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Abstract

Optimal placement of deep brain stimulation (DBS) therapy for treating movement disorders

routinely relies on intraoperative motor testing for target determination. However, in current

practice, motor testing relies on subjective interpretation and correlation of motor and neural

information. Recent advances in computer vision could improve assessment accuracy. We

describe our application of deep learning-based computer vision to conduct markerless

tracking for measuring motor behaviors of patients undergoing DBS surgery for the treat-

ment of Parkinson’s disease. Video recordings were acquired during intraoperative kine-

matic testing (N = 5 patients), as part of standard of care for accurate implantation of the

DBS electrode. Kinematic data were extracted from videos post-hoc using the Python-

based computer vision suite DeepLabCut. Both manual and automated (80.00% accuracy)

approaches were used to extract kinematic episodes from threshold derived kinematic fluc-

tuations. Active motor epochs were compressed by modeling upper limb deflections with a

parabolic fit. A semi-supervised classification model, support vector machine (SVM), trained

on the parameters defined by the parabolic fit reliably predicted movement type. Across all

cases, tracking was well calibrated (i.e., reprojection pixel errors 0.016–0.041; accuracies

>95%). SVM predicted classification demonstrated high accuracy (85.70%) including for

two common upper limb movements, arm chain pulls (92.30%) and hand clenches

(76.20%), with accuracy validated using a leave-one-out process for each patient. These

results demonstrate successful capture and categorization of motor behaviors critical for

assessing the optimal brain target for DBS surgery. Conventional motor testing procedures
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have proven informative and contributory to targeting but have largely remained subjective

and inaccessible to non-Western and rural DBS centers with limited resources. This

approach could automate the process and improve accuracy for neuro-motor mapping, to

improve surgical targeting, optimize DBS therapy, provide accessible avenues for neuro-

motor mapping and DBS implantation, and advance our understanding of the function of dif-

ferent brain areas.

Introduction

Neurodegenerative disorders such as Parkinson’s disease (PD) are prevalent, affecting around

1.6% of the population [1]. Deep brain stimulation (DBS) is a well-established treatment of

PD, targeting its motor, non-motor, and quality-of life implications. Treatment efficacy is

dependent in part on optimal electrode placement [2–6]. Implantation into the subthalamic

nucleus (STN) or globus pallidus internus (GPi), depending on the intended target, is aided by

performing microelectrode recordings (MER) and evaluating kinesthetic responses [2–4, 6–9].

Awake protocols are generally advantageous, as patients exhibit improved outcomes given the

ability to make decisions on electrode placement in the operating room with feedback [7, 10].

While this method for gauging motor relationships is effective [8, 11], it is accomplished

through the subjective assessment of a trained clinician. This method produces interrater reli-

ability concerns, steep learning curves, and likely misses important information that exists

below the threshold of human detection. These challenges may be addressed with motion

tracking and artificial intelligence technologies [12–18]. Contemporary advancements in

computational capacity and machine learning offer such improvement towards a more objec-

tive, efficient, and automated assessment, especially useful for clinics with fewer resources and

knowledgeable clinicians to effectively carry out and manage DBS implantation and

adjustment.

The primary objective of this study was to improve the objectivity and automation of motor

assessment in the operating room during motor mapping. This issue has been addressed in the

past with traditional motion tracking software dependent on sensors or markers for object

detection [19], which can be cumbersome, require expensive equipment, and additional setup.

Thus, it is prohibitive for certain operating room (OR) environments. Recent developments in

machine learning and markerless image tracking allow for simple setups ideal for the OR that

require only video data. One program well-suited for this type of motion tracking is DeepLab-

Cut (DLC), an open-source Python-based suite [20] used to track points of interest in video

recordings. It has been used for collection of kinematic data across a myriad of organisms in

diverse settings, including in neuroethological and human-based studies [21, 22]. Additionally,

it is adaptable to low camera resolutions and variable light conditions [20–22]. This markerless

approach exhibits acceptable or better effectiveness at motion tracking in human-based studies

when compared to inertial and electromagnetic sensors [23] and infrared physical markers

[24–27]. Several recent studies have employed DLC in clinical settings to track joints of the

body, with evidence of reliability [25, 28], further bolstering its clinical applicability and utility.

