Effects
Therapeutic METHODS References

Interleukins

IL-1β Apoptosis; secretion of IL-6 and IL-8 by astrocytes
Melatonin MT1/MT2 receptor agonist, NLRP3

inhibitor, JNK inhibitor, oxytocin, Baicalin,
Xanthohumol, ketamine, Serp-1

[18–25]

IL-3 Inhibition of secondary degeneration Interleukin-3 (IL-3) and granulocyte/macrophage
colony-stimulating factor (GM-CSF) [26]

IL-4 Matter integrity promotion; long-term
neurological recovery

Melatonin MT1/MT2 receptor agonist, Mesenchymal
stem/stromal cells therapy [20,22]

IL-6 Nerve growth factor production

NLRP3 inhibitor, TGF-β1 infusion, metformin,
melatonin, Vitamin D, JNK inhibitor, exosomes,

lipopolysaccharide (LPS) injection, mesenchymal
stem/stromal cells therapy

[18–23,27–29]

IL-7 Induction of gliosis Lipopolysaccharide (LPS) injection [30]
IL-9 excitotoxic damage; destruction of BBB [31]

IL-10 Downregulation of pro-inflammatory cytokines

Melatonin MT1/MT2 receptor agonist,
lipopolysaccharide (LPS) injection, mesenchymal
stem/stromal cells therapy, statins, formononetin,

Serp-1

[19,20,22,26]

IL-16 Lymphocytes and microglia activation;
accumulation in cerebral vessels anti-IL-16 antibody [32]

IL-17 Neutrophils encroachment Monoclonal antibodies [33]
IL-18 Caspase-1 activation Exosomes, NLRP3 inhibitor [18,29]
IL-23 Leads to neurologic deficits Monoclonal antibodies [33]

CHEMOKINES

CXCL immunotherapy, glucagon-like peptide-1
receptor (GLP-1R) agonist [34,35]

CXCL1 Neutrophil circulation into the brain
CXCL3 Migration of neutrophils across epithelial barriers
CXCL5 Microglia activation; BBB damage; astrogliosis
CXCL8 Neutrophil infiltration into brain parenchyma
CXCL9 Inhibition of selected T cells

CXCL10 Blood-derived monocytes promotion (to
accumulate around perivascular vessels)

Under the pathological conditions of brain trauma, the number of neutrophils entering
into the brain increases. Neutrophils are one of the earliest myeloid-derived cells that
infiltrate the injured brain and affect secondary damage [36]. Neutrophils enroll to the
injured site of the brain within 1 h of a focal injury, damage the parenchyma, and provoke
secondary cellular injury and brain tissue damage [37,38].

The peak number of neutrophils that infiltrate the brain is observed 24 h after an
injury, but cells infiltrate along the arterioles and venules within 5 min of closed brain
damage [39,40]. The liver is the main center of the systemic response of neutrophils after
brain damage. The production of host cytokines is a response to inflammation in a brain
craving the maturation and granulation of neutrophils [41].The homeostatic feedback loop,
the IL-23/IL-17/G-CSF axis that supervises neutrophil death and birth, is elevated after a
brain injury [42].

Thus, what is the role of neutrophils in brain damage?
Free radicals induce disturbances of crucial transmembrane, tight-junction proteins

such as occludin and claudin via the PI3K/AKT pathway, and finally, contribute to the
break-up of BBB integrity and massive flux of molecules and cells across the barrier [43].
Neutrophil elastase is rapidly exhausted from activated neutrophils into the extracellular
space, which intensifies the host inflammatory response. In addition, it can degrade the
diversity of matrix and non-matrix proteins, such as proteins in plasma, proinflammatory
mediators, or adhesion receptors [44,45]. These destructive effects of neutrophil elastase
are observed though the early stage of a nervous system injury.

In addition, neutrophil-derived cytokines vary according to the underlying stimuli
and tissues involved [46,47]. The specific variations of exterior phenotype, chemotaxis, and
phagocytosis, which differ with classical inflammation, are observed according to a brain
injury [48]. In neutrophils under brain injury status, in addition to normal proinflammatory
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cytokines, TNF, or chemokines CXCL-1, other anti-inflammatory cytokines or neutrotrophic
factors can be found [49,50].

