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Abstract: Several global health risks are related to our dietary lifestyle. As a consequence of the
overconsumption of ultra-processed and highly digestible protein (150–200% of the recommended
value), excess dietary proteins reach the colon, are hydrolysed to peptides and amino acids by
bacterial proteases and fermented to various potentially toxic end products. A diet reformulation
strategy with reduced protein content in food products appears to be the most effective approach. A
potential approach to this challenge is to reduce food digestibility by introducing resistant protein into
the diet that could positively influence human health and gut microbiome functionality. Resistant
protein is a dietary constituent not hydrolysed by digestive enzymes or absorbed in the human
small intestine. The chemical conformation and the amino acid composition strictly influence
its structural stability and resistance to in vivo proteolysis and denaturation. Responding to the
important gap in our knowledge regarding the digestibility performance of alternative proteins, we
hypothesise that resistant proteins can beneficially alter food functionality via their role in improving
metabolic properties and health benefits in human nutrition, similar to fibres and resistant starches.
A multidisciplinary investigation of resistant protein will generate tremendous scientific impact for
other interlinked societal, economic, technological and health and wellbeing aspects of human life.
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1. Introduction

Food systems are under pressure to feed the world’s growing population within the
planetary boundaries while ensuring the livelihoods of millions of people working along
the food chain from farm to fork and the sector’s environmental sustainability [1]. With
a projected population growth of 9.6 billion by 2050 and 10.6 billion by 2100, the global
appetite for meat and animal products will increase by 76% by 2050 [1]. Addressing this will
necessitate more sustainable production of protein sources for human and animal nutrition.
Future food farming systems targeting microalgae, single-cell protein, insect larvae and
cellular agriculture can secure the production of alternative food/protein sources in a closed
environment with consistent and efficient production performance [2]. Contrarily, plant-
sourced foods/proteins—mainly sourced from cereals and legumes and produced from
conventional farming systems—are exposed to biotic (pathogens, pests), abiotic (climate
variability and change and extreme weather event) and institutional (food trade restrictions)
risk factors [3]. However, due to their intimate interaction with the environment, plant-
sourced foods represent our best option for mitigating biotic and abiotic pressures and
regenerating our natural resources. To achieve this, we need to move strategically from the
green to gold agriculture revolution making novel, synthetic systems in crop plants (i.e.,
enhance the efficiency of photosynthesis systems by improving the carbon fixation reaction),
which will boost agriculture production and secure food for the future generation. This
improvement in natural resource usage efficiency [4–6] has the potential to deliver a step-
change in agricultural output. On the other hand, environment-disconnected food systems
have the potential to deliver risk-resilient diets but hardly directly address the climate
challenges, biodiversity losses or support agriculture sectors and resilient landscapes.
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Individuals in affluent societies consume more calories than they burn, partially
caused by energy-rich food products, resulting in obesity and associated pathologies [7].
According to the World Health Organisation, non-communicable diseases (NCDs) are the
leading cause of death (86%), disease (77%) and disability in Europe [8]. NCDs are largely
preventable, and many initiatives are exploring prevention and control. The magnitude of
western overconsumption of food surpasses that of food wasted in the household [9]. In
this scenario, protein is significantly more critical than fats and carbohydrates, both numer-
ically and environmentally, because the average highly digestible protein intake in many
Western countries is 150–200% of the recommended value [10,11]. Protein overconsump-
tion (i.e., protein that is nutritionally unnecessary) in western countries has been widely
reported [11–13] and is far above the Population Reference Intake (PRI) [14]. There is a
clear rationale to decrease the daily intake of protein since a substantial body of evidence
associates the overconsumption of protein with adverse effects on human health, such as
disorders of bone and calcium homeostasis, renal and liver dysfunction, increased cancer
risk, hyperalbuminemia and precipitated progression of coronary artery disease [15–20].
Refs. [21,22], therefore, suggest a ‘reversed’ diet transition by ‘using less’ (e.g., leaving the
meat out of the dish) or ‘doing things differently’ by a diet reformulation strategy, with
reduced protein content in food products appears to be the most effective approach. How-
ever, plans to convince free and affluent societies to eat healthy but not innately desired
food have been largely unsuccessful in the past [15–22]. Since the beginning of nutritional
science, it has been hypothesised that the nutrients ingested through our diet are not en-
tirely absorbed in the body, and only part of them are available. In such context, the terms
“(bio)availability and (bio)accessibility” has come into use to identify such proportions [17].
The relatively recent recognition of incomplete protein digestion and absorption, mainly
from vegetables, raises interest in non-digestible protein fractions [23]. These fractions may
safely be called “resistant proteins” and are neither absorbed within the small intestine
nor hydrolysable by mammalian digestive enzymes in the small intestine but may confer
additional physiological benefits beyond the classical nutritive function of the protein.
Despite the absence or presence of entanglements with nonprotein ingredients, some re-
searchers [24–28] consider resistant proteins as proteinous dietary fibre and include them
within the dietary fibre definition along with celluloses, hemicelluloses, lignins, oligosac-
charides, pectins, gums and waxes, resistant starches and associated compounds such as
polyphenols [29]. When incorporated into future foods, resistant proteins can impact other
dietary components’ behaviours in food matrices, specifically carbo [30]. However, their
technological potential and metabolic and physiological effects remain almost unstudied.

