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Abstract: While inflammation has generally been regarded as a negative factor in stroke recovery,
this viewpoint has recently been challenged by demonstrating that inflammation is a necessary and
sufficient factor for regeneration in the zebrafish brain injury model. This close relationship with
inflammation suggests that a re-examination of the immune system’s role in strokes is necessary.
We used a systems biology approach to investigate the role of immune-related functions via
their interactions with other molecular functions in early cardioembolic stroke. Based on protein
interaction models and on microarray data from the blood of stroke subjects and healthy controls,
networks were constructed to delineate molecular interactions at four early stages (pre-stroke, 3 h,
5 h and 24 h after stroke onset) of cardioembolic stroke. A comparative analysis of functional
networks identified interactions of immune-related functions with other molecular functions,
including growth factors, neuro/hormone and housekeeping functions. These provide a potential
pathomechanism for early stroke pathophysiology. In addition, several potential targets of miRNA
and methylation regulations were derived based on basal level changes observed in the core
networks and literature. The results provide a more comprehensive understanding of stroke
progression mechanisms from an immune perspective and shed light on acute stroke treatments.

Keywords: systems biology; cardioembolic stroke; inflammation; immune system; functional
network; core network

1. Introduction

Proinflammatory cytokine in mice has been shown to be a negative regulator of progenitor
proliferation [1], which is a critical step in brain regeneration in the zebrafish model [2].
Nevertheless, inflammation was shown to be necessary and sufficient for enhancing the proliferation
of neural progenitors and subsequent neurogenesis [3]. Since proinflammatory cytokines can
promote inflammation, these findings have spurred debates about the role of inflammation in
stroke recovery, and more comprehensive studies into the relationship between inflammation and
stroke recovery are thus required. The close relationship between inflammation and the immune
system indicates that the role of the latter in strokes is worth re-examining from a systems
biology perspective. A recent genome-wide high-throughput experiment examined patients with
cardioembolic (CE) stroke at ≤3 h, 5 h and 24 h after stroke onset and compared this group
with a vascular risk factor control group of patients without symptomatic vascular diseases [4].
Although this study uncovered some significant differences in the expression of genes related to cell
death, coagulation and inflammatory pathways, the roles of inflammation and immune responses
in CE stroke remain to be elucidated. The present study therefore carried out a further exploration
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of the pathophysiology of ischemic stroke by investigating the roles of immune-related molecular
mechanisms and their relationships with other molecular functions in early CE stroke.

Systemic inflammation is linked to the occurrence of strokes and may involve not only peripheral
cells, such as leukocytes, but also brain cells, such as glia, endothelial cells and neurons [5].
Recent evidence suggests that elements of the immune system are intimately involved at all stages of
an ischemic cascade, from the acute intra-vascular events triggered by the interruption of the blood
supply to the parenchymal processes leading to brain damage and the ensuing tissue repair [6].
The interactions between innate immune cells in the brain have also become better understood in
recent years, prompting the realization that each of these cell types contributes to the development
of inflammation in the brain [7]. Multi-protein complexes, known as inflammasomes, process
damage-associated molecular patterns to trigger an effector response [8]. The pathophysiological
processes following strokes are complex and extensive and include bioenergetic failure, loss of
cell ion homeostasis, acidosis, increased intracellular calcium levels, excitotoxicity, reactive oxygen
species-mediated toxicity, generation of arachidonic acid products, cytokine-mediated cytotoxicity,
activation of neuronal and glial cells, complement activation, disruption of the blood-brain barrier
and infiltration of leukocytes [8]. Intravenous recombinant tissue plasminogen activator (r-tPA), used
to induce thrombolysis following a thrombotic occlusion, is currently the only pharmacological agent
approved for acute stroke therapy [5]. However, a major limitation of tPA therapy is its narrow
therapeutic window of 3–4.5 h [6,8]. A better understanding of the processes involved is therefore
urgently required to develop enhanced therapies. One approach is the construction of the underlying
molecular interaction networks based on database mining and high-throughput datasets from the
blood of normal and stroke subjects, which can be used to study the differences between pre- and
post-stroke, pre- and post-treatment and the effects of the standard tPA treatment.

The present study first focused on those immune-related functions (e.g., B- and T-cell activation,
inflammation, interleukin signaling pathway, etc.) that were significantly enriched in constructed
protein–protein interaction networks (PPINs). The interactions of inflammation- and immune-related
functions with other significantly enriched functions (e.g., ubiquitin proteasome pathway, multiple
growth factors pathways, etc.) in the constructed networks are then identified at different stages.
Using network comparisons between the functional networks, the interactions of immune-related
functions with other functions in the early stages of CE stroke are discussed, and their roles in
the mechanisms of stroke progression are explored. In addition, proteins with estimated basal
level changes in the core networks at different stages are used to investigate the roles of miRNA
and methylation regulations in stroke pathogenesis. Finally, several potential druggable targets
are proposed based on their importance in the core networks and on the literature. The results
provide a more comprehensive understanding of stroke pathophysiology from the perspective of
systems biology and shed light on the development of targeted therapy for strokes based on core
network markers.