Cerebral hypoperfusion intensifies the interactions of neutrophils with blood vessels.
Previous studies have indicated that hypoperfusion advances neutrophils to collapse
and attach by elevating the expression of L-selectin and intercellular adhesion molecule
1 (ICAM-1) in vascular endothelial cells [51]. Activated neutrophils organize pseudopods
and attach to the endothelium and other structures such as platelets, finally inhibiting
blood flow through the microvascular system and elevating the risk of ischemia and early
coagulopathy [52–54] (Figure 2).
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Figure 2. Neutrophil activation and circulation in TBI. After a TBI occurs, cells apoptosis and DAMPs
leak into the extracellular spaces and activate immune cells. Activated neutrophils migrate towards
the site of the injury. The elevated expression of adhesion molecules in endothelial cells, such
as ICAM-1 or VCAM-1 1, increase the attachment and extravasation of peripheral immune cells
into the central nervous system. Neutrophils (but also T cells and monocytes) penetrate the BBB.
Neutrophils release toxic molecules including reactive oxygen species (ROS), nitrous oxide (NOS),
NADPH oxidase, proinflammatory cytokines, and proteases, which advance secondary damage:
DAMPs—danger/damage associated molecular patterns; ICAM—intercellular adhesion aolecule;
MAC—membrane attack complex; MMP—matrix metalloproteinase; PSGL—P-selectin glycoprotein
ligand; TBI—traumatic brain injury.

In addition, vascular failure after neutrophils rolling is observed during and 4–8 h
after injury [55]. Recent studies documented the important connection between neutrophils
and hemorrhagic areas. Elevated activation of MMP-9 with basal lamina collagen IV
mortification strongly amplifies the dysfunction of vessel integrity and development of
hemorrhagic lesions [56]. Significantly, the aforementioned cells may induce iNOS 24–48 h
after damage, which corresponds with hemorrhage and the dilution of vessels. One of the
important questions is about the role of neutrophils in the conversion of hyperperfusion
and hypoperfusion in the early stages after brain damage [57,58].

Another important aspect of neutrophil function after brain injury is infiltration of
choroid plexus and CSF circulation of these cells, close to sites of damage. The BBB
breakdown predisposes the stronger activation of neutrophil migration to the central
nervous system [59]. The selectins act as rolling cells and connect with ICAM-1, which is
expressed in peripherial vessels and platelet–endothelial adhesion molecules (PECAM-1)
expressed in the chyroid plexus, and modulate the migration of neutrophils. The potential
inhibition of ICAM-1 and PECAM-1 may improve neuroinflammation treatment. In
addition, CXCR2 ligand expression increases the forcing of the aforementioned cells to
parenchyma [60].
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The above-mentioned formation of NETs intensifies neurological damage after a brain
injury. A recent experimental study showed that NET formation was associated with
hypoperfusion and tissue hypoxia and a decreased level of circulating NETs correlated
with elevated serum deoxyribonuclease 1 (DNase-I) activity in brain injury. Furthermore,
TLR4 and kinase peptidylarginine deiminase 4 (PAD4) moderates NET formation and
cerebral microvascular dysregulation [15,48].

Neutrophils also damage the tight junction and permeability of BBB. The neutrophil-
released NE breakdown the cadherin–cadherin binding and are finally predisposed to BBB
hyperpermeability as well as neutrophil-derived MMPs, such as MMP2, MMP3, MMP9,
which dysregulate the blood–brain barrier after central nervous system injury [61,62].

As mentioned above, BBB breakdown connects neutrophils with the pathophysiology
of edema. Recent data showed that inhibition of Na+/H+ pump potentially decreases the
cerebral infarct volume and neutrophil accumulation [63].

In summary, neutrophils are mediators during the early phase of secondary damage,
exacerbate BBB damage, and promote the death of neuronal cells. Importantly, neutrophils
are also determinants of long-term neurological recovery. A recent experimental study
showed that the anti-CD11d treatment decreased macrophage and neutrophil activation
and significantly improved outcomes focused on cognition, sensorimotor ability, and
anxiety [64].