2. Resistant Plant Protein: Functions

Digestibility and amino acid composition have been recognised as essential factors for
evaluating dietary protein quality [31]. For this reason, most legume proteins accumulated
in seeds are still considered inferior in quality to animal protein, even though they have a
physiological role far beyond the provision of essential amino acids with unexpected nutri-
tional significance. In such regard, preliminary studies have shown how resistant proteins
may exert physiological functions similar to dietary fibre as per se or through the interaction
with other dietary constituents such as resistant starch by modulating its fermentation pat-
tern in the large intestine with the increase of the short-chain fatty acid content [30] and the
modulation of the gut microflora performance [30,32]. Besides containing small peptides
and easily digestible proteins, legumes contain protein fractions that are either partially or
entirely resistant to human digestive enzymes. These peptides and proteins may provide
significant physiological and health-promoting effects, notably cholesterol-lowering activ-
ity [21,22], protecting cardiovascular health, reducing inflammation and cancer risk, weight
control [33] and increased insulin sensitivity [34,35]. On the other hand, their structural
stability has been reported to affect in vivo digestibility and availability of essential amino
acids and the production of bioactive compounds. In addition, structural traits of legume
proteins are of primary importance for their potential allergenicity and toxicity. These
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adverse effects must be carefully considered to exploit the beneficial effects of proteins
and peptides from legume seeds [36]. Known classes of non-digestible bioactive legume
protein and peptides are (i) storage proteins 7S and 11S, globulin, prolamin, glutenins from
soybean and lupin with ACE-inhibitory properties, hypotensive, anticarcinogenic and anti-
inflammatory activities [37–39]; (ii) lectins (carbohydrate-binding proteins) characterised
by a tight β-sandwich structure that allows them to survive the acidic environment of the
digestive tract where lectins exert anti-cytotoxic and anticancer activities [40]; (iii) glycated
pea storage protein that is able, at least partially, to escape digestion and act as a modulator
of the bacterial metabolic activities and their adhesive potentials [41]; (iv) α-amylase in-
hibitor from the white bean as an active agent in weight loss and glycaemic control [42]; and
(v) protease inhibitor with anticarcinogenic activities [43]. Amylase and protease inhibitors
are a heterogenous group of organic molecules, including proteins (>15 kDa) and peptides
(<15 kDa), and are usually used by plants as defence strategies against pathogens, such as
viruses, bacteria, or herbivores [44,45]

The compact structural feature of the protease inhibitor appears to have significant
beneficial effects [46]. The main characteristics of the known undigestible proteins are
depicted in Figure 1. Their structural peculiarity, interaction with other food constituents
and low solubility are mainly responsible for their high stability and low digestibility [23].

