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Abstract

Thyroid hormone (TH) is critical to normal brain development, but the mechanisms operating in this process are poorly
understood. We used chromatin immunoprecipitation to enrich regions of DNA bound to thyroid receptor beta (TRb) of
mouse cerebellum sampled on post natal day 15. Enriched target was hybridized to promoter microarrays (ChIP-on-chip)
spanning 28 kb to +2 kb of the transcription start site (TSS) of 5000 genes. We identified 91 genes with TR binding sites.
Roughly half of the sites were located in introns, while 30% were located within 1 kb upstream (59) of the TSS. Of these
genes, 83 with known function included genes involved in apoptosis, neurodevelopment, metabolism and signal
transduction. Two genes, MBP and CD44, are known to contain TREs, providing validation of the system. This is the first
report of TR binding for 81 of these genes. ChIP-on-chip results were confirmed for 10 of the 13 binding fragments using
ChIP-PCR. The expression of 4 novel TH target genes was found to be correlated with TH levels in hyper/hypothyroid
animals providing further support for TR binding. A TRb binding site upstream of the coding region of myelin associated
glycoprotein was demonstrated to be TH-responsive using a luciferase expression system. Motif searches did not identify
any classic binding elements, indicating that not all TR binding sites conform to variations of the classic form. These findings
provide mechanistic insight into impaired neurodevelopment resulting from TH deficiency and a rich bioinformatics
resource for developing a better understanding of TR binding.
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Introduction

Thyroid hormone (TH) is essential for brain development in

humans and animals [1]. The neonatal period of human

development is particularly well-studied in part because of the

disorder known as congenital hypothyroidism (CH) [2]. CH occurs

at a rate of approximately 1 in 3,500 live births [3], though this

may be increasing [4]. CH infants do not present early specific

clinical features; therefore, only 10% of CH infants were

diagnosed within the first month, 35% within 3 months, 70%

within the first year, and 100% only after age 3 [5,6] before

neonatal screening for TH was implemented. The intellectual

deficits resulting from this delayed diagnosis and treatment were

profound. One meta-analysis found that the mean full-scale

intelligence quotient (IQ) of 651 CH infants was 76 [7]. Moreover,

the percentage of CH infants with an IQ above 85 was 78% when

the diagnosis was made within 3 months of birth, 19% when it was

made between 3 and 6 months, and 0% when diagnosed after 7

months of age [7,8]. Thus, TH plays a major role in brain

development and thyroid dysfunction is a major cause of mental

retardation. This is also particularly important because a large

number of environmental contaminants may impact thyroid

function and/or thyroid hormone action [9–12].

The molecular mechanisms by which TH impacts brain

development are becoming better understood. In general, it is

postulated that many of the effects of TH are mediated by their

receptors (TRs) – nuclear proteins that directly regulate gene

expression [13]. Likewise, the neurodevelopmental events affected

by TH are also becoming better understood. For example, TH

appears to regulate fate specification of early cortical neurons [14],

migration of cortical [15] and cerebellar [16] neurons, synapto-

genesis[17,18] and apoptosis [19,20]. However, the specific genes

that are directly regulated by TH through the TRs, and which

account for TH effects on specific developmental events, are

poorly characterized. Moreover, we know little about the DNA

regulatory elements through which TRs exert their actions on

gene regulation [21].

Identification of direct targets of TH in the developing brain has

proven difficult, but perhaps for predictable reasons. Specifically,

we [19,22] and others [23,24] have attempted to identify TH-

responsive genes in the developing brain using a variety of

‘‘functional genomics’’ approaches. All of these reports employed
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an RNA-based approach. However, a significant theoretical

weakness in this approach is that the cellular phenotype of the

hypothyroid brain in development is significantly different from

that of the euthyroid brain. For example, the hypothyroid brain

has considerably more astrocytes and fewer oligodendrocytes in

areas of white matter [25,26]. Therefore, it is likely that a large

number of expressed sequences that differ in abundance when

thyroid hormone levels are manipulated during development

reflect differences in cellular phenotype at the time of sacrifice.

Considering the importance of TH to brain development and

the challenge of identifying direct gene targets of TH action, we

reasoned that chromatin immunoprecipitation combined with

DNA microarray analysis (ChIP-on-chip) would be an effective

approach to identify direct gene targets of TH. Moreover, we

chose to focus on the neonatal (postnatal day (PND) 15)

cerebellum because it is a well studied target of TH action in

development [27]. Circulating TH levels reach a peak at PND 15

[28,29], the critical time point marked by the onset of active

myelination and synapses refinement in Purkinje cells [25,30,31].

We employed custom DNA microarrays that contained probes

covering 10 kb of genomic sequences flanking the transcription

start site (TSS) of 5000 genes selected from our pervious

microarray studies and related literatures. The use of microarrays

containing selected genes tends to limit the potential for false

positives that would invariably occur with arrays containing the

entire genome and increases the number of probes per gene, thus

improving sensitivity and resolution. This study represents the first

large-scale approach to identify direct gene targets of TH action in

the developing brain.