Mukherjee et al., in a large prospective study of isolated pediatric TBI patients, de-
termined that a white cell count >16.1 × 109/L and a neutrophil count >11.9 × 109/L
have predictive value for hospital length of stay and poor Pediatric Cerebral Performance
Category Scale scores [65]. It is also worthwhile mentioning that a recent study by Dolmans
et al., that demonstrated routine blood tests such as WBC and neutrophil count measured
after severe TBI, upon admission, were not predictive of 30-day mortality, hospital length
of stay, or outcome after 3 months [66].

3. Lymphocytes in Brain Injury

Peripheral immune system suppression is a predisposition for lymphopenia, which
takes place in almost 80% of TBI patients [67]. Petrone et al., reported different lymphocyte
dynamics in mild and severe TBI patients in the first 48 h after TBI. The elevation of
lymphocyte count was significantly more dynamic in mild TBI especially after 48 h [68].

The effect and role of T lymphocytes in brain injured patients still remains to be
investigated. A recent study showed that mainly adaptive immune response T cells
infiltrate the site of a lesion. This process is increased by ROS released from neutrophils
and occurs simultaneously with monocyte and macrophages [69].

Experimental studies on TBI and blood and brain tissues have reported the prolif-
eration of naïve T lymphocytes, the polarization of effector T lymphocytes, and finally,
suppression of the production of regulatory cells [52]. Peripheral M1 macrophages migrate
towards the central nervous system and activate T cell proliferation and evolution to TH1
and TH17 proinflammatory subtypes. The γδ T and Th17 cells activate a proinflammatory
microglia via modulating the FasL/PTPN2/TNF-α pathway. These mechanisms aggravate
ischemic brain injury [70]. A concomitant reduction in Foxp3 + TREG production and
elevation of the TH17/TREG ratio for weeks after a TBI are indicators of long-term adaptive
immune responses. In addition, some studies have documented that T lymphocytes may
not represent an important place in the pathogenesis of primary destruction in the brain
during the first seven days after an injury [51].

A murine model has shown that consumption of regulatory T cells impairs T cell
infiltration into the central nervous system, elevates reactive astrogliosis, and interferon-γ
gene expression [46]. In addition, these autoreactive T lymphocytes probably induce the
process of healing in an injured brain [52,54].

Recent evidence suggests that lymphocytes present particular relevance for lesion
development. The data from an animal study indicated that lymphocyte-deficient RAG1
mice were secured from cortex stab wound damage [71]. The T lymphocyte CD4+ inhibitory
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agents significantly decreased acute damage of an injured brain in mice. Lymphocyte
CD4+ participates in apoptosis activation in brain cells by cytokine production as TNF
alpha or by FAS dependent pathways [72]. Prolonged immune system activation in the
brain generates neurodegeneration and, finally, causes neurological disturbances [53].
The prevention of T cell migration to the central nervous system probably decreases
neurodegeneration [73]. The elevation of effector/memory CD8+ T cells, which precedes
interleukin-17/CD4+ T cell infiltration, has been connected with escalating neurological
and motor impairment, increased of circulating brain-specific autoantibodies, and myelin
pathology. An inadequacy or decrease in CD8+ T cells improved outcomes [70].

In addition, the CD3+/CD4−/CD8− T cells (double-negative T cells), known as γδ
T cells, regulate the immune system and inflammatory homeostasis, and the number of
these cells is significantly increased in a time-dependent manner in the central nervous
system and peripheral blood [74,75]. However, Th17 cells present a crucial role in the
secondary injury in the chronic phase after ischemic stroke. Furthermore, these cells are
observed 1 week after traumatic brain injury (TBI) and intensified the cytotoxicity of CD8+
T cells at a next stage; therefore, the CD8+ T cell detrimental effect was observed [70,76].
Recent studies have documented that a stimulated level of IL-17 in peripheral blood
samples is associated with worse final neurological outcomes. An elevated level of IL-17
has been observed in the peripheral blood 3 days after stroke [77,78]. It remains to be
explained which types of immune system cells are responsible and crucial for stimulation
of IL-17 [79,80]. In addition, a reduction in peripheral lymphocyte activation inhibited
neurodegeneration and a decrease in lesion size was observed after a TBI [81].