Figure 1. Principal physicochemical and biological properties of known classes of indigestible
plant protein.

Lectin, defensins, glycated protein and protein inhibitors have been widely inves-
tigated for their biological activities and represent the minor components of the non-
digestible storage proteins/peptides. On the contrary, resistant protein, the principal
constituent of the non-digestible storage protein, has been neglected. Therefore, its role
in food design and human health has not yet been elucidated. Up to now, the full po-
tential of resistant protein in food applications and human health enhancement remains
untapped. Usually, plant-based resistant protein is separated during the industrial plant
protein extraction process and discarded within the “fibre” side stream fraction. Over
the past ten years, the scientific and industrial communities have focused on producing
protein ingredients with high digestibility and optimal amino acid composition along with
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desired structure, rheology, palatability, flavour and appearance. However, much interest
has recently been aroused in the new physiological function of these classes of proteins.
From a physiological perspective, this new class of resistant protein can be proposed to be
analogous to dietary fibre, potentially without the detrimental effects of some of the poorly
absorbed fermentable oligo-, di-, monosaccharides and polyols (FODMAPs), highly present
in the fibre fraction [47–49] and linked to irritable bowel syndrome (IBS) [50]. Moreover,
the concept of digestible and indigestible proteins may be applied if a high concentration
of amino acids in the plasma are detrimental to the patients—such as in metabolic genetic
disorders (PKU), kidney deficiency or hepatic encephalopathy.

3. Resistant Plant Protein: Forms

The indigestibility trait of the resistant protein may originate from its structural pe-
culiarities such as hydrophobicity, tertiary architecture characterised by a high content
of β-sheet configuration, molecular conformation [51], the presence of thermally stable
crosslinking formed by intra-and intermolecular hydrogen bonds and disulfide bridges [51]
and its interaction with other food constituents such as carbohydrates [41,52]. Except
for intrinsically occurring indigestible proteins, food processes applied during protein
extraction/protein fractionation (acid or alkaline treatment) or food formulations (extru-
sion, boiling/cooking, fermentation) might build up indigestible protein species through
aggregation, denaturation, polymerisation [51] and entanglement of proteins [23]. In inves-
tigating the effect of a highly resistant protein diet on young pig gut microbiomes, growth
rate and metabolic profile, Murray and colleagues [53] manufactured a resistant protein
diet by heating the feed (15 h at 70 ◦C followed by 20 min at 121 ◦C) to drive the Maillard
chemistry of proteins and carbohydrates and confer digestive resistant status to the protein.
The heat treatment of the resistant protein diet was designed to simulate the high heat
processing that many ultra-processed food products undergo a concomitant development
of resistant proteins. However, further investigation needs to be performed to provide
robust evidence on such protein structure evolution. Similar to fibre components, resistant
dietary proteins could have a disruptive effect on food structure by increasing matrix
viscosity mainly due to their low water solubility, as previously reported for Marama bean
proteins characterised by high β-sheet conformation hydrophobic interactions and tyrosine
crosslinks [54]. Therefore, the inclusion of resistant protein in food formulation has to be
adequately assessed regarding its potential structural interference with the food matrix
architecture, rheology, colour, taste and appearance. However, much more investigation
needs to be performed on these proteins’ physiological and nutritional significance in
promoting the gut microbiota’s eubiosis condition that strongly influences our health and
disease status.

