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Abstract

To meet the high thickness accuracy requirements in cold-rolling processes, a roll eccentric-

ity signal extraction method based on modified particle swarm optimization and wavelet

threshold denoising (MPSO-WTD) with intrinsic time-scale decomposition (ITD) is pro-

posed. The strong denoising ability of the wavelet is combined with the decomposition and

recognition attributes of ITD for non-stationary signals. Periodic disturbances in strip thick-

ness caused by roll eccentricity are actively compensated. First, the wavelet is used to

denoise the signal and the MPSO algorithm is applied to determine a rational threshold and

improve the calculation efficiency. Then, the denoised signal is decomposed into proper

rotational components (PRCs) using the ITD method, and an appropriate PRC component

representing the eccentricity signal is extracted. Finally, the eccentricity compensation sig-

nal is applied in the automatic gauge control (AGC) system of the cold rolling mill. During the

rolling process, the rolling speed is not constant and will directly affect the frequency of the

roll eccentricity signal. To solve this problem, an encoder is installed at the end of the roll

and the compensation frequency of the roller eccentricity signal is determined in the roller

eccentricity compensation system according to the pulse number output. The results of sim-

ulations and experiments show that roll eccentricity signals extracted using the proposed

method can effectively remove the influence of interference signals. An average improve-

ment of 62.3% in the roll eccentricity compensation effect was achieved under the stable

rolling condition in the finishing rolling stage.

1. Introduction

In strip production, aluminum alloy strip quality is one of the most important factors affecting

consumer selection when deciding among similar competing products. Strip quality is mainly

assessed by thickness error and flatness error. In the rolling process, many factors can affect

strip quality by causing deviation in thickness or defects, and roll eccentricity is a key factor

[1]. Roll eccentricity often exists in strip rolling processes, and is generally caused by inexact

roll grinding, work roll, or back-up roll ovality [2].
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The existence of roll eccentricity can lead to periodic fluctuations in rolling force and roll gap

and may adversely affect the control effects of traditional automatic gauge control (AGC) systems

[3]. Thus, roll eccentricity compensation is essential. Accurate compensation relies on accurately

extracting the eccentricity signal, which can be affected by a variety of disturbance signals.

At present, there are a variety of methods for analyzing roll eccentricity signals, such as neu-

ral network prediction methods [4–7], fast Fourier transform (FFT) and modified FFT

(MFFT) algorithms [8–10], and wavelet transforms. A neural network-based technique was

previously presented for identifying three key factors of roll eccentricity based on the mea-

sured angular velocity of rolls [11]. However, only the fundamental wave can be identified

leading to limited compensation accuracy. Rolling mill stands without angular velocity sensors

are common due to cost constrains and economic considerations [12]. Furthermore, large

amounts of data are required to train the models, which places high demands on hardware sys-

tems resulting in low calculation efficiency [3]. The Fourier transform is widely used to process

linear stationary signals and can be used to effectively analyze the frequency characteristics of

signals. However, the method is not suitable for processing local signal information and intro-

duces distortion in denoising nonlinear and non-stationary signals [13–15]. Although the dif-

ference evolution algorithm used in the MFFT removes some restrictions of the traditional

Fourier transform computational efficiency is reduced [12].

In contrast to the FFT, wavelet transform analysis offers good localization characteristics in

both the time and frequency domains [16]. Moreover, the wavelet transform is not restricted

by sampling duration requirements or influenced by signal acquisition noise, and has therefore

been widely used in denoising operations. The wavelet threshold denoising method can conve-

niently and flexibly extract roll eccentricity signals. However, it should be noted that frequency

aliasing and redundant images can emerge during wavelet decomposition and reconstruction

process [17], therefore, the method does not guarantee that roll eccentricity components will

reflects the real situation in rolling mills.

Many scholars have attempted to overcome the frequency aliasing phenomenon in wavelet

decomposition using demodulation methods or combining wavelet denoising with various

algorithms. Demodulation methods include generalized demodulation signal decomposition

[18], iterative generalized demodulation [19], and parameter resolution modulation [20]. Fre-

quency demodulation methods can eliminate cross interference among signal components

under certain conditions, however, instantaneously intersecting frequency signal components

cannot be separated. An eccentricity signal extraction method combining improved wavelet

denoising and ensemble empirical mode decomposition (EEMD) was previously proposed [3].