DLC has repeatedly demonstrated better performance and greater versatility in markerless

label placement compared to other markerless methods like OpenPose and LEAP, which do

not permit network retraining and comparatively have shallower, less robust networks [26, 27,

29, 30]. Pereira et al. (2022) recently augmented the functionality of LEAP as SLEAP for label-

ing and tracking in multi-animal experiments [31]. The open-source nature and low-cost
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implementation (only requiring a camera and computer setup) of DLC further elucidate its

clinical utility, especially in non-Western and/or underfunded movement disorders centers

[22, 32]. This machine learning-based pipeline could also prove useful for ruralized and

under-resourced DBS clinics; employing an objective pipeline for movement identification

and classification may alleviate concerns regarding clinician expertise and implantation effi-

cacy, thereby improving quality of care [33]. Additional pioneering work has employed DLC

in real-time [34–38], thereby demonstrating the potential for immediate feedback in an oper-

ating room setting.

Previous studies have employed two-dimensional pose estimation in conjunction with

binary classification or principal component analysis to automatically extract features of gait

aligning with clinical parameters and bradykinesia indicators to assess Parkinson’s disease

severity [39–41]. Recent groups have demonstrated utility of machine learning and markerless

pose estimation approaches for sit-to-stand gait analysis [17], classification of ataxia severity

[18], and hand movements [42] diagnosis of a myriad of neurodevelopmental disorders, with

promising results. Others have used less-robust decision tree, discriminant analysis, and near-

est-neighbor machine learning algorithms to automatically score the severity of tremor in Par-

kinson’s disease patients [14, 15, 43]; as well as to facilitate DBS adjustment [44]. Recent

groups have also added the ability to perform near real-time classification of human and ani-

mal movement using random forest classifiers [45]. However, to our understanding, the use of

markerless pose estimation, deep neural networks, and support vector machines (SVM) for

movement classification and optimal DBS placement is a novel application.

Here we use DLC to identify episodes of upper-body motor behaviors in patients with PD

undergoing DBS implantation surgery, and subsequently distinguish these episodes using a

binary classifier system. This is achieved by using markerless image tracking with DLC to fol-

low body parts and extract episodes of two upper-body movements from initiation to termina-

tion as Euclidean distance epochs. To our knowledge, this study pioneers an approach to

objectively identifying motor behaviors in the OR to assist clinicians’ judgment in functional

MER for DBS electrode targeting. This approach is especially attractive as DLC’s robust output

data can easily be refined into meaningful epochs and categorized by simple MATLAB com-

mands. These results suggest that markerless tracking tools are a promising method for track-

ing kinematics in the OR and aiding in optimal DBS placement. This tool is particularly

lucrative for under-resourced clinics; an investigation of non-Western deep-brain stimulation

centers often in underdeveloped countries revealed that in some clinics, decisions on DBS can-

didacy and placement did not include a movement disorders neurologist (10.4%) or did not

involve a committee whatsoever (53.5%) [46]. 33% of clinics did not employ a neurologist for

DBS programming and 69% reported underutilization of DBS due to poor clinician knowledge

[47]. The potential for this tool as a low-cost, automated method for identifying and evaluating

motor behaviors in movement disorders has great utility in clinical settings with funding and

staffing issues or ruralized difficulties that would otherwise be limited in offering DBS

therapies.

Materials & methods

Study participants & enrollment

We collected intraoperative kinematic recordings from five subjects (5 male) recruited at the

University of Colorado Anschutz Medical Campus through the Movement Disorders Center

from the population of adult patients undergoing STN-targeted DBS surgery for treatment of

PD. Given the demographic of patients within the Movement Disorders Center (MDC) at the

medical campus, the predominant patient demographic centered around older-aged white
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men. In addition, other participants’ kinematic recordings, some of whom were women,

yielded severely occluded videos. This was typically due to operating room dynamics and was

unrelated to participant gender or racial identity. Surgical candidacy was assessed by a clinical

panel composed of representatives from neuropsychology, neurology, neuroradiology, and

neurosurgery, and determined based on well-established eligibility criteria [48]. Our study was

carried out in accordance with the Colorado Multiple Institution Review Board (COMIRB;

#17–1291) and Declaration of Helsinki with written informed consent obtained from all study

subjects. For all subjects, written consent was received prior to surgical date and photocopies

of their complete, signed consent were provided back to them.

Intraoperative procedures

Following standard imaging-based stereotactic planning for trajectory and surgical targeting,

intraoperative MER were used to locate the STN, using a standard approach detailed in prior

work [49].

Acquisition

Two FLIR cameras (USB 3.0 Blackfly) mounted on monopods (Avella A324D Aluminum 67

Inch Video Monopod) were oriented to capture motor testing (Fig 1A). To maximize the

chances that an unobstructed view of the full range of motion be captured, one camera was

positioned at the foot of the bed, and the other across the bed from where motor testing would

occur. Cameras were connected to an independent laptop that triggered image capture using a

custom Python script. A movement disorders neurologist assisted the patient in carrying out

movements during video capture in a manner standard for the clinical evaluation of voluntary

movements in assisting target localization for DBS.