The above-mentioned studies, indicate the need for novel methods of treatment
after trauma, including influencing the cells of the immune system. A recent study by
Nowell et al., showed that antagonizing of macrophage migration inhibitory factor (MIF)
presented anti-neuroinflammatory and neuroprotective effects [82]. The results showed
that administration of the MIF antagonist, as early as 30 min after an injury, prevented
astrogliosis and growth of γδ T cells in the gut, inhibited the percentage of B cells infiltrating
the brain, and finally predisposed the patient to a decrease in post-traumatic syndromes
such as epilepsy.

4. NLR in TBI

The NLR is a rapid and simple parameter of inflammation. Several studies have
reported that neutrophil count is usually elevated and lymphocytes presented no significant
changes during the acute phase after a brain injury [2,3].

In addition, neutrophils are one of the fastest responders and mediators of secondary
pathophysiology processes after TBI [83]. Lymphocytes are also very dynamic immune
cells. Mrakovcic-Sutic et al., documented that the percentage of cytotoxic lymphocytes
significantly decreased at day 1 and 4, and their number elevated at day 7 [84].

In recent years there has been a growing interest in NLR as a barometer of inflam-
mation and a marker of secondary injury associated with cell activation and immune
system response.

Brain trauma activates a cascade of various immune processes in the central nervous
system. It is worth mentioning that the brain–multiorgan interactions seems to be im-
portant, because the brain is a central controller of the body. These interactions include
relationships between brain and heart, lung, liver, kidneys and microbiome [85]. Brain
damage increases the risk of complications from the above-mentioned organs and systems,
increasing mortality in this group of patients. The immune system plays a critical role
in this interaction as well as specific bidirectional immune system and brain axis [86].
Activation of neutrophils and lymphocytes in acute brain damage affects the imbalance in
communication between the immune system and central nervous system [87] (Figure 3).
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5. Prognostic Value of the NLR in TBI

Several studies have reported that the NLR may be a low-cost, objective, and available
predictor of outcome in certain groups of patients, for example, in sepsis, lung cancer,
pancreatic cancer, pancreatitis, hepatocellular carcinoma, pulmonary embolism, or cardio-
vascular diseases. Huang et al., reported that NLR is a helpful prognostic biomarker in
sepsis and elevation of this value predisposes the patient to an unfavorable outcome in
this group of patients [65,88]. In addition, NLR may also become a powerful presage of the
inflammatory status and prognosis conditions of patients with glial tumor, ischemic, and
hemorrhagic stroke and status epilepticus [89–92].

The outcome for patients after a TBI correlates significantly with age, pupillary reac-
tion, Glasgow Coma Score (GCS) at admission, type of damage, coagulopathy as INR, and
APTT. Recent studies have shown close correlations between final outcomes and total white
blood cells (WBC), count lymphocyte ratio, count neutrophil ratio, NLR, platelet count, or
platelet-to-lymphocyte ratio. Several studies have presented that a NLR value at admission
might effectively predict outcome and mortality after a severe brain injury. The NLR
potentially outperformed the predictive value of WBC, absolute neutrophil count (ANC),
and absolute lymphocyte count, and is a reliable dynamic index of systemic inflammation
that combines adaptive and innate immune system response pathways [59,74].

Importantly, the NLR may be a predictor of an hyper-acute inflammatory response as
secondary damage and represents several advantages in the prediction of patients with
severe brain injury.

5.1. NLR and Mortality

In a retrospective study, Chen et al., documented that the NLR amount on admission
might be effective for predicting the one-year outcome and mortality in severe brain injury
patients [93]. Similar conclusions by Huang et al. showed that a group of patients with
a diagnosis of acute SAH, where increased red blood cell distribution width (RDW) and
NLR were connected with higher observed one-year mortality, had an adjusted hazard
ratio 1.03 (95% CI, 1.00–1.05) for per 1 increased NLR [94].

Significantly higher NLR in patients who died, shows that increased NLR, as well
as age on admission, significantly predict the worse one-year outcome (age: OR = 1.068,
95% CI 1.052–1.083 and NLR: OR = 1.100, 95% CI 1.064–1.138, p < 0.9038) [68].