The EEMD method can suppress the frequency aliasing phenomenon of the wavelet algorithm

and improve the eccentric signal extraction accuracy. However, when dealing with time-vary-

ing non-stationary signals, the number of signal components obtained by EEMD is usually

larger than the actual number of characteristic components, therefore, false components with

no correlation to the signal characteristics may arise, and calculation efficiency is low [21].

The intrinsic time-scale decomposition (ITD) method can overcome spectral aliasing and

has high computational efficiency and precision, however, its noise resistance is poor [21]. At

present, the ITD method is mainly used in the field of mechanical fault diagnosis for diagnos-

ing gear faults [22] and diesel engine faults [23]. Previous research has demonstrated high

accuracy of the ITD method in signal feature extraction.

Roll eccentricity is not constant in rolling process. For instance, the threading situation as

well as speed up/down situation, the rolling speed varies quickly, so as to the change of eccen-

tricity frequency, and the eccentricity amplitude will also vary due to the abrasion of rolls [12].

To improve the accuracy of roller eccentricity signal compensation, the influence of rolling

speed and roll wear on eccentricity signal should be considered.
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To improve roll eccentricity signal extraction, this paper proposes an MPSO-WTD method

with ITD. The algorithm combines the advantages of wavelet analysis with those of the ITD

method. To prevent changes in rolling speed from influencing the roller eccentricity signal

compensation system, an encoder is installed at the end of the roll and the compensation fre-

quency of the roller eccentricity signal is controlled according to the pulse number output.

Roll wear accumulates slowly and can influence product yield. To further ensure stability of

the control system, the eccentricity compensation signal is periodically modified online

according to the set rolling production requirement.

Finally, to verify the effect of the eccentricity compensation signal on improving strip thick-

ness characteristics, compensation signals were input into the AGC system of a four-high irre-

versible cold strip rolling mill.

2. MPSO-WTD method

2.1 Wavelet threshold function

Denoising methods using wavelet thresholding are based on the assumption that the energy of

the useful part of the signal will be concentrated in a small number of large-amplitude coeffi-

cients. However, most noise energy is dispersed throughout a large number of small-amplitude

coefficients. Based on this fact, wavelet coefficients corresponding to the signal will be greater

than the noise after wavelet decomposition. The noise can be suppressed by selecting a suitable

threshold and properly processing the wavelet coefficients and the main signal features can be

preserved. Thus, the key factors in wavelet thresholding are threshold estimation and construc-

tion of the thresholding function [24]. That is, after a suitable threshold is selected, an appro-

priate thresholding function can be used to compress the wavelet coefficients.

Soft and hard thresholding functions are the most used. Overall discontinuity of hard thresh-

olding functions can lead to abrupt shock points in denoised signals, which is particularly obvi-

ous when the noise level is high [25]. When a soft thresholding function is used, there will be

some deviation between the estimated wavelet coefficient and the real signal wavelet coefficient

[26]. In this paper, a new thresholding function is adopted [24]. The new thresholding function

is a compromise between hard thresholding and soft thresholding. The constant deviation

between the estimated wavelet coefficient and the wavelet coefficient of noisy signals can be

modified by changing the value of the regulation coefficient α. The thresholding function is

ô j;k ¼ oj;k � sgnðoj;kÞ
sin

p

2
�
l

oj;k

 ! !

0; ðjoj;kj < lÞ

a

� l; ðjoj;kj � lÞ ð1Þ

8
>><

>>:

where α is the regulation coefficient and λ is the threshold. This new thresholding function has

the same continuity as the soft thresholding function in the wavelet domain but approaches the

hard thresholding curve as the wavelet coefficients increase [24].

