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A B S T R A C T   

Currently, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a major worldwide public-health 
problem. Here, its propagation is modeled by using a probabilistic cellular automaton (PCA). In this model, 
sick individuals can either remain asymptomatic during the infection or become symptomatic. In order to derive 
an analytical expression for the basic reproduction number R0, a mean-field approximation written in terms of 
ordinary differential equations (ODE) is proposed and analyzed. By considering time-constant and time-varying 
parameters in both approaches (PCA and ODE), numerical simulations are performed in order to evaluate the 
impact of distinct quarantine regimes on the SARS-CoV-2 pandemic.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is 
the pathogen responsible for the current outbreak of coronavirus disease 
2019 (COVID-19). The interpersonal transmission mainly occurs 
through infectious aerosols and droplets, via skin-to-skin contact, and 
after touching contaminated objects (Lai et al., 2020; Singhal, 2020; 
Sohrabi et al., 2020; Velavan and Meyer, 2020). Besides its potential 
lethality, this virus became a truly global problem due to its impact on 
businesses, family relationships, jobs, schools, temples, theaters; in 
short, on virtually all kinds of human activities. A major reason for this 
impact in our routine comes from the possibility of transmission by 
pre-symptomatic and asymptomatic carriers; that is, by apparently 
healthy individuals (Lai et al., 2020; Singhal, 2020; Sohrabi et al., 2020; 
Velavan and Meyer, 2020). Without COVID-19 testing, the identification 
of these carriers is a challenge (Day, 2020a, 2020b; Yu and Yang, 2020). 
Hence, as part of a control strategy, all non-sick individuals are supposed 
to be potential carriers. 

To reduce the encounters among susceptible and unidentified 
infected individuals, public health authorities have recommended 
increasing the physical distancing and restricting the movement of 
people. Hence, in the latest months, cities and countries have imple-
mented policies of quarantine and lockdown (Bruns et al., 2020; Iaco-
bucci, 2020; Sjodin et al., 2020; Yang et al., 2020). The contagion can be 
also reduced by practicing good hygiene habits (such as frequent 

hand-washing, regular surface disinfection) and by wearing face masks 
in public places. Other ways for containing the virus propagation 
involve the development of a vaccine to prevent the infection and the 
use of a drug for successfully treating COVID-19 patients (Lai et al., 
2020; Singhal, 2020; Sohrabi et al., 2020; Velavan and Meyer, 2020). A 
vaccine would decrease the number of susceptible individuals; an anti-
viral drug would shorten the infectious period of sick individuals. 

Despite the recent appearance, the spread of SARS-CoV-2 has already 
been theoretically studied (Gostic et al., 2020; Kochanczyk et al., 2020; 
Monteiro, 2020; Volpert et al., 2020; Yang and Wang, 2020; Zhou et al., 
2020). These studies are based on the analyses and simulations of sys-
tems of ordinary differential equations (ODE). In fact, epidemic models 
are usually described by ODE (Anderson and May, 1992; Keeling and 
Rohani, 2008). 

Probabilistic cellular automaton (PCA) has been considered as an 
alternative approach to study the propagation of contagious diseases 
(Ahmed et al., 1998; Boccara et al., 1994; Doran and Laffan, 2005; 
Ferreri and Venturino, 2013; Fuentes and Kuperman, 1999; Nie and Li, 
2020; Slimi et al., 2009; Zhang et al., 2018). Here, an epidemic model 
formulated in terms of PCA is proposed to investigate the propagation of 
SARS-CoV-2. In this discrete-time model, probabilistic rules specify the 
possible changes in the health status of the individuals. The transmission 
by individuals who do not develop symptoms and by the individuals 
who experience symptoms are both taken into account. To derive 
analytical results, a mean-field approximation for the PCA model, 
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written as a set of ODE, is proposed. A similar ODE system was already 
analyzed (Monteiro, 2020). In our previous work (Monteiro, 2020), 
asymptomatic individuals can cause asymptomatic and symptomatic 
infections, and symptomatic individuals can also cause asymptomatic 
and symptomatic infections; thus, there are four rate constants weight-
ing these four contagion pathways. In this work, there are three rate 
constants (and three contagion pathways) related to the virus spread. In 
addition, the infections caused by either asymptomatic or/and symp-
tomatic individuals are divided into a fraction of x individuals that will 
become asymptomatic and a fraction of 1 − x individuals that will 
become symptomatic. This way of representing the process of disease 
spread facilitates the estimation of ODE parameters (and the predictions 
obtained from the analytical expressions derived from the ODE model) 
from PCA simulations. Besides, here the main aim is to examine the 
effects of distinct quarantine regimes on the course of the COVID-19 
pandemic. For this reason, numerical simulations were carried out 
with the PCA and ODE models by considering time-constant and 
time-varying contagion rates. 