Results

Assessing specificity of polyclonal antibody and ChIP
protocol

The TRb-1 antibody used for ChIP in the current study showed

high specificity as indicated by Western blot analysis using GH3

cell extracts (Figure 1 A). A single band of 52 kDa was detected as

expected. Immunoprecipitated (IP) DNA and total input (TI)

DNA were amplified and evaluated by confirming the enrichment

of the well-characterized TRE in the promoter of myelin basic

protein (MBP) [32] by PCR before samples were hybridized to

DNA microarrays. Figure 1 B shows clear enrichment of MBP-

Figure 1. Assessing specificity of antibody and ChIP protocol. A. Characterization of TRb antibody with the GH3 cell line. A single 52 kDa
band was detected with Western blot. B. Characterization of the enrichment of MBP-TRE in all cerebellum samples. Enrichment of fragments from the
promoter region of b-actin and MBP was examined with PCR using IP and TI DNA amplified with WGA kit. One representative sample in the bottom
shows the enrichment in non-amplified DNA. The right panel shows the enrichment ratio of MBP to b-actin calculated using quantified band
intensities.
doi:10.1371/journal.pone.0004610.g001

TH Target Gene by ChIP-on-Chip
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TRE (relative to b-actin) in amplified ChIP DNA of all 5 cerebella

of male mice at PND 15.

Identification of TRb binding sites
Five cerebella of male mice, shown in Figure 1 B, were analysed

using the Agilent custom promoter arrays that contained probes

covering 10 kb of genomic sequences flanking the TSS of 5000

selected genes. Complete microarray data are available at

MIAMExpress (http://www.ebi.ac.uk/miamexpress/cgi-bin/mx.

cgi; accession number E-MEXP-1801). The genes identified with

the Chip Analytics software as enriched in at least 3 samples are

listed in Table 1, along with the genomic location of the binding

sites, enrichment log ratio, and general biological function. As

shown in Figure 2, approximately half of the binding sites were

located in introns, while about 30% of them were located within

1 kb upstream (59) of the TSS of their associated gene. Figure 3

shows examples of ChIP enrichment data for 4 representative

genes. The plots show enrichment ratios along with chromosomal

positions (NCBI build 34) in the mouse genome. Arrows indicate

both the TSS and direction of transcription.

Validation of the binding sites with ChIP-PCR
In order to verify the robustness of binding sites found with

ChIP-on-chip, we randomly selected and analyzed 13 binding sites

for confirmation of their enrichment using PCR. b-actin was used

as a negative control, and MBP-TRE was used as a positive

control. Amplified TRb-IP or IgG-IP DNAs along with TI-DNAs

from 2 cerebella were pooled, with equal quantities of DNA from

each sample, and used as template for PCR. Ten of the 13 genes

were confirmed to be enriched with TRb binding as shown in

Figure 4. Of the 10 confirmed genes, CD44 and VLDLR have

previously been reported as TH responsive genes [29,30]. In

addition to the well-known TRE sequence in the promoter region

of MBP, we also identified a second enrichment site in the first

intron of Golli-MBP [31]. As 3 (Fign, CD81and Pax3) of 13

binding sites tested were not confirmed by PCR, these data suggest

the analysis has false discovery rate of approximately 23% (3/13).

Expression of novel TH target genes in TH modulated
animal models

Among the 10 ChIP-PCR validated genes, SMS (Spermine

Synthase), LMO2 (Lim domain only 2) and GTF3c1 (General

Transcript Factor 3c1) were selected for further assessment of TH

regulation using in vivo models; this selection was based on the

paucity of literature regarding TH control of their expression. In

addition, myelin associated glycoprotein (MAG) was also selected

for further analysis as it has been shown to be altered by TH status

but no TRE has been described for this gene [32]. The expression of

MBP was, again, used as a positive control for TH-induced gene

regulation in the various animal models. Serum T4 levels in 6-

propyl thiouracil (PTU) -or mercapto-methylimidazole (MMI)/

perchlorate-treated pups were significantly reduced while TH

injected pups were shown to have significantly elevated serum TH

levels compared with control pups. The serum T4 levels in TH

replacement pups rendered hypothyroid by MMI/perchlorate were

approximately equivalent to control levels (Table S1). The

expression of MBP varied with TH level (Figure 5 A and B).

Similar to MBP, the expression of SMS, MAG and LMO2 were

significantly changed corresponding with the TH levels. A

significant change in expression of GTF3c1 was not found in TH

injected pups or those rendered hypothyroid with MMI/perchlo-

rate treatment, but expression was elevated almost 2 fold (p,0.05) in

cerebella of hypothyroid/replacement group and reduced to almost

0.75 fold (p,0.05) in PTU-treated pups. The discrepancy in gene

expression in these two models may be explained by the different

mechanism through which these compounds act to induce

hypothyroidism. PTU inhibits TH synthesis by inhibition of

thyroperoxidase (TPO) and decreasing the activity of deiodinases,

while MMI/perchlorate acts by blocking iodine transportation and

enhancing hepatic catabolism [33].