The wavelet denoising effect is improved by selecting the optimal threshold. The new

thresholding function in Eq (1) improves the flexibility of the threshold function and allows

the wavelet threshold values to be adaptively selected, to a certain extent. In this paper, the

Donoho threshold is used and can be expressed as

lj ¼ sj

ffiffiffiffiffiffiffiffiffiffiffi
2ln nj

q
ð2Þ

where λj is the wavelet threshold of layer j; nj is the length of the wavelet coefficient on scale j;

sj ¼ MADðjoj;kj; 0 � k � 2j� 1Þ=q, MAD(.) is an operator that computes the median value.
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The wavelet threshold of each layer can be obtained using the gradient iteration method.

Long iteration times and complex characteristics of roll eccentricity signals will reduce the

denoising effect. In this paper, the modified particle swarm optimization (MPSO) algorithm is

used to search for the optimal threshold and shape adjustment parameters using the root mean

square error (RMSE) between the original signal and denoised signal as fitness function.

2.2 Wavelet threshold optimized by MPSO

Particle swarm optimization (PSO) has the advantages of a simple concept that is easy to

implement and fast convergence. Each particle represents a possible solution to an optimiza-

tion problem and characteristics of a particle include its fitness value, velocity, and position.

The fitness value is calculated using the adaptation function. In each iteration, the particle

velocity (V) and position (X) are updated, as follows:

Vkþ1

id ¼ oV
k
id þ c1r1ðP

k
id � Xk

idÞ þ c2r2ðP
k
gd � Xk

idÞ ð3Þ

Xkþ1

id ¼ Xk
id þ Vkþ1

id ð4Þ

Vid ¼ Vmax Vid > Vmax

Vid ¼ � Vmax Vid < � Vmax

ð5Þ

(

where ω is the inertia weight; d = 1, 2, . . ., D; i = 1, 2, . . ., n; k is the current number of itera-

tions; c1 and c2 are acceleration coefficients; Pid is the best position of the individual particle,

pgd is the optimal position of the whole particle swarm.

The PSO algorithm can easily fall into local optima, resulting in premature convergence.

During the solution process, the algorithm considers a variety of information including previ-

ous information of the individual, the best position of each particle, and the best position of

the total swarm. However, the influence of other individual particle information on particle

motion is not considered. Here, a modified particle swarm optimization (MPSO) algorithm is

introduced into the threshold determination process [27]. The particle velocity in Formula (3)

is updated as follows:

Vkþ1

id ¼ oV
k
id þ c1r1ðP

k
nd � Xk

idÞ þ c2r2ðP
k
gd � Xk

idÞ ð6Þ

where Pnd ¼
1

n

Xn

i¼1

Pid is the average best position of all individual particles.

The main advantage of MPSO is the solution process, which seeks the optimal particle solution.

Each particle not only obtains its own optimal position information, but also learns from informa-

tion about other individual particles in the group. In this way, the particle search direction is deter-

mined using more effective information, leading to faster convergence rates. The MPSO algorithm

is found to have higher search accuracy and stronger optimization ability, with great improvements

in stability and convergence speed compared with the traditional PSO algorithm [28].

In general, the root mean square error (RMSE) between reconstructed signals and original

signals is the standard measure of a reconstructed signal quality, expressed as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

XN

i¼1

f ðiÞ � ^f ðiÞ
h i2

v
u
u
t ð7Þ

where f(i) is the original signal and f̂ ið Þ is the denoised signal.
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According to Eq (1), when threshold λ and regulation coefficient α are selected, the

wavelet coefficient of the thresholding function can be obtained; that is, the recon-

structed signal can be determined after denoising. Therefore, the vector composed of

threshold λ and coefficient α can be regarded as the particle position in the MPSO algo-

rithm and represents a potential solution vector. The corresponding fitness value is

obtained using Eq (7).

The MPSO process for optimizing the wavelet threshold algorithm is illustrated in Fig 1.

The specific steps are as follows:

Step 1: Signal preprocessing. Collect the rolling force signal, select the appropriate wavelet

basis function, and determine the number of decomposition layers N.