Processing

Kinematic data extraction. The two cameras were calibrated following data collection in

the operating room. Calibration was performed to ensure that triangulation of video capture

accurately labelled pertinent features [50]. This process used recordings of a checkerboard

apparatus across the visual field, whereby corner detection was confirmed using a Python

script. Relevant information was extracted, including camera angle (front and side) and video

type. Individual frames were randomly selected to evaluate accuracy of checkerboard corner

identification. This manual process ultimately confirmed the feature detector quality of Dee-

pLabCut prior to kinematic data extraction. Inadequate frames were removed, as were paired

frames from the other camera angle. Remaining frames were subjectively reviewed to further

evaluate calibration. A mean reprojection pixel error threshold of<1 pixel was sought, which

identifies the geometric error between a predicted versus actual point of interest in the visual

field.

Following video acquisition, kinematic data were extracted post-hoc utilizing standard pro-

cedures developed as open-source tools within the DeepLabCut v2.2b6 suite [20]. Unique

models were constructed using k-means clustering to isolate a subset of frames. Despite the

wealth of evidence pointing to the effects of movement disorders on lower limb activity [1, 6,

9, 39, 51, 52], such aspects were not included in the present analysis due to the patient position

in the operating room; a blanket was covering the patient during the awake DBS implantation

and conducting analyses of lower limb kinematics would prove uncomfortable or unsafe for

the patient. In addition, data were passively collected while the neurologist conducted their

routine motor testing without explicit interaction from or coordination with the research

recording to ensure unobtrusive collection and to test the performance of our approach on the
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Fig 1. Processing workflow from DLC and post-hoc data analysis. (A) Setup of the two-camera recording system, highlighting all members

of a typical neurosurgical team. (B) Simplified neural network consisting of inputted videos and labels. (C) Consolidation and smoothing of

label trajectories into five groups, displayed on a normalized plot. Hand clench sample shown. (D) MATLAB’S findpeaks function employed

to identify movement epochs. Half-height width and peak prominence extracted for each epoch. (E) Each epoch is fitted to a parabolic

function with coefficients a, b, c to be added to the pipeline for movement type categorization.

https://doi.org/10.1371/journal.pone.0275490.g001
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often variable process of this intraoperative assessment. Twenty-one anatomical landmarks of

the ventral and dorsal hand were manually labeled in each frame, including the base of the

palm, center of the palm, metacarpophalangeal joints, proximal interphalangeal joints, distal

interphalangeal joints, and the tips of all digits (Fig 1B). In general, manual labels must be

applied for training of the network at a rate of about 100–200 frames [20], though we chose to

label μ = 776 frames per network/patient. We chose to surpass the minimum number of frames

required given the quantity of videos recorded per patient, the variations in camera quality

and background, and to ensure that no network refinement was needed. Various parameters

were adjusted prior to network training, including those responsible for training fraction and

feature tracking [20]. The pretrained ResNet-50 network was used for all neural network train-

ings, which contains 50 iteratively trained layers in object identification and probability den-

sity mapping for accurate tracking, demonstrating efficacy given a small root mean squared

error (3.09 ± 0.04) and accurate tracking on a subset of inputted data [20].

Various other parameters were adjusted to establish optimal memory allotment per training

iteration, optimal filtering and smoothing, and optimal likelihood thresholds for feature track-

ing [20] (S1 Table). Models were trained until a plateau was reached in the network perfor-

mance. The networks suggested proficient performance as indicated by>95% accuracy of

labeled test frames. In instances where accuracy was below the>95% threshold, sessions were

not considered for further evaluation. Under such standards, video samples per patient

deemed viable increased given continued refinement of parameters and training iteration

count, yielding a wealth of usable data. DeepLabCut’s native 2D median filtering was employed

as a data cleaning measure to resolve discrepancies in pose estimations not due to occlusion

[20]. No further network refinement was needed thereafter.

Movement epoch capture and processing. Data were then exported to MATLAB R2021a

wherein kinematic metrics of each label including Euclidean distance, cosine similarity, veloc-

ity, and acceleration were calculated. We used Euclidean distance as the primary extrapolation

of kinematic information for all post-hoc analyses; the inherent derivative accounted for spa-

tial deflections and a priori insights on behavior could be extracted compared to other meth-

ods involving dimensionality reduction. Movements captured included chain pulls (CP) and

hand clenches (HC). CP were defined by a starting position of 90˚ horizontal adduction and

90˚ external rotation of the glenohumeral joint, followed by repeated elbow extension and flex-

ion, like the action of a latissimus pull down. HC were defined by repeated flexion and exten-

sion of the distal and proximal interphalangeal joints of the digits, like a clenching action.