Usually, epidemic models on SARS-CoV-2 consider the latent health 
state (Gostic et al., 2020; Kochanczyk et al., 2020; Yang and Wang, 
2020; Zhou et al., 2020). As in our previous work (Monteiro, 2020), 
here, the latent state, corresponding to individuals who have been 
infected but are not infectious yet, is not explicitly considered. However, 
the corresponding latent (incubation) period is taken into account. The 
originality of the model proposed here is also in the way of representing 
the virus propagation. 

This paper is organized as follows. In Section 2, the PCA model is 
introduced. In Section 3, the corresponding ODE model is derived and 
analyzed. In Section 4, results obtained from computer simulations with 
both models are presented. In Section 5, the possible relevance of this 
epidemic study is discussed. 

2. The PCA model 

Let a human population living in a given geographical area be rep-
resented by a two-dimensional lattice n × n with periodic boundary 
conditions (that is, the top and bottom edges are connected and the left 
and right edges are also connected in order to avoid edge effects). Each 
cell composing this lattice represents an individual, which maintains 
social contact with the eight surrounding neighbors. This coupling to-
pology is known as Moore neighborhood of unit radius (Wolfram, 1994). 

At each time step t, each individual is in one of four health states: 
susceptible (S), asymptomatic infected (A), symptomatic infected (I), or 
recovered (R). The time evolution of this SAIR epidemic model is driven 
by seven probabilistic rules of state transitions: two rules for S-in-
dividuals, two rules for A-individuals, two rules for I-individuals, and 
one rule for R-individuals. For S-individuals: at each time step, there is a 
probability Pi = 1 − e− (k1v1+k2v2) of a S-individual being infected due to 
the presence of A and/or I-neighbors. In this expression for Pi, v1 is the 
number of A-neighbors, v2 is the number of I-neighbors, k1 expresses the 
infectivity of A-individuals, and k2 expresses the infectivity of I-in-
dividuals. Note that Pi = 0 if v1 = v2 = 0 and Pi→1 if k1→∞ and/or 
k2→∞. If a S-individual is infected, the probability of becoming 
asymptomatic (that is, an A individual) is Px; consequently, the proba-
bility of becoming symptomatic (that is, an I-individual) is 1 − Px. For 
A-individuals: at each time step, there is a probability Pb1 of an A-indi-
vidual being cured and becoming a R-individual. If this A-individual 
remains infected, there is a probability Pc1 of dying (due to other causes). 
For I-individuals: at each time step, there is a probability Pb2 of an 
I-individual being cured and becoming a R-individual. If this I-individ-
ual remains infected, there is a probability Pc2 of dying due to the 
infection. For R-individuals: at each time step, there is a probability Pd of 
a R-individual dying (due to other causes). When A, I, or R-individuals 
die, S-individuals replace them. Therefore, since the deaths are balanced 
by the births, the total number of individuals N = n2 remains constant. 

Note that there is no transition from A to I; thus, A-individuals are 
those who remain asymptomatic during the whole course of the infec-
tion. Note also that the exposed state, usually denoted by the letter E in 
epidemiological models, is not considered; thus, the incubation period 
(the time from being infected to becoming infectious) is incorporated in 
the recovery and death rate constants of A and I-individuals. In addition, 
R-individuals are assumed to have acquired a protective immunity 
against this pathogen. However, if this diseases does not confer long- 
lasting immunity, then Pd must also include the probability per time 
step of losing this protection. In a computer simulation, the health states 
of all individuals are simultaneously updated in the end of each time 
step. Similar epidemic models formulated in terms of PCA can be found 
in literature (Chaves and Monteiro, 2017; Ferraz and Monteiro, 2019; 
Monteiro et al., 2006; Ramos and Schimit, 2019; Schimit and Monteiro, 
2009; Silva and Monteiro, 2014). 