If the number of decomposition layers is too large, threshold processing of the wavelet spa-

tial coefficients of each layer will cause serious signal information losses, the signal-to-noise

(SNR) ratio will be reduced, and the computing speed will be slow. Similarly, an insufficient

number of decomposition layers will also affect the final denoising effect. Here, the SNR of

the denoised signal is repeatedly calculated using Eq (8) and the number of decomposition

layers N is optimal. The SNR is calculated as

SNR ¼ 10log
10

f ðiÞ
f̂ ðiÞ

ð8Þ

Step 2: Signal decomposition. Decompose the initialized signal to obtain the wavelet coeffi-

cients of each layer.

Step 3: Parameter optimization. Optimize the wavelet coefficients of each layer using the

MPSO algorithm. The specific method is as follows:

Initialize the search space and position of the MPSO algorithm. Different thresholds should

be set for different layers, in which the particle position consists of threshold λ and regula-

tion coefficient α.

(1) Calculate the fitness value of each particle according to Eq (7).

Fig 1. Flow chart of MPSO-WTD algorithm.

https://doi.org/10.1371/journal.pone.0259810.g001
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(2) Use Eqs (4) and (6) to update the velocity and position of the particle.

(3) Update position Pnd as the average of the best position of all particles in the total popu-

lation and optimal value Pi of the current position of each particle. Compare the new

value with the previous optimal value.

(4) Repeat steps (2)-(4). The optimal value of the wavelet threshold of the current layer j is

obtained when the termination condition or maximum number of iterations is

reached.

Step 4: Signal reconstruction. Use the optimal threshold λ and regulation coefficient α of

each decomposition layer to denoise the signal and output the denoised signal.

2.3 ITD method

The ITD method is self-adaptive and can decompose complex non-stationary signals into sev-

eral PRCs and a monotonic trend component. The method calculates the instantaneous fre-

quency and amplitude of each rotation component in each local period using a piecewise

method, which can overcome mode aliasing and realize real-time data processing [29, 30].

Thus, the ITD method is suitable for online signal data processing. In addition, the baseline

(mean curve) definition is derived through linear transformation of signals, which can shorten

the calculation time and reduce error in the fitting process, thereby achieving high calculation

efficiency and high calculation accuracy.

The basic steps of ITD are described below, where L is defined as the baseline extraction

operator for signal Xt.

Defining Lt = LXt, the operator can be used to represent the baseline curve of the signal

with Xt = Lt + Ht, where Ht is defined as a reasonable PRC.

The specific operation process can be described as follows:

(1) Determine the extreme value Xk and corresponding time τk of signal Xt(t� 0), where M is

the number of extreme points.

(2) Determine extraction operator L of the piecewise linear baseline of the signal:

L ¼ Lk þ ðLkþ1 � Lk=Lkþ2 � LkÞðXt � XkÞ; t 2 ðtk; tkþ1Þ ð9Þ

with

Lkþ1 ¼ a Xk þ
tkþ1 � tk
tkþ2 � tk

� �

ðXkþ2 � XkÞ

� �

þ ð1 � aÞXkþ1 k ¼ 1; 2; . . . ;M � 2

where 0< α< 1. Normally, α is 0.5.

(3) Define the PRCs used to extract the operator.

H1

t ¼ HXt ¼ Xt � LXt ¼ Xt � L1

t ð10Þ

where H1
t is the PRC component with the highest frequency and baseline signal L1

t can be used

as the initial signal.
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(4) Repeat steps (1)-(3) until the baseline signal is a monotone function or a constant func-

tion. Then the original signal can be decomposed into

Xt ¼ LXt þHX ¼ HXt þ ðH þ LÞLXt

¼ ½Hð1þ LÞ þ L2�Xt ¼ H
XP� 1

K¼0

LK þ LP

" #

Xt

¼ H1
t þH2

t þH3
t þ

. . . HP
t þ R

ð11Þ

where HP
t is the pth rotation component and R is a monotone function or residual term.

In the signal decomposition process with ITD, the local mean value of the signal is calcu-

lated by extracting the local extreme value of the signal. However, the distribution of extreme

points of the signal will be affected by environmental noise and the anti-noise performance of

the ITD method is poor. To improve the accuracy of signal feature extraction, it is necessary to

eliminate noise in the ITD signal as much as possible. Therefore, the MPSO-WTD method is

adopted as a denoising pretreatment.