Plots of each labeled point were averaged across each digit and normalized. Palmar labels were

omitted given little movement captured during HC. All putative examples of the two behaviors

in question captured by a peak-identifying function in MATLAB were included in the pipeline.

These plots were overlayed onto the original video recordings using a MATLAB script to verify

that Euclidean distance epochs matched visually confirmed CP and HC movements as a

ground-truth comparison (S1 Table). For epoch identification and extraction in MATLAB,

ED plots were further averaged across the whole hand and smoothed, and various quality con-

trol measures were enacted to ensure only relevant movement epochs be identified (S1 Table).

These epochs were fit to the parabolic function � aðx � cÞ2 þ b, whose three coefficients

defined clusters by which inputted active motor responses were categorized and identified.

The coefficient “b” was peak prominence, and the coefficient “c” was half-height width. The

“a” coefficient was computed as b
c2 to complete the vertex form of the parabola (Fig 1D and 1E).

The final table used in the following steps included these coefficients for each instance of

movement (i.e., each epoch), and a column to code the ground-truth type of movement occur-

ring. This was done for all movements, resulting in N = 771 total epochs (Fig 2A).
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To combat errant movement epochs from rapidly successive movements (e.g., a movement

hitch during a chain pull), a custom MATLAB script isolated complete episodes from motor

initiation to termination. This was accomplished by identifying the intersection of x-values of

each epoch’s peak at its half-height width and tracing in either direction for a minimum y-

value before a change in slope direction. Provided that the minimum y-value was at or below a

defined movement threshold, each movement epoch could be extracted as one complete

motor event. These epochs could subsequently be fit to the parabolic equation as previously

described.

Binary classifier system. We aimed to build a classifier to differentiate movements using

the kinematic data derived from DLC in the OR. An optimizable support vector machine

(SVM) model was built using MATLAB’s Machine Learning Toolbox. An optimizable SVM

was chosen given its ability to continually update hyperparameters and yield the best model

outcome with a subset of data (20% holdout). Hyperparameters such as kernel function, kernel

scale, and box constraint level varied among models, whereas Bayesian optimization, iteration

count, predictor variables (n = 3; parabola coefficients), and response classes (n = 2; CP and

HC) were constant (Table 1). For the SVM model, Bayesian optimization was employed with

the acquisition function “Expected improvement per second plus.” This approach asserts that

expected improvement can be represented as:

EIðx;QÞ ¼ EQ½maxð0; mQðxbestÞ � f ðxÞÞ�

a cluster of acquisition functions that iteratively updates a Gaussian process model function

[53]. f(x) is the Gaussian model, wherein x is a bounded domain that can be numerical or cate-

gorical, implying that varying results can emerge from f(x). For the expected improvement (EI
(x, Q)) function, the expectation function within (EQ) is defined by maximum value between

the prior mean (represented as 0) and the lowest value of the posterior mean distribution at

location x (represented as μQ(xbest)) subtracted by the Gaussian model. This Gaussian process

model is also updated per second, meaning that there exists variability in the time expended to

evaluate expected improvement depending on the x values in the function. This time-weight-

ing is represented by

EIQðxÞ
msðxÞ

where the numerator represents a one-dimensional aspect of the expected improvement

Fig 2. Movement epoch parabolic approximation and coefficient clustering. (A) Samples of parabolic fits for arm

chain pulls displayed in light grey, alongside mean and standard deviation. (B) Samples of parabolic fits for hand

clenches displayed in light grey, alongside mean and standard deviation. (C) Output of t-SNE (t-Distributed Stochastic

Neighbor Embedding) to highlight distinct clusters of each movement type.

https://doi.org/10.1371/journal.pone.0275490.g002
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function (EIQ(x)) and the denominator is the posterior mean of the Gaussian process model

(μs(x)). Lastly, “plus” implies an iterative correction to the kernel function if overexploitation

occurs. The optimizable SVM model repeats this expected improvement function to correct

hyperparameters 30 times. The present model terminated with a quadratic kernel function

(Table 1). The success of the SVM binary classifier performance was assessed using predictor

variables, minimum classification error, predictive parallel coordinates, confusion matrices,

and receiver operating characteristic (ROC) curves (Fig 3). The predictor variable scatterplot

shed insight on the accuracy of the SVM model at classifying types of movement across the

sample, using the “b” and “c” coefficients to demonstrate diversity of movement epochs. The

parallel coordinates plot also showed the diversity of movement epochs, though represented as

deviations from mean values, and showed SVM performance therein. The confusion matrix

highlighted the true-positive and false-positive rates of movement classification, which was

graphically represented as ROC curves to extrapolate on SVM performance by showing its

diagnostic ability as thresholds varied.