2. Results and Discussion

2.1. Network Summary

This study aimed to explore the pathomechanisms of ischemic stroke by investigating the roles of
immune-related functions and their relationships with other molecular functions after cardioembolic
(CE) stroke. To this end, we first utilized microarray data and protein interaction models to
construct protein–protein interaction networks (PPINs) and then compared them to examine changes
in functional and core networks during early CE stroke pathogenesis. In network construction,
microarray data (GSE58294, [4]) was used to identify the interaction activities between proteins
(see Material and Methods section for details). Four different PPINs were constructed based on
microarray data for four corresponding stages of CE stroke (C: control; I: ≤3 hps; II: 5 hps; III:
24 hps). The basic information for the constructed networks is shown in Table 1. It should be noted
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that all genes and their expression profiles were used to obtain the resultant networks, in contrast
to a previous procedure [9,10] in which differentially expressed genes (DEGs) are selected. PPINs in
the present study thus represent networks of all proteins, while the previously published PPINs are
networks of proteins with significantly differential levels of expression only. Since there are proteins
that do not typically show significant changes in intracellular levels but do play an important role
under altered conditions, we suggest that our more comprehensive approach to network construction
is more appropriate. In each constructed network, about 9% of nodes have significantly differential
expression (Bonferroni-corrected p-value ≤0.05) during early CE stroke, which implies that about
90% of nodes are neglected when only DEGs are considered.

Table 1. Number of proteins and interactions in four stage-specific constructed protein-protein
interaction networks (PPINs) of CE stroke.

Stage Number of Proteins Number of Interactions

Control (C) 11,554 91,729
≤3 h (I) 9433 52,295
5 h (II) 9432 52,774

24 h (III) 9339 51,989

Using a bioinformatics classification system and principal network projection, each of the
constructed networks can be presented at two different granular levels: a network of enriched
functions and a network of core proteins. In total, 38 enriched functions are included in
the four constructed networks (see Table S1 in supplement file for the function names and
members in each function). Four groups are used to categorize these enriched functions based
on their biological significance: immune, neuro/hormone, growth/death, and general pathways.
Inflammation, interleukin, B and T cell activation, and toll-like receptors (TLRs) belong to the immune
group; neurodegenerative diseases, dopamine, corticotropin, endothelin, and acetylcholine-related
pathways belong to the neuro/hormone group; multiple growth factor-related pathways and
apoptosis belong to growth/death group, and ubiquitin, G-protein coupled receptor, transcription,
and integrin-related pathways belong to the general pathways group. The presence of functions
and the changes in interaction between them in a comparison of the functional networks at different
stages can provide guidance as to the roles played by the enriched functions in the pathomechanisms
of early CE strokes.

In addition to functional networks, principal network projection is used to extract the main
features of the constructed networks. Inspired by image compression and facial recognition, singular
value decomposition (SVD) is used to extract so-called “eigen-interactions” which can be used
to represent the majority of the interactions in the constructed networks. Core proteins whose
interactions have high similarity to the principal eigen-interactions are then used to form core
networks at each stroke stage. A comparative analysis of stage-specific core networks allows the
identification of key molecules in the progression of CE strokes and their evaluation as potential drug
targets. The goal of explaining the functional and molecular mechanisms in the early pathogenesis of
CE strokes can thus be achieved using this approach.

2.2. Changes in Functions and Proteins Immediately after CE Strokes

By comparing the functional network of Stage I with Stage C, we obtained the differential
functional network for C to I (Figure 1A). Blood coagulation and the endothelin signaling pathway
are conspicuous for their roles in vascular regulation. Although the role of the endothelin signaling
pathway in the pathogenesis of CE stroke is unclear, endothelin 1 is involved in the regulation
of basilar constriction, and dysregulation of basilar artery function may worsen stroke injury [11].
While blood coagulation is detrimental to stroke patients [12], a coagulation cascade can activate
inflammatory and immune responses. The interleukin (IL) signaling pathway (IL1, IL2, IL6,
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and IL10 are found in the constructed networks) is associated with the TLR signaling pathway
and T cell activation via general transcription regulation and the ubiquitin proteasome pathway,
respectively, which explains the role of interleukins in the activation of inflammation and the
immune-related response following stroke onset. The TLR signaling pathway has direct links
to Huntington’s disease; so does T cell activation, via the p38 MAPK pathway. This indicates
that the interleukin signaling pathway plays a role in neuroprotective processes post-stroke [13].
The TLR signaling pathway interacts with angiotensin II-stimulated signaling and the fibroblast
growth factor (FGF) signaling pathway. Angiotensin II is a major causative factor in the
cerebrovascular effects of hypertension [14], which has a down-regulated interaction with the
TLR signaling pathway. The FGF signaling pathway signifies a good prognosis [15] and may
lead to angiogenesis and neuro-protection after strokes [16]. Both the TLR signaling pathway
and T cell activation interact with the FAS signaling pathway, which has negative effects on
neuroprotection and causes cell death. The tight regulation of the FAS signaling pathway by
inflammation- and immune-related pathways is apparent in this differential functional network.
The transforming growth factor (TGF)-β signaling pathway has a down-regulated interaction with
B cell activation, which indicates that the ability of TGF-β signaling to limit inflammation is reduced
after strokes. In summary, after CE stroke the inflammation- and immune-related pathways are
interwoven with neurodegeneration and cell death pathways and exert a combination of adverse
and beneficial actions.