3. Simulation experiment

The roll eccentricity signal of a cold rolling mill can be represented by the rolling force signal,

roll gap signal, and other signals. Therefore, the roll eccentricity signal can be regarded as a

series of superimposed high-frequency sinusoidal periodic waves and a complex signal com-

posed of random noise signals. The frequency depends on the speed of the support roller [3].

Here, the influence of roller thermal deformation and wear on the amplitude of the eccentric-

ity signal is not considered. The eccentricity signal of a four-high non-reversible cold rolling

mill is defined as

f ðtÞ ¼ 0:03sinð10t þ 7:3Þ þ 0:018sinð9:23t þ 15:2Þ þ nðtÞ ð12Þ

where n(t) is a random noise signal.

In this study, the cofi5 wavelet basis function was used to decompose the signal. The num-

ber of decomposition layers was 7 and the signal was decomposed using the above method.

The threshold value (λ) and the adjusting parameter (α) were determined using an iterative

method and the MPSO algorithm, respectively. The reconstructed signal after denoising is

shown in Fig 2. Compared with the gradient iteration-wavelet denoising algorithm, the

MPSO-WTD algorithm can better retain the original signal information. The RMSE of the

results obtained using the MPSO-WTD algorithm and iterative method were 0.16 and 0.28,

respectively, and the corresponding SNRs were 9.13 and 7.24. The results show that

MPSO-WTD not only improves the denoising effect of eccentricity signals, but also preserves

singularity of the original signal.

Fig 3 shows approximate waveforms obtained using the coefficients of each layer of the

wavelet decomposition. It is known that d5 can reflect the roll eccentricity signal by Fourier

analysis. The amplitude-frequency characteristics of d5 are shown in Fig 4. The signal

extracted using the wavelet decomposition method has unrelated frequency information,

which will result in interference in the reconstructed eccentricity signal.

The signal model presented in Eq (12) was decomposed by the ITD method and the result

is shown in Fig 5. The amplitude-frequency characteristics of each PRC are shown in Fig 6.

While PRC2 contains eccentricity signals of 1.6 Hz and 1.45 Hz, other spurious frequencies

can be observed. Moreover, an eccentricity signal with a frequency of 1.6 Hz is present in

PRC1 and PRC3. The results show that noise will disturb the distribution of extreme points in
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the signal in the ITD process; therefore, the accuracy of the calculated results will be affected.

To improve the accuracy of signal feature extraction, it is necessary to eliminate the influence

of noise signals in eccentricity signal extraction by ITD as much as possible.

The MPSO-WTD-ITD method was used to extract the roll eccentricity from the model pre-

sented in Formula (12). The results are shown in Figs 7 and 8. The eccentricity signal was

decomposed into one PRC component and one residual component, as shown in Fig 7. Fou-

rier analysis was performed on the PRC component, as shown in Fig 8. The results are consis-

tent with those obtained by the wavelet and ITD algorithms. The proposed MPSO-WTD-ITD

method can suppress spectrum aliasing and spectrum chaos phenomena in wavelet decompo-

sition, reduce the influence of noise signals, and accurately extract the characteristic frequency

of the eccentricity signal.

Fig 2. Comparison of signal denoising effect.

https://doi.org/10.1371/journal.pone.0259810.g002

Fig 3. Approximated waveforms using coefficients of each layer of the wavelet decomposition.

https://doi.org/10.1371/journal.pone.0259810.g003
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4. Experimental verification

4.1 Experimental setup

A four-high cold rolling mill was used in the experiment, as shown in Fig 9. A block diagram

of the test control system is presented in Fig 10. Tests were carried out using a pressure sensor,

encoder, data acquisition card, and data processor. The data acquisition card was used to col-

lect the rolling force signal measured by the pressure sensor. The processing unit of the eccen-

tricity compensation signal was then used to obtain the roll eccentricity compensation signal.

The data processing unit determines the time of sampling and the time interval for sampling

according to the number of pulses obtained from the encoder. Finally, the eccentricity com-

pensation signal, position of the hydraulic cylinder obtained by the sensor, and set value of the

roll gap were determined. The output signal was amplified by a servo amplifier and sent to the

servo valve to control the hydraulic cylinder.