Results

Video quality and DLC kinematic data extraction

We first assessed the quality of video data with respect to camera position and lighting condi-

tions (Fig 1A). Following the calibration process [54], mean reprojection pixel error values

ranged from 0.016–0.041, which was in line with the accepted threshold of<1 pixel [20], sug-

gesting precise camera setup and calibration. In total, 3,164 frames were labeled (2.42% of

130,800 total frames; Table 2) in video recordings. Training was carried out until a plateau in

Huber loss [20], yielding an iteration count of μ = 208,160 ± 13,730. This training duration

Table 1. Optimizable Support Vector Machine (SVM) parameters and performance.

Parameters and Values

Training Results Accuracy (Validation)

Type

85.7% Holdout, 20%

Total cost (Validation) 22

Prediction speed ~22000 obs/second

Training time 180.59 seconds

Model Structure Response classes 2, including active hand clenches (HC) and arm chain pulls (CP)

Predictors 3 (a, b, c coefficients)

Observations 771

Optimizer Options Optimizer Bayesian optimization

Acquisition function Expected improvement per second plus

Iterations 30

Training time limit False

Optimized Hyperparameters Kernel function Cubic

Kernel scale 1

Box constraint level 0.0010138

Multiclass method One-vs-One

Standardize data True

Feature Selection All features (response classes) used in the model; principal component analysis (PCA) disabled

Misclassification Costs Default cost matrix

Training results describe the performance of the binary classifier (SVM model) after 30 iterations of training. Model structure describes the input and output variables.

Optimizer options describe the customizable optimizer and acquisition function types. Optimized hyperparameters describe the final model parameters after training.

https://doi.org/10.1371/journal.pone.0275490.t001
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resulted in 46.15–100.00% of videos per patient exhibiting >95% accuracy at tracking their

motor behaviors (Table 2). On a subset (10%) of video recordings, the automated extraction

script exhibited 80% accuracy at isolating movement epochs without manual intervention. 771

Fig 3. Efficacy of optimizable SVM. (A) Scatterplot of the movement clusters based on coefficients b and c of the parabolic fits, with arm chain pulls (CP) in

blue and hand clenches (HC) in yellow. (B) True positive and false negative rates for predictive ability of the SVM as represented by a confusion matrix. (C)

Parallel coordinates plot of the predictive ability of the model, highlighting the spread of coefficient values. (D) Receiver operating characteristic (ROC) curves

between each class of the binary classifier.

https://doi.org/10.1371/journal.pone.0275490.g003
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episodes of movement represented as parabolic functions (with duration μ = 0.44sec,

SD = 0.29sec) were extracted from 98 video samples (20-120sec each) among five patients

(57 ± 12 years of age, n = 5 Caucasian identity, with PD duration of 8 ± 2 years), including 455

chain pulls and 316 hand clenches (Fig 1E).

Movement type identification pipeline performance

We next quantified the separability of the movement types; wherein distinct properties were

observed between the parabola coefficients for CP compared to HC. Sampling a subset of these

kinematic episodes revealed qualitative and quantitative differences between the apex height

and peak half-height width (Fig 2A and 2B). Independent-samples t-tests revealed that peak

prominence (coefficient b) of CP (μ = 6.1483, SD = 2.6024) differed significantly from HC (μ =
5.0619, SD = 2.8254; t(769) = 5.48997, p< .00001, two-tailed). The half-height width (coeffi-

cient c) had statistically-significant differences between CP (μ = 18.2025, SD = 7.7138) and HC

(μ = 5.9578, SD = 3.8068; t(769) = 26.08718, p< .00001, two-tailed). Finally, the computed

coefficient a logically demonstrated statistically-significant differences between CP (μ =
0.0643, SD = 0.3022) and HC (μ = 0.3004, SD = 0.3522; t(769) = -9.97051, p< .00001, two-

tailed).

Accuracy of SVM predictive model

With the eventual goal of real-time detection of classified active movements, we next deter-

mined whether movement types could be predicted based on these parabolic coefficients. We

employed a support vector machine (SVM) model to distinguish between one of two response

classes (Table 1). To train the model, 20.00% (n = 154 epochs) of the data were randomly with-

held as input data to categorize the remaining 80% (n = 617). Following 30 iterations of train-

ing, taking 134 seconds, this model was able to predict the types of Euclidean distance

movement epochs with 85.40% overall accuracy (Table 1). When comparing performance

between movement types, the model exhibited slightly better ability at identifying arm chain

pulls (92.30% accuracy) compared to hand clenches (76.20%), nonetheless indicative of high

accuracy (Fig 3B). This performance was visualized by the scatterplot and parallel coordinates

plot, which showed the SVM model’s hits and misses at categorizing movement types in the

context of the wide variety of parabolic fits constituting the 771 epochs. Coefficient values

Table 2. Patient demographics and video/DeepLabCut descriptives.