In addition to the differential functional network for C to I, the differential core network can
further reveal the molecular mechanisms that operated immediately after strokes. In contrast to the
functional networks, node color in the diagrammatic representation of differential core networks
(Figure 1B) indicates changes in the basal level (βi) of proteins (green and red indicate lowered
and elevated basal levels, respectively). The proteins F2, GP5, SERPINC1, and THBD, which are
connected to blood coagulation, bridge the complement system to other proteins, including SPP1
and YWHAZ. SPP1 is a cytokine and can activate interferon γ (IFNγ) and IL12. SPP1 also links to a
group of proteins related to the antigen-presenting process and T cell activation, i.e., the HLA protein
family. YWHAZ and YWHAE, two general signal transduction proteins belonging to the 14-3-3
protein family, are involved in the FGF signaling pathway and Parkinson’s disease. In particular,
YWHAE bridges the antigen-presenting process and the control of protein synthesis and turnover.
In the group of proteins controlling protein synthesis, function, and turnover, RPS4Y1, a cytoplasmic
ribosome, is a protein product of a Y-linked gene. It and its interchangeable counterpart, RPS4X,
are over-expressed in new-onset heart failure [17], which helps explain the existence of RPS4Y1 at
the onset of CE strokes and in particular its higher basal level post-stroke. Not surprisingly, several
proteins involved in the regulation of transcription and translation are present (EIF3E, EIF3A and
GTF2B), as are several ribosome proteins related to protein synthesis. The ubiquitin proteasome
pathway not only controls protein synthesis and turnover but also participates in neurodegenerative
diseases [18]. UBC (Ubiquitin C), the central protein in the ubiquitin proteasome pathway, interacts
with several proteins related to inflammation (ACTA2), the heme synthesis pathway (FECH), the
TGF-β signaling pathway (DUSP14), and the PI3K-Akt signaling pathway (RHEB). The ubiquitin
proteasome pathway is thus involved in protein synthesis and the turnover of several functions
that are critical to stroke status immediately after stroke onset. In summary, the differential core
network revealed large changes immediately after stroke onset in the interactions between and basal
levels of inflammation- and immune-related functions, as well as in UBC- and RPS4Y1-related protein
synthesis and turnover.
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Figure 1. Differential functional and core networks from Stage C to I. (A) Differential functional
network. Node colors indicate the biological significance of the enriched functions. Red: immune;
blue: neuro/hormone; green: general pathway; yellow: growth/death. Colors of links indicate
changes in interaction ability from Stage C to I. Blue: down-regulated; orange: up-regulated.
Link width indicates the absolute value of the difference of interaction ability from Stage C to I;
(B) Differential core network. Node colors indicate changes in basal level, representing changes in
miRNA and methylation regulations from Stage C to I. Green: lowered; red: elevated. Link colors
indicate changes in interaction ability from Stage C to I. Blue: down-regulated; orange: up-regulated.
Link width indicates the absolute value of the difference in interaction ability from Stage C to I.

2.3. Changes in Functions and Proteins after Tissue Plasminogen Activator Treatment

By comparing the functional network of Stage II with Stage I, we obtained a differential
functional network for I to II (Figure 2A). The major difference between the two stages is the
application of tPA treatment: Stage I is untreated and Stage II is treated. The immediate effects
of tPA treatment on the functions and proteins can be observed in the differential functional and
core networks for I to II. In the differential functional network for I to II, almost all interactions
between functions display reverse changes. This includes blood coagulation and the endothelin
signaling pathway, the interleukin signaling and ubiquitin proteasome pathway, T cell activation
and the ubiquitin proteasome pathway, Huntington disease and the TLR pathway, the TLR and FAS
signaling pathway, etc. The tPA treatment not only alters the direction of interaction changes but also
strongly enhances the effects of inflammation- and immune-related functions, i.e., more functions
are connected to these functions and more interactions are added between the enriched functions.
Moreover, blood coagulation following tPA treatment has connections to the dopamine
receptor-mediated signaling pathway and Parkinson’s disease, both of which are related to
neurodegenerative diseases. The treatment can cause hemorrhagic side effects [19], which can be
explained by the up-regulated interaction between the TLR and angiotensin signaling pathways,
causing blood vessel instability. The integrin signaling pathway, which plays a role in vascular
stability, interacts with Parkinson’s disease, blood coagulation, and the ubiquitin proteasome
pathway. The interactions of the ubiquitin proteasome pathway with the TLR signaling pathway,
T cell activation, and the interleukin signaling pathway are down-regulated. This may be detrimental
to the regeneration-promoting ability of inflammation- and immune-related functions. In summary,
tPA treatment was shown to reverse most of the trends in interaction activity changes post-stroke, but
may also cause a worsened prognosis.
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Figure 2. Differential functional and core networks from Stage I to II. (A) Differential functional
network. Node colors indicate the biological significance of the enriched functions. Red: immune;
blue: neuro/hormone; green: general pathway; yellow: growth/death. Link colors indicate changes
in interaction ability from Stage I to II. Blue: down-regulated; orange: up-regulated. Link width
indicates the absolute value of the difference in interaction ability from Stage I to II; (B) Differential
core network. Node colors indicate changes in basal level, representing changes in miRNA and
methylation regulations from Stage I to II. Green: lowered; red: elevated. Link colors indicate changes
in interaction ability from Stage I to II. Blue: down-regulated; orange: up-regulated. Link width
indicates the absolute value of the difference in interaction ability from Stage I to II.

The differential core network for I to II is shown in Figure 2B, with node and edge styles as in
Figure 1B. The main difference between these two core networks is the separation of HLA-DRB4 from
UBC- and RPS4Y1-related functions, caused by the absence of YWHAE and FECH. YWHAE belongs
to the FGF signaling pathway and Parkinson’s disease, and FECH is related to iron regulation. While
UBC- and RPS4Y1-related functions continue interacting with a similar set of proteins as in the C
to I network, most of the interacting proteins show changes in basal level (βi), e.g., RHEB, ACTA1,
TAGLN, and RPS4Y1. Basal level changes of these four proteins cause a dramatic change in protein
synthesis and turnover following tPA treatment. In summary, tPA treatment was found to affect the
integrity of the core network and to reverse basal level changes in comparison to the differential core
network for C to I.