Characterization of TRb binding region in promoter of
MAG

As described above, the TRb binding site in the promoter

region of MAG was confirmed with both ChIP-on-Chip and

ChIP-PCR. There were no obvious candidate TREs, based on the

degenerate consensus sequence, across this binding region. To

further characterize the TRE sequence in this region, we

constructed a series of truncated MAG-promoter reporter

plasmids (shown in Figure 6 A). The reporter system was validated

by examining the effect of T3 treatment on transcriptional activity

of the Growth Hormone (GH) TRE sequence cloned into the

reporter vector. T3 induced GH transcriptional activity by 1.6-fold

(Figure 6 B). T3 also increased transcriptional activity of a MAG-

promoter reporter plasmid 3 containing a fragment from 2390 bp

to the TSS, by 1.4-fold. Deletion of the 110 bp fragment from

2390 to 2280 bp resulted in a decrease in the basal transcription

level; transcription activity was induced by only 1.2 fold with T3

treatment (Figure 6 C). These results indicate that the binding site

spanning a region of 110 bp (2390 to 2280) may include the

potential TREs.

Discussion

This is the first report of a relatively large-scale approach to

identify direct TH gene targets in the developing mouse brain.

Using ChIP-on-chip approach, we identified TRb binding

fragments corresponding to 91 genes in the cerebellum of male

mice at PND 15. Approximately half of these sites are located

within introns, and 30% are located within 1 kb upstream of the

TSS. Several of these genes are known direct targets of TH action

(CD44, MBP and VLDLR), indicating that our strategy was

capable of identifying known targets. In addition to confirming the

classical TRE in the MBP promoter [34], we identified a novel TR

binding site well upstream of the classic MBP TSS, located within

the first intron of an alternate transcript of this gene known as

Golli MBP [35]. Golli-MBP is expressed not only in myelin-

forming cells, but also in neurons in the CNS and peripheral

nervous system, and in macrophage and T-cells of the immune

system [36,37]. Direct TR regulation of Golli-MBP indicates the

important role of TH in myelination and migration of oligoden-

drocytes, in addition to its role in the immune system. These

findings provide a first glimpse at the specific gene targets through

which TH controls cerebellar histogenesis in the mouse.

We found that a large proportion (47%) of the TR binding sites

are located within introns, suggesting that transcriptional control

by TR could be exerted at sites downstream of the TSS. It has

long been recognized that active TREs can reside within introns of

TH responsive genes. The TH-regulated expression of GH is

mediated through both a TRE in the regulatory region upstream

of the TSS [38] and a site with higher affinity for TR within the

third intron of the gene [39]. Similarly, the expression of hepatic

carnitine palmitoyltransferase-I alpha, an enzyme involved in fatty

acid metabolism, is regulated by TR action at a TRE located in

the first intron [40]. Intronic locations of transcriptional regulatory

sites appear to be common for a variety of nuclear receptors

including the androgen receptor [41], glucocorticoid receptor

TH Target Gene by ChIP-on-Chip
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Table 1. Thyroid Hormone Direct Target Genes Identified by ChIP-on-chip.