Demographics

Participants Sex Male (n = 5), female (n = 0)

Age (in years) 57 ± 12

Racial identity White/Caucasian (n = 5)

Years since PD dx 8 ± 2

Surgeries, Videos, & Training Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

Video count 26 26 36 10 16

MRPE 0.018 0.03 0.041 0.016 0.017

Percent of frames in model 5% 4.5% 1.85% 1.52% 3.57%

Huber loss 0.0022 0.0021 0.0019 0.0022 0.0022

Iteration count 195,200 204,800 195,700 220,900 224,200

Epoch count 134 137 155 226 119

MRPE, mean reprojection pixel error; dx, diagnosis; PD, Parkinson’s disease; DeepLabCut parameters: MRPE, % of frames in model, Huber loss, and iteration count.

Epoch count describes the number of complete movements captured per patient.

https://doi.org/10.1371/journal.pone.0275490.t002
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generally ranged within five standard deviations of each respective average, highlighting the

variability of movements that the model was tasked to categorize (Fig 3A and 3C). The ROC

curves further demonstrated the predictive ability of the model; curves closer to the top-left

corner indicated greater sensitivity and dominance of true-positives in correctly categorizing

movement type (Fig 3D).

To ensure that this computational clustering approach was appropriately distinguishing

between movements, we conducted supplementary reliability tests to ascertain the weight of

each patient’s kinematic samples on the model performance. This was achieved by building

pipelines consisting of four patients’ samples to predict those in the omitted dataset. This

leave-one-out approach highlighted minimal variability in categorization accuracy, ranging

from 91.50–94.50%. These values indicated that our pipeline was able to identify kinematic

episodes without preference towards one case or another. This invariability and satisfactory

performance of the model further demonstrated an adequate sample size with equal weighting

therein.

Discussion

Here we introduced an automated system that extracts and categorizes stereotyped upper limb

movements captured with the markerless tracking Python-based suite DeepLabCut in the

operating room during DBS surgery for aiding therapeutic targeting. Our findings demon-

strated accuracy of the pipeline at identifying types of active motor behaviors in five patients

undergoing DBS procedures for Parkinson’s disease. The model categorized arm chain pulls

with better accuracy (92.30%) than hand clenches (76.20%). It is theorized that this discrep-

ancy could be due to greater incidence of motion blur during rapidly successive movements,

wherein the neural network’s peak confidence drops and its pose estimations are poorer [55].

By employing a leave-one-out approach to assess the relative weight of each patient’s set of

exemplar movement episodes on the overall model, we yielded little variation in accuracy,

thereby demonstrating a robust, generalizable dataset of movement episodes wherein no

patient’s sample individually determined the overall SVM model performance accuracy.

These promising results hold significant clinical and rehabilitative implications. DBS treat-

ment for advanced neurodegenerative disorders such as Parkinson’s disease often rely on

localization and appropriate placement for optimal outcomes [2–6]. One disadvantage of this

approach is the need for experienced clinicians to interpret the data. Our results suggest that

markerless tracking tools are a good match for the challenges of this approach. Comparing

markerless tracking to physical markers and sensors yields acceptable accuracy, and thus is a

viable alternative approach with minimal setup [20–23, 26, 56]. Its independence from physical

trackers or sensors permits seamless integration into the neurosurgical operating room where

time is precious and sterile field must not be compromised, thereby alleviating the burden of

maintaining cleanliness or continually replacing physical markers during surgery. The subjec-

tive assessment of Parkinson’s disease severity, denoted the Unified Parkinson’s Disease Rating

Scale (MDS-UPDRS), only exhibits moderate reliability [57, 58]; this reliability is even poorer

for evaluation of tremor, a hallmark of Parkinson’s disease [59]. Multiple studies elucidate the

promising nature of objective means like markerless motion tracking and machine learning

algorithms at augmenting the reliability of movement disorder symptom evaluation [12, 13,

15–18]. In turn, improving assessment reliability yields better patient outcomes. The present

study adds to the current body of literature exploring this exciting avenue for improving Par-

kinson’s disease evaluation and treatment, including work using similar pose estimation and

machine learning approaches for extracting features of gait, ataxia, bradykinesia, tremor sever-

ity, and various human movement classifiers [14, 17, 39–43]. We unprecedently add to this
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contemporary work by demonstrating initial steps at applying markerless pose estimation and

simplistic machine learning algorithms to automatically assess upper limb movement during

DBS localization and implantation.