2.4. Changes in Functions and Proteins in Early tPA Treatment

By comparing the functional network of Stage III with Stage II, we obtained a differential
functional network for II to III (Figure 3A). Since the major difference between the functional networks
for these stages is time after tPA treatment, the differential network can be used to assess the effects of
early tPA treatment. A reverse trend in interaction changes between enriched functions in comparison
to the differential core network for I to II demonstrates a decay in treatment effect over time.
The emergence of the Wnt signaling pathway and the platelet-derived growth factor (PDGF)
signaling pathway is noteworthy, because of their roles in neuroprotection, regeneration, and vascular
growth. In this network, interactions of the Wnt signaling pathway with the TLR and endothelin
signaling pathways are up-regulated, while interactions with the dopamine receptor-mediated
signaling pathway and transcription regulation by bZIP transcription factor are down-regulated.
These findings support the interpretation that the Wnt signaling pathway plays a role in
immune-related functions and neurodegenerative diseases [20]. The PDGF signaling pathway
has down-regulated interactions with transcription regulation by bZIP transcription factor,
blood coagulation, and the muscarinic acetylcholine receptor (mAChR) signaling pathway, and
up-regulated interactions with the corticotropin-releasing factor receptor (CRFR) signaling pathway.
This indicates that the PDGF signaling pathway may be a critical mechanism for the effectiveness
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of tPA treatment [21] and that the mAChR and CRFR signaling pathways may employ different
mechanisms to achieve their neuroprotective roles. In summary, tPA treatment was shown to combine
several functions to achieve its therapeutic effect over time, and to establish tight connections between
these functions.
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Figure 3. Differential functional and core networks for Stage II to III. (A) Differential functional
network. Node colors indicate the biological significance of the enriched functions. Red: immune;
blue: neuro/hormone; green: general pathway; yellow: growth/death. Link colors indicate changes
in interaction ability from Stage II to III. Blue: down-regulated; orange: up-regulated. Link width
indicates the absolute value of the difference in interaction ability from Stage II to III; (B) Differential
core network. Node colors indicate changes in basal level, representing changes in miRNA and
methylation regulations from Stage II to III. Green: lowered; red: elevated. Link colors indicate
changes in interaction ability from Stage II to III. Blue: down-regulated; orange: up-regulated. Link
width indicates the absolute value of the difference in interaction ability from Stage II to III.

As described above, the differential core network for II to III (Figure 4B) reveals the molecular
mechanisms of early tPA treatment, illustrating how the tPA takes effect after treatment for
20 h. The network retains the same components (HLA-DRB4, C4BPA, UBC, and RPS4Y1) as
the previous differential core networks, but these proteins are now disconnected. Several key
molecules can be discerned in this network. Antigen presenting-related HLA class II proteins
HLA-DRB4 and HLA-DQA1 have been implicated in heart disease and ischemic stroke [22,23];
the specifics of how tPA treatment affects HLA class II proteins are still unclear, however.
ORM1, an acute phase plasma protein, is present at increased levels due to acute inflammation;
its basal level and down-regulated interaction with C4BPA, a multimeric protein that controls
activation of the complement cascade, may be a result of the decayed effectiveness of tPA [24].
FOXA1 and NKX3-1 are two transcription factors active in prostate tumor progression through
collaboration with androgen receptor (AR), which is neuroprotective in strokes [25]. Instead of a
direct interaction, UBC and RPS4Y1 are connected through EIF2S3, SNW1, HSP90AA1, and SLC7A9.
SNW1 is involved in the notch signaling pathway, which can cause an unusual susceptibility to
strokes [26] and promotes cell proliferation and differentiation after strokes [27]. SLC7A9 mediates
the transport of cysteine and can control the level of homocysteine in the blood, which is an indicator
for vascular diseases and stroke [28]. In summary, the differential core network for II to III was shown
to become more broken up than the previous ones and indicates the more extensive range affected by
strokes and tPA treatment.

2.5. Pathomechanisms and Potential Drug Targets

The comparative analysis of the functional and core networks provides insights into the
pathomechanisms of EC stroke and how standard tPA treatment affects stroke progression. Figure 4
summarizes the findings of this study. After the onset of CE stroke, changes in blood vessels
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activate the endothelin and blood coagulation functions. Via interactions with the coagulation
cascade, inflammation- and immune-related functions are activated to rectify the abnormal status
caused by an obstruction in a blood vessel. These function as compensators attempting to rectify
the abnormality by interacting with protein synthesis and turnover, neurodegeneration, cell death,
and proliferation. However, these interactions are not always beneficial for post-stroke recovery;
some neurodegenerative diseases in particular are connected to inflammation- and immune-related
functions [29]. Moreover, endothelin, blood coagulation, and inflammation- and immune-related
functions are subject to feedback from protein synthesis and turnover, cell death, and proliferation.
Under tPA treatment, blood coagulation, B and T cell activation, and protein synthesis are affected
(indicated by

Version February 1, 2016 submitted to Int. J. Mol. Sci. 13 of 19

The comparative analysis of the functional and core networks provides insights into the305

pathomechanisms of EC stroke and how standard tPA treatment affects stroke progression. Figure306

5 summarizes the findings of this study. After the onset of CE stroke, changes in blood vessels307

activate the endothelin and blood coagulation functions. Via interactions with the coagulation cascade,308

inflammation- and immune-related functions are activated to rectify the abnormal status caused by an309

obstruction in a blood vessel. These function as compensators attempting to rectify the abnormality310

by interacting with protein synthesis and turnover, neurodegeneration, cell death, and proliferation.311