Acc. No. Gene Symbol Probe Location Enrichment Log ratio Median

Rep1 Rep2 Rep3 Rep4 Rep5

Apoptosis

NM_028133 Egln3 intron 2.7 1.59 1.77 2.28 1.63 1.77

NM_178931 Tnfrsf14 intron 1.92 1.8 2.45 2.01 1.36 1.92

NM_010589 Jak3 2.2 kb 59 4.32 3.22 1.7 2.02 1.32 2.02

NM_008353 Il12rb1 6.7 kb 59 2.88 1.93 2.17 2.1 1.76 2.1

NM_007466 Api5 intron 2.88 4.52 0.29 2.27 0.74 2.27

NM_175445 Rassf2 0.7 kb 59 1.58 2.57 2.76 2.46 2.2 2.46

NM_013929 Siva 0.7 kb 59 2.24 2.7 2.52 3.06 2.91 2.7

NM_008841 Pik3r2 intron 5.28 3.15 1.78 2.92 1.85 2.92

NM_009746 Bcl7c intron 2.39 3.1 4.56 5.1 1.28 3.1

NM_022654 Lrdd 0.6 kb 39 6.85 3.83 6.48 3.09 4.95 4.95

Cell cycle

NM_133655 Cd81 intron 1.56 1.33 2.2 1.87 1.37 1.56

NM_023117 Cdc25b 0.1 kb 59 1.44 3.03 1.73 1.7 1.96 1.73

NM_030241 Setd8 0.2 kb 59 2.53 4.06 1.44 1.89 1.12 1.89

Teeth or bone development

BC005460 Ncl 0.4 kb 59 1.95 1.98 1.38 1.26 1.78 1.78

NM_010514 Igf2 intron 3.46 2.83 1.39 1.91 1.53 1.91

NM_008275 Hoxd13 1.2 kb 59 2.26 2.73 2.3 6.33 2.42 2.42

NM_145925 Pttg1ip intron 3.66 3.14 3.39 3.93 0.87 3.39

RNA or DNA process

AK077829 Rad51ap1 intron 5.02 2.34 4.68 2.72 2.48 2.72

AK077107 Frg1 0.2 kb 59 1.92 1.48 3.5 2.56 1.69 1.92

NM_182650 Hnrnpa2b1 0.5 kb 59 3.13 4.89 5.08 1.66 2.03 3.13

Metabolism

NM_007823 Cyp4b1 intron 1.35 2.02 1.51 2 1.67 1.67

NM_011977 Slc27a1 intron 2.45 2.19 0.99 1.67 1.54 1.67

NM_025578 Mrps25 0.2 kb 59 3.64 1.74 2.86 1.37 1.75 1.75

NM_153803 Glb1l2 intron 7.42 1.29 4.57 1.93 0.86 1.93

NM_027868 Slc41a3 intron 2.08 2.19 2.54 2.07 1.66 2.08

NM_008131 Glul intron 1.85 2.67 2.14 2.14 2.11 2.14

NM_175311 Zfp513 intron 2.14 1.95 1.85 3.13 2.57 2.14

NM_010361 Gstt2 3.4 kb 59 1.73 4.32 1.71 2.44 2.31 2.31

NM_026796 Smyd2 intron 2.06 7.09 2.4 2.79 1.29 2.4

NM_011376 Sim1 1.5 kb 59 1.9 1.51 5.08 3.44 2.45 2.45

NM_025802 Pnpla2 intron 5.57 3.97 2.47 2.28 1.06 2.47

NM_008972 Ptma intron 2.89 3.74 2.47 2.26 2.02 2.47

NM_146188 Kctd15 0.8 kb 59 3.13 3.78 2.54 2.18 1.77 2.54

NM_008673 Nat1 6.2 kb 59 2.55 3.51 2.65 1.9 1.53 2.55

NM_020013 Fgf21 intron 2.09 2.56 5.73 2.78 2.37 2.56

NM_023122 Gpm6b intron 5.29 4.33 2.8 1.1 2.77 2.8

NM_019652 ASNA1 intron 4.7 5.65 2.84 2.3 2.41 2.84

NM_011506 Sucla2 intron 4.45 2.93 5.47 2.52 1.56 2.93

NM_025286 Slc31a2 intron 3.29 2.87 1.93 4.71 3.66 3.29

NM_011969 Psma7 intron 2.84 3.45 3.3 3.27 3.38 3.3

NM_007945 Eps8 0.6 kb 59 2.82 3.95 4.55 2.75 4.55 3.95

Nerve development

NM_027180 Centd2 3.8 kb 59 3.98 1.9 1.3 1.58 0.86 1.58

TH Target Gene by ChIP-on-Chip
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Acc. No. Gene Symbol Probe Location Enrichment Log ratio Median