Given the accuracy of our approach, markerless tracking technologies could be expanded

beyond the operating room to objectively assess progression or severity of other neurodegen-

erative or neuromuscular disorders. For example, neurologists have employed DeepLabCut in

post-stroke patients to conduct gait analyses with promising accuracy [60]. Our contributions

could elaborate on this use by categorizing aspects of gait based on Euclidean distance move-

ment epochs, thereby presenting an entirely objective option that performs well even in the

absence of strictly-controlled room conditions required for videotaped observational gait anal-

ysis [25]. In pediatric patients, rehabilitation scientists have used a similar methodology to

evaluate dyskinetic cerebral palsy symptoms, which could also be expanded upon by our find-

ings [61].

Though powerful, this methodology does have limitations. Most notably, more patients are

required to develop an increasingly robust dataset for continued refinement of the automated

classifier system. In our model, only two active movements were included mainly due to occlu-

sion of passive movements by clinicians’ hands or other objects in the visual field. The Dee-

pLabCut algorithm cannot reliably approximate label locations during these passive

movements, resulting in erroneous pose estimations that had to be discarded [55]. In addition,

given the demographic of patients entering the MDC at the University of Colorado Anschutz

Medical Campus, patients all tended to be white and of advancing age. There are presently no

known studies that evaluate the performance of DeepLabCut across human demographic and

intersectional lines (i.e., sex, race, size, etc.); however, training a new neural network per

patient is certain to resolve this concern. DeepLabCut performance is also dependent on the

quality of its training data, which is reliant on manual labelling of a subset of frames that can

be time-consuming [20, 56]. We chose to dramatically increase the number of labeled frames

per neural network compared to recommendations by [20] to augment quality of the networks

and bypass additional network refinement. However, as few as 100–200 frames per network

can be adequate, coupled with subsequent refinement [20]. These considerations are further

exacerbated by the time required to train the neural networks even with GPU acceleration.

Additionally, manual labelling can leave training data prone to operator error, thereby dimin-

ishing the standardizable nature of the output data. Generally, subjective review is advised to

ensure the accuracy of markerless tracking and correct any discrepancies should they present.

Future work on this automated pipeline should aim to address these limitations. More data

should be added to the current dataset by using markerless tracking and building deep neural

networks on additional patients in the neurosurgical operating room, with a particular empha-

sis on passive and subtle movements. Including two movements is a promising first step,

though future work should aim to capture and categorize more types of movements to repre-

sent the diverse nature of human kinematics as it applies to neurodegenerative disorders.

Additionally, approaches should increase the resolution of extracted Euclidean distance epochs

for processing and identification. Our current model employs two values drawn from para-

bolic fits to identify types of movement (with a third value calculated from the former two),

whereas other methodologies like eigenface decomposition significantly increase the quantity

of descriptive data [62]. By doing so, each movement epoch would exhibit a more robust

numerical basis for categorization, which could augment our classifier system performance.

Categorization may also be enhanced by including electrophysiological data, which could, in

addition to kinematics, corroboratively improve both active and passive movement extraction

and identification. Finally, the automated extraction script should be refined to confidently

extract relevant Euclidean distance movement episodes without relying on manual
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intervention. We believe that upon continued refinement, the process may be used in real-

time to entirely automate this pipeline, from DeepLabCut output to movement type categori-

zation, as currently demonstrated in a myriad of animal models [34–38, 45]. This refinement

will necessitate expansive collaboration with other movement disorders centers to amass large

samples and generalizable models, as asserted by [12]. DeepLabCut’s model generalizability in

rodents has been robustly demonstrated by [63], thereby elucidating the promising future

developments of this automated pipeline. Regardless, the accuracy of markerless tracking at

capturing active motor events and its efficient identification with only two parameters is highly

indicative of clinical and rehabilitative utility. This technology could see rapid improvements

and reliable integration in clinical and nonclinical settings across the world, especially in oper-

ating rooms limited by knowledge of and capacity to implant and evaluate DBS efficacy. Rura-

lized and non-Western under-resourced clinics would benefit greatly from this simple

approach, as it is interpretable with minimal training. Thus, this methodology could augment

accessibility and success of diagnostic and therapeutic approaches for individuals experiencing

neurodegenerative, neuromuscular, or alike disorders [33, 46, 47].
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55. Arent I, Schmidt FP, Botsch M, Dürr V. Marker-Less Motion Capture of Insect Locomotion With Deep