Fig 4. Amplitude-frequency characteristics of d5.

https://doi.org/10.1371/journal.pone.0259810.g004

Fig 5. Intrinsic time-scale decomposition (ITD).

https://doi.org/10.1371/journal.pone.0259810.g005
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4.2 Test procedure

4.2.1 Extraction of roll eccentricity signal. The easiest way to measure roll eccentricity is

by recording fluctuations in the rolling force under rolling mill preloading [22]. The acquisi-

tion period was 0.01 s and the rolling speed was 3.5 m/s. A representative rolling force signal is

shown in Fig 11.

4.2.2 Compensation of roll eccentricity. 4.2.2.1 Determination of signal sampling time.

To accurately calibrate the compensation signal to the corresponding position of the roll,

the number of sampling points and the number of eccentricity signal compensation points

Fig 6. Amplitude-frequency characteristics of each proper rotation component (PRC).

https://doi.org/10.1371/journal.pone.0259810.g006

Fig 7. Signal decomposition by MPSO-WTD-ITD.

https://doi.org/10.1371/journal.pone.0259810.g007
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should be the same after one complete rotation cycle of the roll. To prevent changes in roll-

ing speed from affecting the accuracy of eccentricity compensation at each compensation

position, an encoder was installed on the support roll. The data processing unit determines

the sampling time according to the number of encoder pulses. For example, if the control

cycle of the system is 0.01 s, the roll rotates once every 0.6 s; the encoder will emit 1200

pulses, and the system will collect samples at 20-pulses intervals. When the rotation time of

the roll changes to 0.5 s, the system will collect samples at 24-pulses interval. The number of

sampled points is the number of points compensated within the compensation period of the

current eccentricity signal.

4.2.2.2 Eccentricity signal conversion. In this study, the AGC system of the cold rolling mill

adopted a closed-loop position control method. The roll gap value was controlled by control-

ling the hydraulic cylinder displacement. Therefore, it was necessary to convert the extracted

Fig 8. Amplitude-frequency characteristics.

https://doi.org/10.1371/journal.pone.0259810.g008

Fig 9. Four-high cold rolling mill.

https://doi.org/10.1371/journal.pone.0259810.g009
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rolling force eccentricity signal4Pe into displacement compensation quantity e using the fol-

lowing formula:

e ¼
KM þ KS

KMKS
DPe ð13Þ

where KM is the plasticity coefficient of the rolled piece and KS is the rolling mill stiffness.

The roll eccentricity signal compensation process with MPSO-WTD-ITD is shown in Fig

12. The specific steps of the process can be summarized as follows:

Fig 10. Block diagram of the control system for eccentric compensation. 1. Gap sensor 2. Hydraulic cylinder 3.

Pressure sensor 4. supporting roll 5.Workpiece 6. Work roll.

https://doi.org/10.1371/journal.pone.0259810.g010

Fig 11. Rolling force signal.

https://doi.org/10.1371/journal.pone.0259810.g011
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(1) The rolling force signal was collected from the rolling mill under the no-load condition.

The rolling thickness, fluctuation in hardness, and other factors were not considered. The

signal was preprocessed with MPSO-WTD for denoising.

(2) The ITD method was used to extract the rolling force eccentricity signal.

(3) According to Eq (13), the extracted rolling force eccentricity signal was converted into the

displacement compensation signal.

(4) The compensation signal was input into the AGC system of the rolling mill, and a point-

to-point eccentricity signal of the roll was realized according to the number of signal

pulses output by the encoder.

(5) The output displacement was obtained according to the compensation signal, set value of

the roll gap, and actual position of the hydraulic cylinder, and the position of the hydraulic

cylinder of the hydraulic press was controlled by the servo amplifier and electro-hydraulic

servo valve.

As shown in Fig 13, the roll eccentricity compensation signal was obtained using the

wavelet algorithm and MPSO algorithm, and can be divided into 56 equally spaced points.