An additional study documented that an NLR value on admission higher than 15.63
has been shown to be an effective indicator of 28-day mortality and was greatly higher in
DAI (diffuse axonal injury) patients as compared with CE (hemispheric or focal cerebral
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edema), ICH (intracerebral hemorrhage), and S-EH/SAH (epidural and/or subdural
hematoma/subarachnoid hemorrhage) groups [95]. Another multivariate analysis revealed
that NLR at admission was an independent prognostic factor of six-month outcome in a
group after severe brain trauma (OR 0.91, 95% CI 0.89–0.93, p < 0.001) [96].

5.2. NLR and Clinical Outcome

Kimball et al. observed, in general, that higher NLR values 24 h and 48 h after
TBI in pediatric patients were associated with worse final outcomes [97]. Recent results
showed a higher NLR association with the Glasgow Outcome Score (GOS) or Glasgow
Outcome Scale Extended (GOSE) [95–97]. Giede-Jeppe et al., described that NLR ≥7.05 is a
good cut-off value to predict an unfavorable outcome, which indicates an mRS score of
3–6 after 3 months [98]. Further analyses performed by Wang et al., also found the positive
correlation between the NLR and the Hunt–Hess grade. Authors showed that NLR may
predict the adverse final outcome of patients with an mRS score of 3–5 after 3 months [99].

An elevated NLR is also an independent predictor for complications in patients with
acute ischemic stroke (AIS), such as cerebral edema hemorrhagic transformation and ICH
after endovascular treatment [100–102].

Additionally, its high value could predict functional independence, death, and risk
of post-ischemic intracranial hemorrhage independent of age, treatment, and degree of
recanalization [103,104].

The previously mentioned study by Mukherjee et al., also reported that an NLR
above 5.2 predisposed a patient to a longer length of hospitalization and that Pediatric
Cerebral Performance Category Scale (PCPCS) scores were less favorable. In addition, the
NLR was after the GCS value as the next important independent risk marker for a worse
outcome [65].

In recent years, one of the scientific questions has been, “Are NLR changes more objec-
tive than GCS changes?” Generally, the conditions reflected by the NLR and, importantly,
the GCS assessment, are sedated, ventilated patients with severe periorbital swelling.

The power of the NLR for predicting the functional outcome of a brain injury may be
very useful in relation to an outcome predicted by the Glasgow Coma Scale. Several studies
have documented that higher NLR values are associated with lower GCS scores. Chen
et al., summarized that the performance of the NLR for predicting a functional outcome
in severe TBI was similar to GCS scores (AUC = 0.719, 95% CI 0.673–0.766). Nonetheless,
some studies have highlighted that NLR is a weaker predictor of mortality in TBI patients
than GCS [73,93,105].

Furthermore, other studies have noted that the impact of NLR on functional outcome
should be analyzed in relation to pre-existing comorbidities versus whether it represents
an independent causal relationship in the context of the observed immunosuppression [76].
In addition, Aexiou et al. investigated the role of NLR on the admission of brain-injured
patients for predicting the need for CT scans in mild TBI. This study reported that higher
NLR levels correspond with positive CT findings in mild TBI and suggested that a cut-off
value of 2.5 could be used to quickly detect the need for a CT scan in mild brain injury with
78.1% sensitivity and 63% specificity [106].

5.3. NLR as Not Good Predictor of Mortality and Morbidity

However, in opposition to the above-mentioned studies, another recent study has
documented that, in addition to the IMPACT and CRASH prognostic models, the NLR
value at admission was not a good predictor of mortality and morbidity in moderate and
severe TBI (AUC 0.58 and AUC 0.47) [107]. In addition, Corbett et al. reported that the
NLR value was not significantly correlated with a risk of unfavorable outcome (AUROC,
0.500, p = 0.998) [108].
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6. Neutrophils as a Target of Future Therapies

Neutrophils play an important role in many diseases such as pulmonary, cardiovascu-
lar autoimmune, infectious diseases, sepsis, and, the subject of this review, neuroinflam-
mation and neurodegenerative diseases. Several studies are aiming to control neutrophils,
their production, accumulation, or crucial changes in phenotype as a novel target ther-
apy. For example, the CXCR2 antagonists’ effect is documented in a group of patients
with asthma [109]. Other products, such as neutrophil elastase inhibitor, present positive
properties in bronchiolitis obliterans [110]. The NETs effect is another promising future
strategy. A crucial enzyme for intravascular and intraparenchymal neutrophil extracellular
traps (NETs) formation—peptidylarginine deiminase 4 (PAD4)—is strongly activated in
ischemic brain and overexpression predisposition to NET production and finally to de-
creased neovascularization and BBB disruption. Potentially, NET formation blockade by a
PAD inhibitor may improve recovery [111].