Rep1 Rep2 Rep3 Rep4 Rep5

NM_010419 Hes5 7.8 kb 59 1.57 1.68 2.17 1.77 1.82 1.77

NM_008500 Lhx6 0.1 kb 59 5.12 5.26 1.83 1.82 1.26 1.83

NM_008630 Mt2 0.8 kb 59 1.85 2.85 1.99 1.4 0.85 1.85

NM_009851 CD44 intron 1.91 2.1 1.73 2.08 1.92 1.92

AF113001 Ncor2 0.7 kb 59 1.34 3.35 4.19 1.92 1.54 1.92

NM_207682 Kif1b 0.5 kb 59 1.16 1.96 2.89 3.4 1.17 1.96

NM_010758 Mag 0.4 kb 59 1.63 1.86 2 2.64 2.41 2

NM_001029873 Unc13a 4.5 kb 59 4.32 3.22 1.7 2.02 1.32 2.02

NM_021716 Fign 0.8 kb 59 1.81 2.08 2.32 3.55 1.6 2.08

NM_010777 Mbp intron 2.21 1.92 2.17 2.13 1.67 2.13

NM_010710 Lhx2 0.6 kb 59 3.29 2.52 2.17 2.1 1.28 2.17

NM_009800 Car11 0.2 kb 39 1.27 2.18 5.11 3.25 1.5 2.18

NM_009849 Entpd2 intron 2.19 2.18 3.25 2.92 1.84 2.19

NM_001025245 Mbp (Goli) intron 1.31 3.68 3.34 2.19 1.17 2.19

NM_009501 Vax1 1.4 kb 59 3.57 2.3 1.79 2.91 1.62 2.3

NM_009718 Neurog2 6.6 kb 59 3.16 2.42 2.32 1.87 1.58 2.32

NM_019446 BarhL1 0.9 kb 59 2.71 2.53 1.97 2.35 2.06 2.35

NM_008505 Lmo2 intron 2.04 2.43 2.38 2.65 2.04 2.38

NM_175750 Plxna4 2.8 kb 59 4.07 2.93 5.27 2.12 1.91 2.93

NM_013703 Vldlr intron 2.28 4.16 4.53 3.24 2.3 3.24

NM_201618 Gnas intron 3.51 3.63 3.78 4.64 2.18 3.63

NM_010700 Ldlr intron 2.61 4.31 3.51 3.73 4.62 3.73

NM_009214 Sms 1.0 kb 59 2.06 2.34 4.41 2.45 1.86 2.34

Signal transduction

NM_010098 Opn3 intron 2.13 2.78 2.67 2.25 1.97 2.25

NM_008772 P2ry1 intron 1.32 3.29 3.83 2.46 1.11 2.46

NM_183408 Pde4a intron 2.56 3.38 2.52 2.14 2.02 2.52

NM_011951 Mapk14 0.1 kb 59 2.94 2.12 6.09 4.14 1.55 2.94

NM_028041 DDX54 0.1 kb 59 3.2 3.92 1.94 3.4 2.02 3.2

NM_025569 Mgst3 0.2 kb 59 3.38 5.04 3.28 2.46 2.35 3.28

NM_009633 Adra2b 0.6 kb 59 1.86 3.51 6.38 3.72 0.9 3.51

NM_011305 Rxra 0.8 kb 59 1.37 1.67 1.93 1.42 1.71 1.67

NM_207239 Gtf3c1 intron 2.05 2.08 2.56 2.06 2.18 2.08

NM_016974 Dbp 0.5 kb 59 1.27 2.18 5.11 3.25 1.5 2.18

NM_178622 Suds3 4.7 kb 59 1.81 2.43 6.34 3.15 1.3 2.43

NM_172913 Tox3/Tnrc9 2.8 kb 59 2.66 3.95 1.72 3.63 1.94 2.66

NM_008781 PAX3 7.2 kb 59 3.17 4.13 1.76 2.88 1.67 2.88

NM_007624 Cbx3 0.3 kb 59 3.13 4.89 5.08 1.66 2.03 3.13

NM_010827 Msc 0.3 kb 59 3.88 2.63 2.66 41.3 3.38 3.38

NM_008093 Gata5 intron 3.89 3.66 5.23 1.91 2.11 3.66

NM_026646 Slc25a22 0.3 kb 59 6.85 3.83 6.48 3.09 4.95 4.95

Sperm function

NM_018808 DNAjb1 intron 1.69 2.12 3.91 1.94 1.21 1.94

NM_153144 Ggnbp2 intron 1.28 2.1 3.33 2.22 1.69 2.1

Unknown

NM_182930 Plekha6 7.4 kb 59 2.35 2.53 1.77 1.29 1.32 1.77

NM_028596 Riken intron 2.23 2.03 1.87 1.71 1.45 1.87

NM_198628 GM711 intron 1.28 1.88 5.24 1.88 0.99 1.88

Table 1. cont.
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Acc. No. Gene Symbol Probe Location Enrichment Log ratio Median

Rep1 Rep2 Rep3 Rep4 Rep5

BC085130 MKIAA4027 intron 4.26 2.01 2.16 1.57 0.63 2.01

NM_028696 Obfc2a intron 4.03 2.44 2.3 2.37 1.8 2.37

NM_026626 Efcab2 intron 2.31 3.2 3.98 2.49 1.88 2.49

NM_001101503 Riken 1.5 kb 39 2.93 3.14 2.69 3.93 1.59 2.93

NM_144558 BIVM 0.8 kb 59 1.65 2.03 3.07 3.12 3.74 3.07

doi:10.1371/journal.pone.0004610.t001

Table 1. cont.

Figure 2. Distribution of genomic locations of binding sites of 91 genes. The mid point of each probe was used to calculate the distance to
the closest gene.
doi:10.1371/journal.pone.0004610.g002

Figure 3. Examples of TRb binding activities identified with ChIP-on-chip. The plots show enrichment ratios for all probes within a genomic
region (IP versus TI DNA). Chromosomal positions are from NCBI build 34 of the mouse genome. The start and direction of transcription are noted by
arrows. Black bars on the X axis indicate the fragments whose enrichment was confirmed with PCR.
doi:10.1371/journal.pone.0004610.g003

TH Target Gene by ChIP-on-Chip

PLoS ONE | www.plosone.org 6 February 2009 | Volume 4 | Issue 2 | e4610



[42], vitamin D3 [43] and PPAR gamma [44]. Likewise, between

38 and 47% of estrogen receptor binding sites are located within

introns [45,46].

TR binding sites identified with ChIP-on-chip were analyzed

independently with ChIP-PCR for 13 randomly selected genes.

Ten of these sites were confirmed as enriched by TRb ChIP,

suggesting a false positive rate of approximately 23% for our

approach. ChIP-on-chip is a novel method to study chromatin –

DNA interactions over the entire genome. Our results are not

unusual given that previous data from ChIP-on-chip studies have

reported false positive rates as high as 30% [47]. There are a

number of confounding variables, including purity of ChIP DNA,

amplification methods and resolution of probes for each gene. It is

also probable that the list of enriched genes identified by ChIP-on-

chip is highly dependent on the algorithm applied (normalization,

statistics to identify enriched regions, criteria for calling a site

significant, etc.) which may influence the rate of false positives and

false negatives.