However, these interactions are not always beneficial for post-stroke recovery; some neurodegenerative312

diseases in particular are connected to inflammation- and immune-related functions [42]. Moreover,313

endothelin, blood coagulation, and inflammation- and immune-related functions are subject to feedback314

from protein synthesis and turnover, cell death, and proliferation. Under tPA treatment, blood315

coagulation, B and T cell activation, and protein synthesis are affected (indicated by � in Figure 5),316

and the pathomechanism of CE stroke is also subject to interference. Although this interference can317

briefly relieve the symptoms caused by vessel obstruction, several neurodegenerative diseases emerge in318

the functional networks following tPA treatment.319

Endothelin (ADCY1, EDN2, NOS3)
Coagulation (F2, GP5, SPP1)

Inflammation (ACTA2, IFNG, JAK2)
Interleukin (IL2, IL6, IL10, IL12A)
TLR singling (TLR2, TRAF6, TBK1)
B & T cell activation (CD3G, HLA-DRA)

Protein synthesis & turnover (UBE2O, RPL27)
Neurodegeneration (ADAM10, CUL1, CAPN1)
Cell death (ATF4, BCL2L10, CASP3, HSPA2)
Proliferation (AKAP12, BCAT1, RHEB)

Stroke onsets

tPA treatment

potential miRNA or 
epigenetic regulation

miR164a
miR335

miR19b
miR186
miR328
miR335

miR18a
miR21
miR25
miR29b

Hyper- and 
hypo-
methylation

Figure 5. Diagram of the pathomechanism of early CE stroke and the enriched functions
regulated by tPA treatment and miRNAs, showing functions and proteins affected after CE
stroke onset. Symbol arrows indicate where tPA treatment (�) and miRNA regulation (�)
can interfere with the progression of stroke and potential targeted functions and proteins.

In addition to the pathomechanisms that govern how CE strokes and tPA treatment affect the320

physiology, a comparison of protein basal levels between subsequent stages also provides an insight into321

microRNA (miRNA) and methylation regulation in stroke pathophysiology. Recent studies indicate that322

alterations in miRNA expression respond to ischemic stroke in animal models [43]. The miRNA–target323

pairs [45] consistent with a dysregulation of miRNA following ischemic stroke [44] resulting from324

our comparative core network analysis are summarized in Table 2. These potential miRNA/epigenetic325

regulations of the enriched functions are also indicated in Figure 5 (indicated by �). In addition to326

miRNA regulation of protein basal levels, methylation regulation is a potential mechanism that can327

change protein basal levels after stroke onset. Although studies of methylation in strokes have indicated328

in Figure 4), and the pathomechanism of CE stroke is also subject to interference.
Although this interference can briefly relieve the symptoms caused by vessel obstruction, several
neurodegenerative diseases emerge in the functional networks following tPA treatment.

Endothelin (ADCY1, EDN2, NOS3)
Coagulation (F2, GP5, SPP1)

Inflammation (ACTA2, IFNG, JAK2)
Interleukin (IL2, IL6, IL10, IL12A)
TLR singling (TLR2, TRAF6, TBK1)
B & T cell activation (CD3G, HLA-DRA)

Protein synthesis & turnover (UBE2O, RPL27)
Neurodegeneration (ADAM10, CUL1, CAPN1)
Cell death (ATF4, BCL2L10, CASP3, HSPA2)
Proliferation (AKAP12, BCAT1, RHEB)

Stroke onsets

tPA treatment

potential miRNA or 
epigenetic regulation

miR164a
miR335

miR19b
miR186
miR328
miR335

miR18a
miR21
miR25
miR29b

Hyper- and 
hypo-
methylation

Figure 4. Diagram of the pathomechanism of early CE stroke and the enriched functions regulated
by tPA treatment and miRNAs, showing functions and proteins affected after CE stroke onset.
Symbol arrows indicate where tPA treatment (

Version February 1, 2016 submitted to Int. J. Mol. Sci. 13 of 19

The comparative analysis of the functional and core networks provides insights into the305

pathomechanisms of EC stroke and how standard tPA treatment affects stroke progression. Figure306

5 summarizes the findings of this study. After the onset of CE stroke, changes in blood vessels307

activate the endothelin and blood coagulation functions. Via interactions with the coagulation cascade,308

inflammation- and immune-related functions are activated to rectify the abnormal status caused by an309

obstruction in a blood vessel. These function as compensators attempting to rectify the abnormality310

by interacting with protein synthesis and turnover, neurodegeneration, cell death, and proliferation.311

However, these interactions are not always beneficial for post-stroke recovery; some neurodegenerative312

diseases in particular are connected to inflammation- and immune-related functions [42]. Moreover,313

endothelin, blood coagulation, and inflammation- and immune-related functions are subject to feedback314

from protein synthesis and turnover, cell death, and proliferation. Under tPA treatment, blood315

coagulation, B and T cell activation, and protein synthesis are affected (indicated by � in Figure 5),316

and the pathomechanism of CE stroke is also subject to interference. Although this interference can317

briefly relieve the symptoms caused by vessel obstruction, several neurodegenerative diseases emerge in318

the functional networks following tPA treatment.319

Endothelin (ADCY1, EDN2, NOS3)
Coagulation (F2, GP5, SPP1)

Inflammation (ACTA2, IFNG, JAK2)
Interleukin (IL2, IL6, IL10, IL12A)
TLR singling (TLR2, TRAF6, TBK1)
B & T cell activation (CD3G, HLA-DRA)

Protein synthesis & turnover (UBE2O, RPL27)
Neurodegeneration (ADAM10, CUL1, CAPN1)
Cell death (ATF4, BCL2L10, CASP3, HSPA2)
Proliferation (AKAP12, BCAT1, RHEB)

Stroke onsets

tPA treatment

potential miRNA or 
epigenetic regulation

miR164a
miR335

miR19b
miR186
miR328
miR335

miR18a
miR21
miR25
miR29b

Hyper- and 
hypo-
methylation

Figure 5. Diagram of the pathomechanism of early CE stroke and the enriched functions
regulated by tPA treatment and miRNAs, showing functions and proteins affected after CE
stroke onset. Symbol arrows indicate where tPA treatment (�) and miRNA regulation (�)
can interfere with the progression of stroke and potential targeted functions and proteins.