3. The ODE model 

Let S(t), A(t), I(t), and R(t) be the numbers of S, A, I, and R-in-
dividuals living in a given geographical region at the instant t, respec-
tively. If these four subpopulations are homogeneously mixed in this 
region (Turnes and Monteiro, 2014), then a mean-field approximation 
for the PCA model can be written in terms of the following set of ordi-
nary differential equations: 

dS(t)
dt

= − a1S(t)A(t) − a2S(t)I(t) − a3S(t)A(t)I(t)

+c1A(t) + c2I(t) + dR(t)
(1)  

dA(t)
dt

= x[a1S(t)A(t) + a2S(t)I(t) + a3S(t)A(t)I(t)] − b1A(t) − c1A(t) (2)  

dI(t)
dt

= (1 − x)[a1S(t)A(t) + a2S(t)I(t)+ a3S(t)A(t)I(t)] − b2I(t) − c2I(t)

(3)  

dR(t)
dt

= b1A(t) + b2I(t) − dR(t) (4)  

The parameters a1, a2, a3, b1, b2, c1, c2, d, and x are positive numbers. 
The rate constants a1, a2, and a3 are respectively related to the contagion 
of S-individuals caused only by A-individuals, only by I-individuals, and 
simultaneously by A and I-individuals. In other words, the terms 
a1S(t)A(t) and a2S(t)I(t) respectively correspond to the disease propa-
gation due to encounter of S-individuals with either A or I-individuals. 
The inclusion of the term with the parameter a3 is necessary because, in 
the cellular automaton (and in the real-world; for instance, in a super-
market), both A and I-individuals can simultaneously be in the neigh-
borhood of a S-individual. 

The parameter x is the fraction of S-individuals who were just 
infected and will remain asymptomatic (that is, will be A-individuals); 
therefore, 1 − x is the fraction of S-individuals who were just infected 
and will develop symptoms (that is, will be I-individuals) during the 
infection. The parameters b1 and b2 express the recovery rate constants 
of A and I-individuals, respectively. The parameters c1, c2, and d express 
the death rate constants of A, I, and R-individuals, respectively. Note 
that the terms of deaths in Eqs. (2)–(4) represent births of S-individuals 
in Eq. (1). Thus, as in the PCA model, the total number of individuals N is 
kept constant. This can be verified by observing that dS(t)/dt + dA(t)/
dt + dI(t)/dt+ dR(t)/dt = 0; therefore, S(t)+ A(t)+ I(t)+ R(t) = N. As 
R(t) = N − S(t) − A(t) − I(t), the ODE model can be rewritten as a third- 
order dynamical system: 

dS
dt

= − a1SA − a2SI − a3SAI + c1A + c2I + d(N − S − A − I)

≡ f1(S,A, I)
(5)  
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dA
dt

= x(a1SA+ a2SI + a3SAI) − b1A − c1A ≡ f2(S,A, I) (6)  

dI
dt

= (1 − x)(a1SA+ a2SI + a3SAI) − b2I − c2I ≡ f3(S,A, I) (7)  

A similar model based on ODE for SARS-CoV-2 was already analyzed 
(Monteiro, 2020). The difference is in the terms representing the virus 
transmission. 

In the dynamical systems theory (Guckenheimer and Holmes, 2002), 
a solution (S*,A*, I*) for Eqs. (5)–(7) satisfying f1(S*,A*, I*) = 0, f2(S*,

A*, I*) = 0, and f3(S*,A*, I*) = 0, in which S*, A*, and I* are constants, is 
called stationary solution. The stationary solution given by (S*

1,A*
1, I*

1) =

(N, 0, 0) represents a disease-free steady-state, because A*
1 = 0 and I*

1 =

0. A solution given by (S*
2,A*

2, I*
2), with A*

2 ∕= 0 and I*
2 ∕= 0, represents an 

endemic steady-state. Obviously, R*
1 = 0 and R*

2 = N − S*
2 − A*

2 − I*
2. By 

neglecting the term with a3 in the equations f1 = 0, f2 = 0, and f3 = 0,
then I*

2 ≈ qA*
2, with: 

q ≈
(b1 + c1)(1 − x)

(b2 + c2)x
(8) 

This approximate expression can be used to evaluate the proportion 
between symptomatic and asymptomatic individuals in the endemic 
steady-state (achieved in a simulation of the PCA model or found in real- 
world data). 