Fig 12. Roll eccentricity signal compensation process.

https://doi.org/10.1371/journal.pone.0259810.g012

Fig 13. Eccentric compensation signal.

https://doi.org/10.1371/journal.pone.0259810.g013
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4.3 Analysis of test results

The controlled plant in the experiment was a four-high cold rolling mill. The work roll diame-

ter was 300 mm, and the backup roll diameter was 600 mm. The rolling speed was 3.5 m/s.

The entrance thickness of the aluminum alloy 3004 strip was 1 mm, and the outlet thickness

set-point was 0.52 mm. During the experiment, the rolling force data were updated with the

newly sampled data in each control step.

Figs 14 and 15 show the control effect of roll eccentricity compensation on strip thickness

using the MPSO-WTD-ITD method. Fig 14 shows the control effect on strip thickness in the

increasing rolling speed stage. Fig 15 shows the control effect on strip thickness in the stable

rolling stage. The experimental results suggest that roll eccentricity compensation effect is bet-

ter during the stable rolling stage. Strip thickness compensation can be achieved even when

Fig 14. Effect of eccentricity compensation on strip thickness in accelerated rolling stage.

https://doi.org/10.1371/journal.pone.0259810.g014

Fig 15. Effect of eccentricity compensation on strip thickness in stable rolling stage.

https://doi.org/10.1371/journal.pone.0259810.g015
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the rolling speed is not uniform due to high precision of the roll eccentricity signal extraction

process and control system.

The roll eccentricity compensation effect can be expressed as the rate of improvement in

strip thickness characteristic R using the following formula:

R ¼
He � H

H
ð14Þ

where He is range of strip thickness fluctuation when roll eccentricity is controlled and H is

the range of strip thickness fluctuation when roll eccentricity is not controlled.

The eccentricity compensation achieved by the two methods was input into the auto-

matic gauge control (AGC) system of the cold rolling mill. The effects of roll eccentricity

compensation in the stable rolling stage are presented in Table 1. A total of 100 strip thick-

ness values were collected for normal distribution statistical analysis. It can be concluded

that the probability of a strip thickness error of ±3.5μm is about 96%, and the roll eccentric-

ity compensation effect reaches 62.3% during steady-state rolling.

5. Conclusions

A roll eccentricity extraction method based on MPSO-TWD and ITD was proposed to

improve the accuracy of roll eccentricity signal extraction. Simulations were carried out the

roll eccentricity compensation signal and were also input into the AGC system of a four-high

cold rolling mill to verify the results. The main conclusions of this study can be summarized as

follows:

(1) The gradient iteration method and MPSO algorithm were used to calculate the threshold

and coefficient of wavelet, respectively. The simulation results show that the MPSO-WTD

method has better denoising effects. Comparing the denoising effects of ITD,

MPSO-WTD, and MPSO-WTD-ITD on roller eccentricity signals, the simulation results

show that the proposed method avoids the frequency aliasing phenomenon of wavelet

analysis and poor anti-noise performance of the ITD method. The proposed method has

high precision in extracting roller eccentricity signals.

(2) To avoid the influence of rolling speed on the frequency of the roll eccentricity signal,

the frequency of the eccentricity compensation signal is determined according to the

number of encoder pulses. Due to the complexity of the rolling process and accuracy

limitations of the test equipment, the strip thickness control will be affected. However,

the experimental results show that the proposed method is satisfactory. It can be con-

cluded that 96% of the strip thickness errors can be controlled to ±3.5μm and the roll

eccentricity compensation effect reaches 62.3% during steady-state rolling by collected

100 strip thickness.

Table 1. Effects of roll eccentricity compensation in stable rolling stage.

Thickness of end rolling strip

(mm)

Variation of strip thickness at outlet (μm) (Finish rolling) Improvement strip

thickness characteristic (R)

Without roll eccentricity

control

Roll eccentricity control

(wavelet)

Roll eccentricity control

(MPSO-WTD-ITD)

Wavelet MPSO-WTD-ITD

0.52 ±9.3 ±4.5 ±3.5 51.6% 62.3%

https://doi.org/10.1371/journal.pone.0259810.t001
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