In addition to the pathomechanisms that govern how CE strokes and tPA treatment affect the320

physiology, a comparison of protein basal levels between subsequent stages also provides an insight into321

microRNA (miRNA) and methylation regulation in stroke pathophysiology. Recent studies indicate that322

alterations in miRNA expression respond to ischemic stroke in animal models [43]. The miRNA–target323

pairs [45] consistent with a dysregulation of miRNA following ischemic stroke [44] resulting from324

our comparative core network analysis are summarized in Table 2. These potential miRNA/epigenetic325

regulations of the enriched functions are also indicated in Figure 5 (indicated by �). In addition to326

miRNA regulation of protein basal levels, methylation regulation is a potential mechanism that can327

change protein basal levels after stroke onset. Although studies of methylation in strokes have indicated328

) and miRNA regulation (

Version February 1, 2016 submitted to Int. J. Mol. Sci. 13 of 19

The comparative analysis of the functional and core networks provides insights into the305

pathomechanisms of EC stroke and how standard tPA treatment affects stroke progression. Figure306

5 summarizes the findings of this study. After the onset of CE stroke, changes in blood vessels307

activate the endothelin and blood coagulation functions. Via interactions with the coagulation cascade,308

inflammation- and immune-related functions are activated to rectify the abnormal status caused by an309

obstruction in a blood vessel. These function as compensators attempting to rectify the abnormality310

by interacting with protein synthesis and turnover, neurodegeneration, cell death, and proliferation.311

However, these interactions are not always beneficial for post-stroke recovery; some neurodegenerative312

diseases in particular are connected to inflammation- and immune-related functions [42]. Moreover,313

endothelin, blood coagulation, and inflammation- and immune-related functions are subject to feedback314

from protein synthesis and turnover, cell death, and proliferation. Under tPA treatment, blood315

coagulation, B and T cell activation, and protein synthesis are affected (indicated by � in Figure 5),316

and the pathomechanism of CE stroke is also subject to interference. Although this interference can317

briefly relieve the symptoms caused by vessel obstruction, several neurodegenerative diseases emerge in318

the functional networks following tPA treatment.319

Endothelin (ADCY1, EDN2, NOS3)
Coagulation (F2, GP5, SPP1)

Inflammation (ACTA2, IFNG, JAK2)
Interleukin (IL2, IL6, IL10, IL12A)
TLR singling (TLR2, TRAF6, TBK1)
B & T cell activation (CD3G, HLA-DRA)

Protein synthesis & turnover (UBE2O, RPL27)
Neurodegeneration (ADAM10, CUL1, CAPN1)
Cell death (ATF4, BCL2L10, CASP3, HSPA2)
Proliferation (AKAP12, BCAT1, RHEB)

Stroke onsets

tPA treatment

potential miRNA or 
epigenetic regulation

miR164a
miR335

miR19b
miR186
miR328
miR335

miR18a
miR21
miR25
miR29b

Hyper- and 
hypo-
methylation

Figure 5. Diagram of the pathomechanism of early CE stroke and the enriched functions
regulated by tPA treatment and miRNAs, showing functions and proteins affected after CE
stroke onset. Symbol arrows indicate where tPA treatment (�) and miRNA regulation (�)
can interfere with the progression of stroke and potential targeted functions and proteins.

In addition to the pathomechanisms that govern how CE strokes and tPA treatment affect the320

physiology, a comparison of protein basal levels between subsequent stages also provides an insight into321

microRNA (miRNA) and methylation regulation in stroke pathophysiology. Recent studies indicate that322

alterations in miRNA expression respond to ischemic stroke in animal models [43]. The miRNA–target323

pairs [45] consistent with a dysregulation of miRNA following ischemic stroke [44] resulting from324

our comparative core network analysis are summarized in Table 2. These potential miRNA/epigenetic325

regulations of the enriched functions are also indicated in Figure 5 (indicated by �). In addition to326

miRNA regulation of protein basal levels, methylation regulation is a potential mechanism that can327

change protein basal levels after stroke onset. Although studies of methylation in strokes have indicated328

) can interfere with
the progression of stroke and potential targeted functions and proteins.

In addition to the pathomechanisms that govern how CE strokes and tPA treatment affect the
physiology, a comparison of protein basal levels between subsequent stages also provides an insight
into microRNA (miRNA) and methylation regulation in stroke pathophysiology. Recent studies
indicate that alterations in miRNA expression respond to ischemic stroke in animal models [30].
The miRNA–target pairs [31] consistent with a dysregulation of miRNA following ischemic stroke
[32] resulting from our comparative core network analysis are summarized in Table 2. These potential
miRNA/epigenetic regulations of the enriched functions are also indicated in Figure 4 (indicated
by
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). In addition to miRNA regulation of protein basal levels, methylation regulation is a
potential mechanism that can change protein basal levels after stroke onset. Although studies of
methylation in strokes have indicated a range of changes in protein basal level [33], the targets of
methylation regulation have not yet been the subject of a dedicated study. Proteins that have large
basal level changes and are not miRNA targets (ACTA2 [34], C4BPA [35], CD3G [36], CENPK [37],
DEPDC7 [38], FECH [39], HLA-DQA1 [40], HLA-DRB4 [41], and NKX3-1 [42]) can be potential
targets of methylation regulations. Based on the specific targets of miRNA regulations and the
position of the target proteins in the core networks, several potential drug targets can be selected
(* in Table 2). SPP1 in blood coagulation bridges the complement systems and antigen presentation,
and the connection can activate the subsequent inflammation and immune responses. In addition,
SPP1 can also activate IFNγ and IL12, making it a potential treatment candidate. Another potential
target is RPS4Y1, a male-specific protein that may play a role in males’ higher susceptibility to
stroke. Finally, the possibility that the targets of miRNA and methylation regulation are identical
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cannot be ruled out and there are other factors may cause the changes of protein basal levels,
such as differential gene regulations through transcription factors. The mechanisms of miRNA and
methylation regulations after CE stroke onset require further investigation in future studies.