Identified as one of novel targets of TH regulation, SMS is

essential for transforming spermidine to spermine, which are

ubiquitous cellular components that play critical roles in cellular

physiology [48]. Polyamines are required for numerous cellular

processes including transcription, translation and modulation of

ion channel activities[49,50] Deficiency of SMS in mice is

associated with deafness, inner ear abnormalities, and hyperactiv-

ity, while congenital deficiency in humans is associated with

mental retardation and cerebellar abnormalities [51]. All of these

phenotypes are common manifestations of developmental hypo-

thyroidism [52]. In the current study we identified TR binding

sites in the promoter region of SMS. Moreover, TH positively

regulated the expression of SMS in both mouse models of TH

disruption. Microarray analyses of cerebellum transcript levels in

mice or rats treated with a low concentration of PTU showed that

SMS expression was reduced in hypothyroid mice of both sexes,

but only in male hypothyroid rats (in preparation). Therefore,

down-regulation of SMS, causing decreased production of

polyamines, may be one mechanism that leads to neurodevelop-

mental aberrations in the offspring of hypothyroid dams. More

work is required to investigate this pathway and its response to TH

in the brain.

Among the other novel TH target genes selected for further

analysis, LMO2 is a member of a family of genes encoding Lim-

only proteins, which are speculated to affect the development of

the mouse CNS because of their high expression in this region

[53–55]. Using both ChIP-on-chip and ChIP-PCR, we found that

TR bound to a LMO2 intron, and our results suggest that LMO2

expression is regulated by TH in our animal models. GTF3c1 is a

transcription factor required for the regulation of genes tran-

scribed by RNA polymerase III [56]. Our results indicate a TR

binding site in the first intron of this gene and that the expression

of GTF3c1 is upregulated in the cerebellum of hypothyroid

animals with TH replacement (Figure 5). However, the reduced

expression was found in hypothyroid animals induced by PTU,

but not in animals induced by MMI/perchlorate. This suggests

that factors other than TH may prevent the reduction in GTF3c1

expression. A recent study examining hepatic genome-wide

expression in wild type and TR knock-out mice treated with TH

or goitrogen found that, like GTF3c1, roughly half of all genes that

showed positive regulation by TH excess, exhibited no response to

TH deficiency [57]. Although that study did not attempt to

determine the presence of genomic TR binding sites that could

potentially regulate the expression of these genes, the results

suggest that the pattern of response of GTF3c1 expression in the

Figure 4. Confirmation of enriched genes identified using
ChIP-on-chip with 13 randomly selected genes by PCR in
independently prepared amplified IgG-IP, TRb-IP and TI DNAs
pool of 2 samples.
doi:10.1371/journal.pone.0004610.g004
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cerebella of TH-manipulated animals may not be uncommon for

TH regulated genes.

MAG is a quantitatively minor component of isolated myelin that

functions in glia-axon interactions [58]. The abnormal expression of

MAG in hypo/hyperthyroidism has previously been reported in

several studies [59–61], but there is little information on how its

expression is directly affected by TH. The current study shows that

TRb binds in the region between 2280 to 2390 bp, which

significantly influences the transcription activity. A search using an

internet based tool to identify TREs based on classical descriptions

(TESS: Transcription Element Search System [62] : located at

http://www.cbil.upenn.edu/cgi-bin/tess/tess; ) failed to identify

any of the classic TRE forms (DR4, DR6, palindromic form or

inverted palindrome), suggesting that the sequence of the binding

site is novel. We found a half TRE (AGGTCA) in this region, but

alteration of this sequence to AGATCA by site-directed mutagen-

esis had no effect on the transcriptional activity in vitro (data not

shown). This suggests that TRb may not bind to the half TRE and

that this specific sequence has no functional significance. The

expression of MAG in our animal models is correlated with TH

level suggesting that the presence of a TR binding site in the

regulatory region of the gene is genuine. Further analyses will be

needed to characterize the nature and sequence of the TR

regulatory element in this gene, but current findings indicate that

not all TREs will conform to variations of the classic forms.

In conclusion, we have identified TR binding sites associated

with 91 genes in the developing mouse cerebellum. Binding sites

may be located in different genomic contexts (both upstream and

downstream of genes, and in introns) and may not adhere to

conventional sequence models. As TR binding suggests the

presence of consensus thyroid regulatory elements and, hence,

direct TH regulation of these genes, the current study provides

support for the role of products of these genes in thyroid hormone-

directed neurodevelopment.

Figure 5. The expression of novel thyroid responsive genes in hypothyroid or hyperthyroid mouse models. A. MMI/perchlorate
induced hypothyroid, hyperthyroid or hypothyroid/replacement animal models. B. PTU induced hypothyroid animal models. RT-PCR was performed
with RNA extracted from cerebellum on PND15 (n = 5). * Significantly different from control (p,0.05).
doi:10.1371/journal.pone.0004610.g005
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Materials and Methods

Animals and tissues collection
ChIP-on-chip. All animal handling procedures adhered to the

Canadian Council on Animal Care guidelines and were approved by

the Health Canada Animal Care Committee prior to the initiation of

the study. Nulliparous, sexually mature C57BL/6 mice were

purchased from Charles River (St. Constant, QC, Canada) and

were housed individually (males) or in pairs (females) in hanging

polycarbonate cages under a 12:12 hrs light-dark cycle at 23uC with

food (Purina rodent chow 5010; Ralston-Purina, MO) and water

available ad libitum. After 2 weeks acclimation to the facility, breeding

was initiated by transferring 2 females to each male cage. Females

were examined within 1 hr of light cycle for the presence of a vaginal

plug as an indication of pregnancy. Plug positive females were

weighed and transferred to separate cages, where they were housed

singly and weighed 10 days post coitus to confirm pregnancy. Dams

were allowed to litter naturally (day of birth = PND 1) and numbers of

pups per litter were not adjusted. On PND 15, pups were sacrificed

by decapitation and cerebellum was removed, immediately frozen in

liquid nitrogen and stored at 280uC.