The basic reproduction number R0 of this model is given by: 

R0 =
xa1N

b1 + c1
+
(1 − x)a2N

b2 + c2
(9)  

Recall that R0 expresses the average number of infections directly 
caused by a single sick individual introduced into a susceptible popu-
lation (Anderson and May, 1992; Keeling and Rohani, 2008). The 
expression found for R0 corresponds to the largest eigenvalue of the next 
generation matrix G = FV− 1 (Diekmann et al., 2010; van den Driessche, 
2017), in which the matrix F is related to the appearance of new in-
fections in the infected subpopulations (which are A and I) and the 
matrix V is related to other state transitions occurring in these (two) 
subpopulations. If R0 < 1, the disease is naturally eradicated; if R0 > 1,
it persists in the host population. Observe in Eq. (9) that the contribution 
of A-individuals (related to a1) is added to the contribution of I-in-
dividuals (related to a2). If x = 0, then R0 = a2N/(b2 +c2), an expression 
already derived in other epidemiological studies (Ferraz and Monteiro, 
2019; Monteiro et al., 2006; Schimit and Monteiro, 2009; Silva and 
Monteiro, 2014). 

The ODE system can approximately reproduce the dynamical 
behavior observed in numerical simulations of the PCA model if the 
values of a1, a2, a3, b1, b2, c1, c2, d, and x are consistently obtained from 
k1, k2, Pb1 , Pb2 , Pc1 , Pc2 , Pd, and Px. Here, consistent choices are b1 = Pb1 ,

b2 = Pb2 , c1 = (1 − Pb1 )Pc1 , c2 = (1 − Pb2 )Pc2 , d = Pd, and x = Px. The 
values for a1, a2, and a3 in the ODE model are influenced by the values of 
k1, k2, and by the coupling network of the PCA lattice. They can be 
estimated from a simulation of the PCA model as follows: 

a1 ≃
− ΔS1

SavAav
(10)  

a2 ≃
− ΔS2

SavIav
(11)  

a3 ≃
− ΔS3

SavAavIav
(12) 

Note the number of infections caused by the virus propagation rule in 
the PCA model, which depends on Pi (which is function of k1 and k2), is 
split into three terms in the ODE model, which depend on a1, a2, and a3. 
In these expressions, ΔS1, ΔS2, and ΔS3 are respectively the differences 

between two consecutive time steps of susceptible individuals due to the 
contagion when there are only A-individuals, only I-individuals, and 
both A and I-individuals in the neighborhoods of S-individuals in the 
PCA lattice (for instance, if between two times steps, 18 S-individuals 
were infected and there were only A-individuals in their neighborhoods, 
then ΔS1 = − 18). Also, Sav, Aav, and Iav are the asymptotic values of 
S(t), A(t), and I(t); that is, the values after the transient phase of a 
simulation of the PCA model. In practice, Sav, Aav, and Iav are taken as the 
average values computed in the last 52 time steps of simulations with 
520 time steps (which are enough to the system achieving its long-term 
behavior). 

The other relations between the ODE parameters and the PCA pa-
rameters can be inferred by comparing the mathematical terms of the 
ODE model to the corresponding state transition rules of the PCA model. 
For instance, recall the b1 is the recovery rate constant of A-individuals. 
From Eq. (6), note that b1 = ΔAA→R/Aav, in which ΔAA→R is the number 
of A-individuals who recover between two consecutive time steps. 
Therefore, the fraction ΔAA→R/Aav corresponds to the percentage of 
recovered A-individuals; in other words, the probability of an A-indi-
vidual being cured. Hence, b1 = Pb1 . The parameter c1 denotes the death 
rate constant of A-individuals. Note that c1 = (1 − Pb1 )Pc1 , because only 
A-individuals that were not cured (with probability 1 − Pb1 ) can die 
(with probability Pc1 ). 