Table 2. Potential miRNA and methylation regulations in early CE stroke pathophysiology.

Target Protein Regulation Type Function of Target Protein Literature Validation

Lowered level

BCAT1 miR-21, 25, 140, 146a cell growth [31,32] and references therein
AKAP12 miR-29b-1, 181a, 183, 335 cell growth [31,32] and references therein
DUSP14 miR-16, 26b signaling pathway [31,32] and references therein
FECH miR-16, 25, 124 heme synthesis [31,32] and references therein
H1F0 miR-181a, 494 histones [31,32] and references therein

TAGLN miR-26b, 149 undetermined [31,32] and references therein
UBE2O miR-328, 335 protein synthesis & turnover [31,32] and references therein

RPS4Y1* miR-19b protein synthesis & turnover [31,32] and references therein
SPP1* miR-146a, 335 coagulation [31,32] and references therein

C4BPA hypermethylation complement system [35]
CD3G hypermethylation complement system [36]

DEPDC7 hypermethylation protein synthesis & turnover [38]
FECH hypermethylation protein synthesis & turnover [39]

HLA-DQA1 hypermethylation leukocyte activation [40]
NKX3-1 hypermethylation protein synthesis & turnover [42]

Elevated level

RHEB miR-18a, 155 cell growth [31,32] and references therein
RPL27 miR-186 protein synthesis & turnover [31,32] and references therein
ACTA2 hypomethylation inflammation [34]
CENPK hypomethylation cell growth [37]

HLA-DRB4 hypomethylation Leukocyte activation [41]
* Indicates the selected potential drug targets.

3. Material and Methods

The analysis workflow (microarray data preprocessing, interaction network construction,
principal network projection and comparative network analysis) is summarized in Figure 5.

Data 

preprocessing

Database 

mining

Candidate 

networks

Model order detection & parameter estimation

PPI databases

Microarray 

data 

(GSE58294)

PPINs at 4 

stages

Functional 

classification

Principal network 

projection

Functional 

networks

Core 

networks

Network comparison and analysis

Figure 5. Flowchart of the early cardioembolic (CE) stroke model analysis process, consisting of
data preprocessing, interaction network construction, principal network projection and comparative
analysis of functional and core networks.

3.1. Microarray Data for Early Cardioembolic Stroke

The microarray dataset for early cardioembolic stroke (Gene Expression Omnibus
(GEO) Accession No. GSE58294 [4]) contains gene expression data from the blood of subjects
with CE stroke and of a vascular risk factor control group without symptomatic vascular diseases.
We assayed 23 control samples (C) and 23 cardioembolic stroke samples for each of three time points
(i.e.,≤3 (I), 5 (II) and 24 (III) hours post-stroke (hps)). GC robust multi-array average-empirical-Bayes
(GCRMA-EB) background adjustment, quantile normalization and median-polish summarization
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were performed on the raw data (CEL files) using MATLAB R© (The MathWorks Inc., Natick,
MA, USA).

3.2. Network Construction

The microarray data processing yielded 23,520 gene expression levels at four stages (C, I, II, III).
Owing to the computational complexity of considering all interactions among all proteins, candidate
interactions mined from protein-protein interaction (PPI) databases were used as candidates for
the subsequent network construction. Since the candidate network considered for the CE stroke
condition contained many false positive interactions, further pruning using microarray data was
necessary to complete network construction. The details are described in the following sections.

3.2.1. Candidate Network Construction via Multi-Database Mining

To reduce computational complexity, candidate PPIs had to be provided prior to identifying
interaction activities in the protein interaction model. These PPI candidates were collected from
10 frequently-used PPI databases (BIND [43], BioGRID [44], DIP [45], HPRD [46], I2D [47], IntAct [48],
MINT [49], PIP [50], Reactome [51] and STRING [52]) and consisted of interactions based on
computational predictions and biological experiments. Candidate PPIs were then pruned using the
corresponding microarray data at different stages of CE stroke to construct realistic stage-specific PPI
networks. The intersection of the collected candidates and the genes recorded in microarray data
yielded a candidate network containing 15,017 proteins and 319,362 interactions.

3.2.2. Protein Interaction Model

We then introduced a protein interaction model to describe the PPIs at a specific stage (labeled
C, I, II or III). Assuming there are P proteins in the candidate network (p = 15,017 in this study), the
interactions of a target protein i with other proteins in the m-th sample can be formulated as follows:

yi(m) =
P

∑
k=1

αikyk(m) + βi + εi(m) (1)

where yi(m) is the level of target protein i in the m-th sample; αik is the interaction activity of target
protein i with interacting protein k; yk(m) is the level of protein k in the m-th sample (αik = 0 if there is
no interaction between protein k and target protein i, or i = k, i.e., that protein has no self-regulation);
βi is the basal level of target protein i (βi ≥ 0); and εi(m) is the stochastic noise from the environment
and/or model uncertainty. Equation (1) states that the level of target protein i is associated with
its interacting proteins, basal level and stochastic noise. By augmenting the levels of protein i in

M samples (M = 23 in this study), i.e., by letting yi =
[
yi(1) · · · yi(M)

]>
, ∀i = 1, · · · , P,

Equation (1) can be written in vector form:

yi = Φiθi + εi (2)

where Φi =
[
y1 · · · yP 1

]
, θi =

[
αi1 · · · αiP βi

]>
, and εi =

[
εi(1) · · · εi(M)

]>
.