Neural Networks Pre-trained on Synthetic Videos. Frontiers in Behavioral Neuroscience. 2021;15.

https://doi.org/10.3389/fnbeh.2021.637806 PMID: 33967713

56. Mathis MW, Mathis A. Deep learning tools for the measurement of animal behavior in neuroscience.

Curr Opin Neurobiol. 2020; 60:1–11. https://doi.org/10.1016/j.conb.2019.10.008 PMID: 31791006

57. Heldman DA, Giuffrida JP, Chen R, Payne M, Mazzella F, Duker AP, et al. The modified bradykinesia

rating scale for Parkinson’s disease: reliability and comparison with kinematic measures. Mov Disord.

2011; 26(10):1859–63. https://doi.org/10.1002/mds.23740 PMID: 21538531

58. Luiz LMD, Marques IA, Folador JP, Andrade AO. Intra and inter-rater remote assessment of bradykine-

sia in Parkinson’s disease. Neurologia (Engl Ed). 2021. https://doi.org/10.1016/j.nrl.2021.08.005 PMID:

34538673

59. Richards M, Marder K, Cote L, Mayeux R. Interrater reliability of the Unified Parkinson’s Disease Rating

Scale motor examination. Mov Disord. 1994; 9(1):89–91. https://doi.org/10.1002/mds.870090114

PMID: 8139610

PLOS ONE Computer vision based motor testing in the operating room

PLOS ONE | https://doi.org/10.1371/journal.pone.0275490 October 20, 2022 16 / 17

https://doi.org/10.1109/TNSRE.2018.2875738
http://www.ncbi.nlm.nih.gov/pubmed/30334764
https://doi.org/10.1016/j.artmed.2020.101966
https://doi.org/10.1016/j.artmed.2020.101966
http://www.ncbi.nlm.nih.gov/pubmed/33250146
https://doi.org/10.3390/s21165437
http://www.ncbi.nlm.nih.gov/pubmed/34450879
https://doi.org/10.1016/j.expneurol.2022.113993
https://doi.org/10.1016/j.expneurol.2022.113993
http://www.ncbi.nlm.nih.gov/pubmed/35104499
https://doi.org/10.1038/s41467-021-25420-x
http://www.ncbi.nlm.nih.gov/pubmed/34465784
https://doi.org/10.3389/fnhum.2021.667035
https://doi.org/10.3389/fnhum.2021.667035
http://www.ncbi.nlm.nih.gov/pubmed/33867961
https://doi.org/10.3389/fnhum.2020.00162
http://www.ncbi.nlm.nih.gov/pubmed/32733215
https://doi.org/10.1017/cjn.2016.35
http://www.ncbi.nlm.nih.gov/pubmed/27139127
https://doi.org/10.3171/2010.4.FOCUS10103
http://www.ncbi.nlm.nih.gov/pubmed/20672920
https://doi.org/10.1038/s41531-020-00119-w
http://www.ncbi.nlm.nih.gov/pubmed/32964107
https://doi.org/10.12779/dnd.2018.17.2.57
https://doi.org/10.12779/dnd.2018.17.2.57
http://www.ncbi.nlm.nih.gov/pubmed/30906393
https://doi.org/10.3390/s100302027
http://www.ncbi.nlm.nih.gov/pubmed/22294912
https://doi.org/10.3389/fnbeh.2021.637806
http://www.ncbi.nlm.nih.gov/pubmed/33967713
https://doi.org/10.1016/j.conb.2019.10.008
http://www.ncbi.nlm.nih.gov/pubmed/31791006
https://doi.org/10.1002/mds.23740
http://www.ncbi.nlm.nih.gov/pubmed/21538531
https://doi.org/10.1016/j.nrl.2021.08.005
http://www.ncbi.nlm.nih.gov/pubmed/34538673
https://doi.org/10.1002/mds.870090114
http://www.ncbi.nlm.nih.gov/pubmed/8139610
https://doi.org/10.1371/journal.pone.0275490


60. Lonini L, Moon Y, Embry K, Cotton RJ, McKenzie K, Jenz S, et al. Video-Based Pose Estimation for

Gait Analysis in Stroke Survivors during Clinical Assessments: A Proof-of-Concept Study. Digital Bio-

markers. 2022; 6(1):9–18. https://doi.org/10.1159/000520732 PMID: 35224426

61. Haberfehlner H, van de Ven SS, van der Burg S, Aleo I, Bonouvrié LA, Harlaar J, et al. Using DeepLab-
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