Suppose that, in a simulation, the PCA converges to an endemic 
steady-state. If the values of the ODE parameters are estimated from this 
simulation as described above, then S*

2 ≃ Sav, A*
2 ≃ Aav, I*

2 ≃ Iav, and 
R*

2 ≃ Rav; that is, the ODE system converges to the same steady state 
achieved in the PCA lattice. Similar studies with PCA and ODE can be 
found in literature (Ferraz and Monteiro, 2019; Monteiro et al., 2006; 
Ramos and Schimit, 2019; Schimit and Monteiro, 2009; Silva and 
Monteiro, 2014). 

4. Simulation results 

Numerical simulations were performed with the PCA model by tak-
ing the initial condition S(0)/N = 99.99%, A(0)/N = 0.005%, I(0) =
0.005%, and R(0) = 0%; therefore, the disease is introduced by A(0)/
N + I(0)/N = 0.01% of infected individuals. Also, at t = 0, there is no 
R-individual. One time step in the PCA model corresponds to one week 
of real time. The PCA simulation follows the pseudocode presented in 
Appendix. 

If the recovery from this infection confers long-term immunity and 
the average life expectancy of the host population is 80 years, then Pc1 =

Pd = 1/(80 × 52). If the immunity lasts for 1/3 of one year, on average, 
then Pd = 1/(80 × 52)+ 3/52. Unfortunately, the immune response to 
SARS-CoV-2 is not yet fully understood. By including the incubation 
period, the recovery periods for A and I-individuals are about 2 and 3 
weeks (Hu et al., 2020; Singhal, 2020), respectively; therefore Pb1 = 1/2 
and Pb2 = 1/3. The death probability (per time step) of I-individuals is 
supposed to be Pc2 = 1/50, because, on average, 6% of I-individuals die 
in 3 weeks (Giangreco, 2020; Wu et al., 2020). If, when a S-individual 
gets sick, there is a 80% chance of remaining without symptoms, then 
Px = 4/5. With these choices, q ≈ 0.36; therefore, the infected sub-
population in steady state is composed of 74% of A-individuals (and 
26% of I-individuals), which are values compatible with those observed 
in two countries (Day, 2020a; 2020b). If Px = 1/5, then q ≈ 5.8 and the 
fraction of A-individuals in the infected subpopulation is 15%, which is a 
number compatible with other works (Mizumoto et al., 2020; Singhal, 
2020). The values of the infectivity parameters k1 and k2 must be chosen 
in order to obtain R0 ∈ [1.5, 6.5] (Gostic et al., 2020; Singhal, 2020; Tang 
et al., 2020; Wu et al., 2020). Here, k1 = 1 and k2 = 4. Note that k2 > k1,

because I-individuals are supposed to be more infectious than A-in-
dividuals. Recall that k1 and k2 affect a1 and a2 (and a3) and, conse-
quently, R0, which is determined by Eq. (9). 

First, consider R-individuals with long-term immunity (that is, Pd =
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1/(80 × 52)) and n = 400 (thus, the population is composed of 160,000 
individuals). Simulations reveal that, in this case, the disease is naturally 
eradicated at the time step T; that is, A(t) = 0 and I(t) = 0 for t ≥ T. The 
eradication occurs for T ≃ 130 for Px = 4/5 and Px = 1 /5. In the first 
case, the number D of deaths of I-individuals (that is, the number of 
transitions I→S) is D ≃ 1.2× 103; in the second case, D ≃ 5.1 × 103. 
These are average numbers that were obtained in five simulations for 
each value of Px. Observe that the higher the value of Px, the lower the 
value of D. Fig. 1 illustrates how T (Fig. 1 at left) and D (Fig. 1 at right) 
vary with N = n2 for Px = 4/5. Note that D ≃ 0.0078N; that is, D linearly 
increases with N. Also, T ≃ 130; that is, the disease disappears after 
about 130 weeks in lattices with 99856 ≤ N ≤ 1,000,000. 