PTU hypothyroid model. Pregnant C57BL/6 mice were

supplied ad libitum with water containing diet cherry Kool-aid

(Kraft Inc., ON, Canada) with or without 0.1% PTU (Sigma-

Aldrich, Oakville, ON, Canada) from gestation day 13 to PND 15.

On PND 15, 5 male pups from different litters were sacrificed by

decapitation and cerebellum was collected and stored at 280uC.

At least one littermate of the same sex was exsanguinated under

isofluorane anaesthesia and serum retained for T4 analysis.

MMI hypo/hyperthyroid models. Twenty eight pregnant

C57BL/6 mice were divided randomly into 4 groups: control,

hypothyroid, hypothyroid/replacement and hyperthyroid. On

PND 5 all dams were supplied with drinking water containing

sucrose starting at 1% and increasing to 2% on PND 9. Dams and

their litters in the hypothyroid and hypothyroid/replacement

groups were rendered hypothyroid for 3 days by providing

drinking water containing 0.05% MMI, 1% sodium perchlorate

and 2% sucrose water starting on PND 12. On PND 15 all pups

received i.p. injections of saline containing 2 mM NaOH (Control

and hypothyroid); T4/T3 at 50 mg/5.0 mg/100 g B.W.

(hyperthyroid); or T4/T3 at 25 mg/2.5 mg/100 g B.W.

(hypothyroid/replacement). Pups were sacrificed by decapitation

exactly 4 hrs post injection. Serum was collected from trunk blood

and retained for T4 analysis. The cerebellum was rapidly

dissected, frozen in liquid nitrogen and stored at 280uC.

Chromatin immunoprecipitation (ChIP) and DNA
microarrays (chip)

ChIP was performed using EZ ChIP kits (Millipore Corpora-

tion, Danvers, MA) according to the manufacturer’s instructions.

Briefly, cerebellum from PND 15 mouse was homogenized, with a

hand-held homogenizer, in PBS containing broad-spectrum

protease inhibitors and was then cross-linked with 1% formalde-

hyde. Nuclei were collected by adding lysis buffer after cross-

linkage was stopped with glycine. To ensure that DNA fragments

ranged from 300 to 600 bp, the nuclear solution was sonicated,

using a Fisher 60 Sonic Dismembranator (Thermo Fisher

Scientific, Nepean, ON, Canada), in an ice bath with 56 30 sec

bursts at 12% power, each separated by 30 sec periods. Six

percent (about 100 ml) of the sonicated solution was store at

220uC as TI, while the remainder was incubated with anti-TRb
polyclonal antibody (PA1-213, cloneTRb-62, Affinity Bioreagents,

Golden, CO) overnight with agitation at 4uC (for ChIP-PCR, half

of the remainder was incubated with anti-TRb polyclonal

antibody, the other half was incubated with normal rabbit IgG

(Millipore Corporation, Danvers, MA)). Antibody-bound chroma-

tin was precipitated with protein G conjugated agarose beads,

washed with gradient stringent buffers, and eluted with elution

buffer as per the manufacturer’s instructions. The eluted solution,

as well as the stored TI, was incubated at 65uC overnight to

reverse cross-links. IP DNA and TI DNA were then purified by

treatment with RNase, proteinase K and multiple phenol:

chloroform: isoamyl alcohol (25:24:1) extractions. Equivalent

amounts of IP DNA and TI DNA were amplified in parallel,

using a random primer method with GenomePlex Complete

Whole Genome Amplification Kit (Sigma-Aldrich, Oakville, ON,

Canada), according to the manufacturer’s instructions (15 cycles).

Genomic regions enriched by ChIP were identified using

Agilent custom microarrays (Agilent Technologies, Mississauga,

ON, Canada) containing representative sequences from 5000

mouse genes selected as potential TH-regulated candidates based

on our previous studies [19,63] or from the literatures. The full list

of genes is available upon request. The microarrays were prepared

such that each array was composed of two slides of 44,000 spots

each. Promoter oligo probes (50–60 mers) complementary to

genomic sequences ranged from 28 kb upstream to 2 kb

downstream of the TSS of each gene with 200 bp between

adjacent probes.

Amplified IP or TI DNA samples (2 mg) was labelled with Cy5-

dUTP or Cy3-dUTP (Perkin Elmer Life Sciences, Woodbridge,

ON, Canada), respectively, using CGH kits (Invitrogen, Burling-

ton, ON, Canada). Labelled DNAs (5 mg each) were hybridized

with custom promoter microarrays for 40 hrs at 65uC, then

washed and dried according to the manufacturer’s instructions.