4. Limitations

In this paper, the authors present and link preliminary data that need to be further
validated with better animal models (e.g., growing pigs) or human clinical trials. Addition-
ally, the fate of resistant protein passing into the colon requires an extensive investigation
considering the positive and negative systemic and metabolic effects of colonic protein
fermentation on the host [55]. In such regards, the resistant protein could reach the colonic
microbiota and act as an amino acid source for protein fermenters, mainly species from
Clostridium, Desulfovibrio, Peptostreptococcus, Acidaminococcus, Veillonella, Propionibacterium,
Bacillus, Bacteroides and Staphylococcus [56,57]. In contrast to the extensively studied ben-
eficial role of carbohydrate-derived short-chain fatty acids (SCFA), the effects of amino
acid-derived SCFA on host physiology are not well known [58] and are associated with
the production of other potentially harmful metabolites, including ammonia, sulfides and
biogenic amines [59], among others with the potential capability to impact immunomodu-
latory, neurological, cardiovascular and gut functions [57,60,61]. These end-products may
increase inflammatory response and tissue permeability and might be implicated in the
development and severity of the symptoms of colorectal cancer and metabolic diseases,
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diabetes and non-alcoholic fatty liver disease [62]. A recent study conducted by Murray and
colleagues [53] aimed to evaluate the effects of a standard vs. highly resistant protein diet
on growth, gut microbiome, metabolomic profiles and the biomarkers of disease risk in pigs.
The study demonstrates that the resistant protein was able to modulate the gut microbiome
(metabolites) and negatively affect body mass and renal functions. Additionally, besides
the potential health benefits of lectins, these sugar-binding proteins can bind to the surface
of epithelial cells in the digestive system because of their high affinity for carbohydrates
and can result in toxic reactions with changes in intestinal permeability [63,64]. In addition
to the differences in protein digestibility due to protein source or processing factors, the
variable capacities of individuals to lyse proteins (so-called digestive phenotype) may affect
the abundance in which intact or partially degraded proteins are transferred to the large
intestine [56].

5. Perspectives

The transition towards more inclusion of plant protein in our diets could bring us
toward new and unexpected horizons regarding human health and wellbeing beyond the
well-consolidated and known benefits. The investigation of the existence, distribution and
physiological function of this class of proteinous dietary fibre could significantly contribute
to longevity and public health, specifically in western countries where the increase in life
expectancy is foreseen [40]. We suggest that the physiological significance of the resistant
proteins, which are supposed to have only low nutritional value by the conventional
nutritional assessment for protein, should be re-examined from this perspective (Figure 2).

Figure 2. Overall representation of the proteinous fibre concept. The degree of protein indigestibil-
ity is strictly influenced by the raw materials where they are sourced and by the different food
(bio)processing they undergo during their extraction, purification and subsequent inclusion in food
products. However, learned scientist participation in this immature field is eagerly awaited.

Indeed, defining the new plant-resistant proteins and identifying their pre-and post-
digestive multidisciplinary/interdisciplinary features will provide a crucial knowledge
basis that will:

- Open a completely new research field on resistant protein, combining the interests of
food scientists and food engineers to develop strategies for designing future foods.

- Advance the discipline of nutritional science by delivering comprehensive investi-
gations elucidating the role of resistant protein in the maintenance of health and the
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prevention of non-communicable disease. The scientific advancement in this research
field would significantly impact the future of food nutrition, public health and food
policy development.

- Allow the food industry, in conjunction with national and international health au-
thorities, to implement health promotion dietary strategies (personalised ingredi-
ents/foods) by establishing a pipeline in which the characterised resistant plant
protein will be linked to NCD prevention for the potential as diet-based therapeutics.

- Endorse and facilitate a dietary shift to include resistant plant protein by consumers
seeking a healthier, nutritious and more sustainable diet.

Every new finding brings new questions. For example, can we expect to identify these
dietary proteins in other food sources such as macro/microalgae, insects and fungi? Are
there striking differences among resistant proteins from different food sources? How do
these protein categories modulate the physiological behaviour of the other food constituents
in the large intestine? Can these proteins be ex situ synthesised? Can we use these proteins
to design the future of food according to the citizen’s health requirements? Perhaps
the first step is to elucidate further the physicochemical and biological peculiarities that
characterised these new proteinous dietary fibre constituents.
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