A quarantine regime can be simulated by reducing the values of k1 
and k2. Assume that k1 = 1 and k2 = 4 are both multiplied by the factor 
σ. For σ = 1/4, the disease disappears after about 170 weeks and the 
number of deaths is about D ≃ 0.0076N. Therefore, the relation between 
D and N is practically the same for σ = 1 and σ = 1 /4. 

Now, consider R-individuals with short-lasting immunity (that is, Pd 
= 1/(80 × 52)+ 3/52) and n = 400. Fig. 2 shows the time evolutions of 
S(t)/N (green line), A(t)/N (black line), I(t)/N (red line), and R(t)/N 
(blue line) obtained in a simulation with the PCA model and by 
numerically integrating the ODE model with the 4th-order Runge-Kutta 
method with integration time step of 0.01. In the PCA model, for Px = 4 
/5, k1 = 1, and k2 = 4, then S(t)/N→Sav/N ≃ 0.207, A(t) /N→Aav /N ≃

0.066, I(t)/N→Iav/N ≃ 0.024, and R(t)/N→Rav/N ≃ 0.703 as time goes 
by. Note that Iav/Aav ≃ 0.36, which coincides with the value estimated 
for q from the ODE system by using Eq. (8). By numerically integrating 
Eqs. (1)–(4) with a1N ≃ 1.946, a2N ≃ 1.596, a3N2 ≃ 21.02 (recall that 
a1, a2, and a3 are computed by using Eqs. (10)–(12)), b1 = 0.5, c1 ≃

0.00012, b2 ≃ 0.33333, c2 ≃ 0.01333, d ≃ 0.05793, and x = 0.8, the 

system converges to the endemic steady-state S*
2/N ≃ 0.207, A*

2/N ≃

0.066, I*
2/N ≃ 0.024, R*

2/N ≃ 0.703. Observe that the asymptotic be-
haviors found in PCA and ODE are identical (recall that the ODE pa-
rameters were identified from the long-term behavior found in the PCA 
simulations; hence, there is the good agreement of both approaches 
when they reach their stationary solutions. The match in the transitory 
phase, however, is not good). In this scenario, from Eq. (9), R0 ≃ 4.0. 
Also, there were D ≃ 2.5 × 104 deaths of I-individuals in 520 times 
steps. 

In the PCA, for Px = 1/5, S(t)/N→0.141, A(t)/N→0.018, I(t)/N→ 
0.102, R(t)/N→0.739 as time passes by. Similar numbers are found from 
the ODE system. In addition, q ≃ 5.7, R0 ≃ 6.2, and D ≃ 11 × 104 in 520 
times steps. Note that, for Px = 1/5 and for Px = 4/5, the disease 
endemically persists in the host population; however, the smaller the 
value of Px, the greater the values of q, R0, and D. Recall that 1 − Px is the 
probability of an infected individual developing symptoms. 

Table 1 presents the average percentages Sav/N, Aav/N, Iav/N, and 
Rav/N obtained in the last 52 time steps (one year of real time) of 
simulations with 520 time steps under distinct quarantine regimes, for 
n = 400. In addition, the ratio Iav/Aav, the basic reproduction number 
R0, and the number D of deaths of I-individuals occurring in the whole 
simulation are also shown. Table 1 summarizes the results of eight 
scenarios: in four scenarios, σ is kept constant and equal to 1, 3/4, 1/2, 
and 1/4; in four scenarios, σ periodically varies between 1 and 3/4, 
between 1 and 1/2, between 1 and 1/4, and between 1 and 0 (note 
that σ = 0 means full lockdown). The period of this variation is taken 
as 8 time steps (thus, there occurs a periodic alternation between one 
month with quarantine and one month without quarantine). As ex-
pected, Table 1 shows that the lower the value of σ, the higher the 
value of Sav and the lower the values of Aav/N, Iav/N, R0, and D. Note 

Fig. 1. Eradication time T (at left) and number of 
deaths D of I-individuals (at right) found in a PCA 
lattice by taking Pb1 = 1/2,
Pc1 = Pd = 1/(80×52), Pb2 = 1/3, Pc2 = 1/50,
Px = 4/5, k1 = 1, and k2 = 4. In these simula-
tions, n = 316,447,548,632,707,775, 837,894,
949, and 1000 (thus, the difference between two 
consecutive values of N is about 100,000). Five 
simulations were run for each value of n from the 
initial condition S(0)/N = 99.99%, A(0)/N =

0.005%, I(0)/N = 0.005%, and R(0)/N = 0%. 
The disease naturally disappears in all cases.   