Hybridization images were obtained using an Agilent DNA

microarray scanner and intensity data was extracted using Feature

Extraction software (Agilent Technologies). Genomic regions

enriched by ChIP were identified with a peak detection algorithm

using Chip Analytics 1.3 software, according to the manufacturer’s

instructions (Agilent Technologies). Intensity data were normal-

ized with blank subtraction followed by intra-array Lowess

normalization, while the Whitehead Error Model v1.0 was used

to calculate confidence values for each spot on each array. The

Whitehead per-array neighbourhood model v1.0 was used to

identify the bound regions. Criteria for identification of a positive

probe were: 1) P-value for probe sets (probe and its two immediate

neighbours) was less than 0.001; and 2) two of three probes in a

probe set had a single probe P-value less than 0.005, or, the center

probe in the probe set had a single probe P-value less than 0.001

and one of the flanking probes had a single P-value less than 0.1.

ChIP-PCR. Primers targeting the enriched regions identified

with ChIP-on-chip analysis were designed using BeaconDesigner

Figure 6. The transcriptional activity of the MAG promoter examined with the luciferase reporter assay. A. The location of the 3
truncated fragments used to build the reporter constructs. The PCR-confirmed ChIP enriched fragment is indicated by the black bar. The TSS and
direction is indicated with an arrow. B and C. Transcriptional activity of GH reporter construct or MAG promoter reporter constructs induced by TH.
The reporter constructs and empty vector were co-transfected into GH3 cells with pRL-TK (as a transfection efficiency control). T3 (1028 M) was added
after 24 hrs. Firefly luciferase expression was normalized to renilla luciferase from the pRL-TK plasmid. Values are mean6S.E. (n = 3). *indicates
p,0.05.
doi:10.1371/journal.pone.0004610.g006
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2.0 Software (Premier Biosoft, Palo Alto, CA). PCRs were

performed using AmpliTaq (Perkin Elmer) with amplified TRb-

IP, IgG-IP or TI DNA pooled of 2 independent samples as

templates. Primer sequences are indicated in Table S2.
Expression RT-PCR. Total RNA was extracted from

cerebellum using Trizol, and reverse transcribed into cDNA

using SuperScript III (Invitrogen). Quantitative PCR was

performed with an iCycler IQ real-time detection system (Bio-

Rad Laboratories, Mississauga, ON, Canada) using SYBR-Green.

Primers were designed using Beacon Designer 2.0, and sequences

can be found in Table S3. Gene expression levels were normalized

to Hprt, which was found to be stable using the DNA microarray

(data not shown). PCR efficiency was examined using the standard

curve for each gene. The primer specificity was determined by the

melting curve for each amplicon.
Reporter plasmid construction. Mouse MAG luciferase

reporter plasmids 1–3 were constructed by cloning PCR-derived

fragments (MAG nucleotides +14 to 2180,2280,2390) into the

luciferase vector, PGL4.10 (Promega, Madisson, WI. USA). PCRs

were performed using primers containing XhoI and BglII sites with

mouse genomic DNA as template. PCR fragments were then

subcloned into XhoI/BglII sites of pGL4.10 and the constructed

sequences were confirmed by restriction enzyme mapping and

sequencing.
Cell culture, transfection, and reporter assay. Twenty-

four hrs before transfection, GH3 cells (26105) were seeded in

each well of 6-well plates with F12 medium containing 10%

dextran-coated charcoal-treated FBS. Each luciferase reporter

plasmid construct (1.02 mg) was co-transfected with 0.03 mg of

pRL-TK (Promega) into GH3 cells using 3 ml of FUGENE 6

(Agilent). Twenty four hrs post-transfection, T3 was added to a

final concentration of 1028 M. Cells were harvested 24 hrs after

T3 addition, and then firefly and renilla luciferase activities were

determined in cell lysates using a Veritas luminometer with the

Dual-luciferase reporter assay system (Promega). Firefly luciferase

activity was normalized to renilla luciferase activity to correct for

transfection efficiency and the reporter gene expression presented

as relative luciferase units (RLU). Each incubation was performed

in duplicate and experiments were repeated 3 times.

Western blots. Lysis buffer (200 ml) was added to 16106

GH3 cells and 50 mg protein was loaded in each lane and

separated on a 10% SDS-PAGE gels, then were transferred to

nitrocellulose membranes at 100 V for 1 hr. Membranes were

probed with anti-TRb polyclonal antibody (Affinity Bioreagents;

3 mg/ml) overnight and HRP-conjugated goat anti-rabbit

secondary antibody (Santa Cruz Biotechnology, CA; 1:1000) for

2 hrs. Signals were detected using an ECL Plus kit (GE Healthcare

Bio-Science Inc. Baie d’Urfe, QC, Canada).

Statistical analysis. RT-PCR gene expression and luciferase

activity data are expressed as mean6S.E. Significant differences

compared to control were determined using a 2-tailed Student’s t-

test and were deemed significant if P,0.05.
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Found at: doi:10.1371/journal.pone.0004610.s001 (0.03 MB

DOC)
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DOC)

Table S3 Serum T4 of mouse pups from in vivo TH modulation

studies

Found at: doi:10.1371/journal.pone.0004610.s003 (0.03 MB

DOC)
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