The next step is to estimate the unknown θi in Equation (2) based on the microarray data. This can be
achieved by solving a least squares optimization with linear constraints, as follows:

min
θi
‖Φiθi − yi‖

2
2 such that βi ≥ 0 (3)

The active-set algorithm [53] is used for parameter estimation.



Int. J. Mol. Sci. 2016, 17, 305 11 of 15

3.2.3. Model Order Detection and Identification

Since the PPIs in the candidate network were based on a wide variety of biological experimental
conditions and computational predictions in databases, there was a large number of false positive
PPIs. These had to be screened further using microarray data for CE strokes to obtain realistic
networks for specific biological stroke stages. The Akaike information criterion (AIC) was used to
select the true interaction model order (i.e., the real number of proteins interacting with protein i) [54].
For a protein interaction model for target protein i with order L, where L ∈ {0, · · · , P}, i.e., L proteins
interact with target protein i, the AIC value is calculated as follows:

AICi(L) = log
‖Φiθ̂i − yi‖2

2
M

+
2L
M

(4)

where θ̂i is the solution of Equation (3). According to the theory of system identification [54],
the true system order should minimize AIC value in Equation (4). By forward selection and
backward elimination, the model order L with the lowest AIC value for the protein interaction
model of target protein i can be obtained. After completing model order detection and
identification, the estimated parameters were further tested for their significance using Student’s
t-test with the null hypothesis is αij = 0 and a p-value threshold of 0.05. The following is
pseudo-code we used for the model order test based on minimum AIC value. Details of the
network construction can be found in the network construction section of supplementary files.

Require: candidate network, gene expression profiles at a specific stage
for all protein i in the candidate network do

yi ←expression profiles of protein i
Φi ←expression profiles of all proteins interacting with protein i in the candidate network
function AICSTEPWISE(Φi, yi)Start with forward selection and after each candidate (other than the first one) is added to

the model, perform backward elimination to see if any of the selected candidates can be eliminated
without increasing the AIC value.

return θi
end function
function TTEST(Φi, yi, θi)

Calculate p-value for each interaction activity αij in θi and delete if ≥ 0.05.
return θi

end function
end for

Finally, by assembling the estimated parameters αij, i, j = 1, · · · , P into a matrix, the resulting
PPINs at four stages can be represented as NC, NI, NII and NIII.

3.3. Network Analysis

3.3.1. Functional Networks

To improve the capturing of essential information from the constructed networks, two different
levels of analyses were used to explore the functional and molecular relationships at different stages
of early stroke. First, the proteins in the constructed networks can be divided into several groups
according to the PANTHER function classification system [55], based on their belonging functions.
The functional networks at each stage consist of these enriched functions and the interactions between
them. The interaction activity between two enriched functions is obtained by summing the interaction
activities between member proteins of the two functions. The up- and down-regulated interactions
between enriched functions can be observed by differentiating the functional networks of two stages.
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3.3.2. Core Networks

Second, due to the large size of the constructed networks, their essential components can be
more effectively illustrated by a core network. A core network is defined as a network of core
proteins whose interactions are similar to the principal eigen-interactions of the constructed networks.
Singular value decomposition (SVD) is applied to determine the eigen-interactions vi by extracting
the main features of the constructed networks. Given that N is the matrix representation of the
network at different stages of CE stroke (i.e., N = NC, NI, NII, or NIII in this study), the SVD of
N is:

N = UΣV> (5)

where U and V are unitary matrices and Σ is a diagonal matrix with singular values σi of N on its
diagonal. The eigen-interactions vi are the columns of V, i.e., V =

[
v1 · · · vP

]
with corresponding

singular values σi such that σ1 ≥ σ2 ≥ · · · ≥ σP. The percentage of the network explained by the i-th
eigen-interaction can be calculated as follows:

ri =
σ2

i

∑P
i=1 σ2

i
× 100% (6)

We can then choose M principal eigen-interactions to meet a heuristic condition that will be
application-dependent. In this study, we chose the smallest M such that ∑M

i=1 ri ≥ 85%, which
is conventionally used in principal component analysis. A core network can then be constructed
by selecting proteins based on the similarity of their interactions to the principal eigen-interactions
v1, · · · , vM. The inner product between protein interactions (

[
αi1 · · · αiP

]
) and eigen-interactions

(vi) is used to evaluate the similarity of the interactions. Proteins with similarity above some threshold
(> 6 in this study based on the number of nodes in the resulting core networks) are called core
proteins, and the network formed by the core proteins and the interactions between them is called
the core network.

4. Conclusions

In this study, protein-protein interaction networks for four stages of stroke pathogenesis were
constructed in a systems biology framework, based on multi-database mining, microarray data and
protein interaction models. Functional classification and principal network projection were used to
derive functional and core networks. Comparative network analysis was then used to investigate the
underlying mechanisms of stroke pathogenesis at functional and protein levels. The configuration of
enriched functions after stroke onset suggests a reasonable mechanism (Figure 4). Potential targets of
miRNA and methylation regulations are proposed as potential therapeutic drug targets. Our results
provide a direction for future study in stroke pathogenesis and treatment.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/
17/3/305/s1.
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