Fig. 2. Time evolutions of S(t)/N (green line), 
A(t)/N (black line), I(t)/N (red line), and R(t)/N 
(blue line) from S(0)/N = 99.99%, A(0)/N =

0.005%, I(0)/N = 0.005%, and R(0)/N = 0% 
obtained from PCA (left) and ODE (right). In the 
PCA, n = 400, Pb1 = 1/2, Pc1 = 1/(80×52),
Pb2 = 1/3, Pc2 = 1/50,
Pd = 1/(80×52) + (3 /52), Px = 4/5, k1 = 1,
and k2 = 4. In the ODE, b1 = 1/2,
c1 = (1 − 1 /2) × (1 /(80×52)), b2 = 1/3,
c2 = (1 − 1 /3) × 1/50, d = 1/(80 × 52) + (3/
52), x = 4/5, a1N ≃ 1.946, a2N ≃ 1.596, and 
a3N2 ≃ 21.02 (these last three numbers were 
computed by using Eqs. (10)–(12)). In both ap-
proaches, as time passes by, S(t)/N→0.207, A(t)
/N→0.066, I(t)/N→0.024, and R(t)/N→0.703. 
In this case, R0 ≃ 4.0 > 1; hence, the disease 
persists in the host population. (For interpreta-
tion of the references to color in this figure 
legend, the reader is referred to the web version 
of this article.)   
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that Iav/Aav ≃ 0.36, which agrees with the value of q estimated from 
Eq. (8). In these eight scenarios, the disease is not eradicated. Other 
simulations show that it can be eradicated by imposing a permanent 
quarantine with σ ≤ 2/25 or a periodic quarantine with σ switching, 
for instance, between 1/4 and 0. In this case, T ≃ 55 and D ≃ 20. 

5. Discussion and conclusion 

Here, an epidemic model based on PCA for the spread of SARS-CoV-2 
was proposed and simulated. From its mean-field approximation written 
in terms of ODE, analytical expressions for the basic reproduction 
number R0 and the ratio q between symptomatic and symptomatic in-
dividuals were derived. These expressions can be useful to characterize 
the dynamical behavior observed in computer simulations with the PCA 
model. It is relevant to stress that the values of R0 and q obtained in these 
simulations are similar to those found in real-world observations. 

The simulations were performed by using realistic parameter values. 

They revealed that, in the case of long-lasting immunity, the disease is 
naturally eradicated. As expected, the number of deaths D linearly grows 
with N; here, D/N ≈ 0.8%. However, D/N is not significantly reduced by 
decreasing σ. Also, the eradication occurs after T ≈ 2 − 3 years from an 
initial condition with 0.01% of sick people. Note that the population size 
does not significantly affect the eradication time T nor the proportion of 
deaths D/N. Fig. 1 illustrates these results. 

For the short-lasting immunity considered in this work, the disease 
endemically persists with R0 ≃ 2 − 4. As presented in Table 1, by 
reducing the infectivity parameters k1 and k2, then Aav/N, Iav/N, R0, and 
D are reduced and Sav is increased. Note that the simulation with σ 
switching between 1 and 0 is surprising. Even by imposing a periodic 
quarantine regime since the beginning of the spread (which starts with 8 
A-individuals and 8 I-individuals), the pathogen chronically persists 
after 10 years (520 time steps) with about Aav/N + Iav/N ≃ 1% of 
infected individuals. Also, in this simulation, R0 ≃ 0.8 < 1. This value 
was computed from the average values of the infectivity rate constants 

input paramater values n, k1, k2, Pb1 , Pc1 , Pb2 , Pc2 , Pd
set matrix M(i, j) (i, j = 1, . . ., n)
set the cells (i, j) equal to S , A, I, or R according to the initial proportion
if (i, j) = S , then compute Pi = 1 − e−(k1v1+k2v2)
% v1 is the number of A-neighbors
% and v2 is the number of I-neighbors at this time step
if random number < Pi
then (i, j) = A with probability Px or (i, j) = I with probability 1 − Px
else (i, j) = S
endif