Thus, therapeutic methods targeting neutrophils can involve many strategies such
as increasing circulating neutrophil number (manipulation of the CXCL-12-CXCR-4 path-
way), expressing their inhibitory receptors, targeting neutrophil production and activation
by G-CSF, promoting neutrophil apoptosis, blocking chemokine functions, blocking neu-
trophils delivered mediators, or using selectin or integrin blockers [112–117]. As shown in
Table 1 neutrophils may become a target in therapy after brain injury. Recent data showed
that targeting DNA sensor cyclic GMP-AMP synthase (cGAS) or NETs potentially benefit-
ted thrombolytic therapy in patients with ischemic stroke by decreasing tPA-associated
hemorrhage [118].

7. NLR—A Potential Marker of Future Therapies in Chronic Neuroinflammation

Primary brain injuries impact crucial cellular processes causing secondary cell death
mechanisms such as mitochondrial dysfunction, oxidative stress, BBB disruption, and
chronic inflammatory processes. Chronic traumatic brain injury, similarly to acute TBI, in-
cludes neuroinflammation and, finally, contributes to long-term disabilities. In addition, in
primary brain damage, neuroinflammation is helpful by stimulating an anti-inflammatory
response. Sequentially, in the chronic brain injury stage an uncontrolled inflammation
stimulates the pathological symptoms and follows the initial damage even 17 years after
TBI [119]. Chronic neuroinflammation is connected with endogenous repair mechanisms
and immune cells, microglia, cytokines, and chemokines. This inflammatory cells, neu-
trophils, monocytes, and lymphocytes cross the BBB and release prostaglandins and pro-
inflammatory cytokines. Inflammatory regulators recruit microglia and immune cells to
the brain by activating the expression of chemokines and cell adhesion molecules. Thus,
NLR may be a useful, low cost marker, showing the peripheral inflammation and its cor-
respondance with neurodegeneration [120–123]. In addition, chronic neuroinflammation
may become a potential target for novel therapy as a select method of conversion from pro-
inflammatory to anti-inflammatory reactions. Several studies focus on methods to intensify
the protective effects of inflammation. Recent publications show positive effects of several
drugs such as minocycline, melatonin, statins, subdural infusion of serpine-1, mesenchymal
stem cells therapy [124–129]. All of these therapies can modulate a neuroinflammatory
response, which may affect NLR.

Although several studies have described the credibility of NRL in the prognosis of
the outcome and efficacy of revascularization in ischemic stroke patients, its usefulness
in assessing treatment efficacy has been poorly recognized in patients with TBI. A lot of
studies have documented its predicting value in response to treatment in cancer and im-
munomodulation therapies [130–132]. Gudson et al., showed a strong correlation between
baseline NLR and 24-h growth of perihematomal edema in patients treated for intracranial
hemorrhage, however they analyzed only a relationship between the expansion of cerebral
edema and NLR [133]. Changes in NLR in TBI patients were analyzed by Petrone et al. [68].
Severe TBI caused an increase in NLR above 5.0 at 48 h of treatment, whereas its values
decreased following treatment in patients treated for mild TBI. Based on their results it
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can be speculated that an increase in NLR results from a neuroinflammatory response
to trauma and a non- or poor response to treatment, however they did not analyze the
changes in NLR as the efficacy response to treatment. It is worth stressing that the analysis
of changes in NLR as a response to treatment seems be very useful in TBI patients as it can
modulate a treatment before critical events.

Regulation of the activation and deactivation of immune cells and the above-mentioned
processes may be important in the brain’s recovery. Potential strategies in sequestering
inflammation and its associated neurodegenerative processes need future study.

8. Conclusions

The NLR is a simple and low-cost index of systemic inflammation status and has been
shown to have prognostic value for predicting poorer functional outcomes and elevated
mortality rates in TBI patients. However, the NLR differentiation of TBI types needs
further study.
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