endif
if (i, j) = A
if random number < Pb1
then (i, j) = R
else (i, j) = A
endif
if (i, j) = A and random number < Pc1
then (i, j) = S
else (i, j) = A
endif

endif
if (i, j) = I
if random number < Pb2
then (i, j) = R
else (i, j) = I
endif
if (i, j) = I and random number < Pc2
then (i, j) = S
else (i, j) = I
endif

endif
if (i, j) = R
if random number < Pd
then (i, j) = S
else (i, j) = R
endif

endif
go to the next cell without updating the state of this cell
update simultaneously the states of all cells
go to the next time step

Algorithm 1. Pseudocode for computing one time step of the PCA simulation.  
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a1 and a2 in the last 52 time steps. Therefore, naive computations of this 
parameter can lead to elusive conclusions. 

With the parameter values used in Fig. 2, eradication requires either 
a permanent quarantine with σ ≤ 0.08 or a periodic quarantine with 
“low” values of σ. For instance, the disease disappears by periodically 
switching σ between 0.25 and 0. In the time intervals without quaran-
tine, reductions in σ can be attained by improving personal hygiene 
habits (for instance, frequent hand washing) and/or by changing social 
behaviors (for instance, by keeping social distancing). 

The development of an immune response to SARS-CoV-2, as a 
consequence of recovery from infection or vaccination, will determine 
the dynamics of the spread and, consequently, the fate of this infection. 
Its eradication can require quarantine regimes. Mathematical models 
based on PCA and ODE can be used by public health authorities to find 
an optimal quarantine policy for mitigating this pandemic. 

The study presented here was about the long-term behavior of this 
contagious infection and, unfortunately, we are still living its transitory 
phase. The parameter values used in the simulations were obtained in 
literature in order to provide realistic predictions. However, it is rele-
vant to stress that underreporting in the number of cases and deaths due 
to SARS-CoV-2, low testing rates of suspected cases, and the imple-
mentation of erratic quarantine/lockdown regimes will make it difficult 
to derive reliable and unequivocal predictions from any epidemiological 
model. 
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Table 1 
Average values of S(t)/N, A(t)/N, I(t)/N, and R(t)/N obtained in the last 52 time 
steps (that is, 1 year of real time) in simulations with 520 time steps (which are 
enough to the system reaching a steady state). These average normalized 
numbers are respectively denoted by Sav/N, Aav/N, Iav/N, and Rav /N. In these 
simulations, k1 = σ × 1 and k2 = σ × 4. The other parameter values are the same 
as used in Fig. 2. Permanent quarantine corresponds to σ = 0.75, 0.5, and 0.25; 
periodic quarantine is simulated by varying σ between 1 and 0.75, between 1 
and 0.5, between 1 and 0.25, and between 1 and 0. This periodic oscillation is 
represented below by {1,0.75}, {1,0.5}, {1,0.25}, and {1,0}, respectively. The 
period of this oscillation is 8 time steps, because there is an alternation between 
4 weeks without quarantine (σ = 1) and 4 weeks with quarantine (σ < 1). Also, 
the ratio Iav/Aav, the basic reproduction number R0, and the amount D of deaths 
of I-individuals during the whole simulation are given. In all these simulations, 
the disease endemically persists.  

σ  Sav /N  Aav/N  Iav/N  Rav/N  Iav/Aav  R0  D  

1 0.207 0.066 0.024 0.703 0.36 4.0 2.50× 104  

0.75 0.232 0.064 0.023 0.681 0.36 3.5 2.42× 104  

0.5 0.279 0.060 0.022 0.639 0.36 2.8 2.23× 104  

0.25 0. 416 0.048 0.017 0.518 0.36 1.8 1.76× 104  

{1,0.75} 0.220 0.065 0.023 0.692 0.36 3.7 2.46× 104  

{1,0.5} 0.238 0.063 0.023 0.676 0.36 3.4 2.40× 104  

{1,0.25} 0.284 0.058 0.021 0.636 0.37 2.8 2.24× 104  

{1,0} 0.900 0.008 0.003 0.089 0.36 0.8 0.20× 104   
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