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ABSTRACT: Nano- and microplastic particles are a global and emerging environmental issue that might pose
potential threats to human health. The present work exploits artificial intelligence (AI) to identify nano- and
microplastics in water by monitoring the interaction of the sample with a sensitive surface. An estrogen receptor
(ER) grafted onto a gold surface, realized on a nonexpensive and easy-to-produce plastic optical fiber (POF)
platform in order to excite a surface plasmon resonance (SPR) phenomenon, has been developed in order to
carry out a “smart” sensitive interface (ER−SPR−POF interface). The ER−SPR−POF interface offers output
data useful for exploiting a machine learning-based approach to achieve nano- and microplastic particle sensors.
This work developed a proof-of-concept sensor through a training phase carried out by different particles, in
terms of materials and size. The experimental results have demonstrated that the proposed “smart” ER−SPR−
POF interface combined with AI can be used to identify the kind of particles in terms of the materials
(polystyrene; poly(methyl methacrylate)) and size (20 μm; 100 nm) with an accuracy of 90.3%.

1. INTRODUCTION
Artificial intelligence (AI) sensing is an evolving technology
that can provide groundbreaking solutions to several research
areas, particularly when dealing with complex scenarios, such
as in molecular diagnostics1−3 and environmental pollution.4

Indeed, AI-based techniques remarkably enhance sensor and
biosensor technology, enabling to process and cluster huge
amounts of data in real time, bringing out patterns, hence
favoring fast and accurate decision-making. AI facilitates data
merging, efficiently combining information from several
sensors,5 empowering an improved analytical identification of
the samples. Lastly, by changing the hardware designs of
traditional sensors to AI-based ones, holistic intelligent sensor
systems can be devised.6

Traditional sensing pursues recognition elements (antibod-
ies, enzymes, peptides, nucleic acids, molecular beacons, etc.),
exhibiting the highest selectivity for a target analyte; thus,
when coupled to a transducer (electrochemical, optical,
piezoelectric, etc.), a specific and measurable signal is produced
upon binding. For multiple molecular constituents in a
solution or for the identification of a class of compounds
with heterogeneous characteristics, such a traditional biosensor
can be limited by a shortfall of specific recognition elements.
As a possible solution, nowadays, researchers are developing
biosensors that lack a specific recognition element;6 instead,
analyte-specific patterns in the signals are decoded by means of
fingerprint techniques. Typical examples are the semispecific
chemical sensor arrays, named E-nose, which have been

developed for gas sensing, or E-tongue, which consists of an
array of sensors for in-solution measurements.7,8 Machine
Learning (ML) techniques have been employed to recognize
signal patterns that correlate to a particular analyte and hence
to detect them, providing the required specificity.9 Principal
component analysis (PCA),10 k-nearest-neighbors (KNN),11

support vector machine (SVM),12 artificial neural networks
(ANN),13,14 and other algorithms have shown outstanding
performance in this frame.9

The highest impact of AI-based approaches stands in the
detection of analytes with heterogeneous characteristics, for
which it is difficult to find highly specific recognizing materials,
such as in the epitomizing case of pollution caused by
micrometric and submicrometric plastic particles. The micro-
and nanoplastics appear to be a ubiquitous environmental
problem and their presence has been reported in all
biospheres, including freshwater, seawater, soil, and air,15−20

posing a serious threat to health on the planet.21 Indeed,
despite the fact that plastics provide many benefits to modern
society by bringing convenience to our daily lives,22−24 only
9−40% are recycled25 and as a result, most of the plastics are
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indiscriminately discharged into the environment, becoming
persistent wastes.

Plastic pollution is a complex scenario, with a classification
organized in a primary source of pollutants, that comprises
micro- and nanoplastics, manufactured for the most diverse
uses in such a scale; and pollutants of a secondary source,
which are micro- and nanoplastics debris originated from the
cracking of macroplastics discharged in the environment, by
the action of chemical and physical agents.26,27

In general, plastic particles are classified on the basis of their
size into macro-, meso- (>5 mm), micro- (1 μm−5 mm), and
nanoplastics (particles size <1 μm)28 and on the basis of their
constituent materials (polyethylene (PE); poly(methyl meth-
acrylate) (PMMA); polystyrene (PS); poly(vinyl chloride)
(PVC) etc.).29 Indeed, given such a complexity, micro- and
nanoplastic monitoring has proven to be a tough analytical
challenge.29,30

Nowadays, conventional methods employed in micrometric
plastics detection31 provide partial information either about
dimensions, i.e., scanning electron microscopy (SEM), trans-
mission electron microscopy (TEM), and nanoparticle
tracking analysis (NTA) or about the material, i.e., Fourier
transform infrared spectroscopy and microscopy (FTIR) and
mass spectrometry (MS).

However, a strategy for the rapid and “on-site” screening of
micro- and nanoplastics in water samples without the need for

expensive laboratory instruments and specialized staff is still in
progress. Up to date, micro- and nanoplastics sensors have
been developed by using electrochemical impedance spectros-
copy (EIS) and amperometric and voltammetric techniques as
comprehensively reported in a recent review.32 In addition,
standing the recent developments in the fabrication of three-
dimensional (3D) freeform surfaces, deformable functional
sensors/circuits and standalone stretchable sensing platforms
could be useful in this frame.33−37 The development of optical
sensors could provide a solution to the environmental
monitoring of micro- and nanoplastics.38,39 Huang et al.38

proposed for the first time the use of estrogen receptor (ER) as
a recognizing element for plastic particles. However, in this
case, the biosensor was solely tested for micrometric plastic
particles in different materials (PS, PVC, PE), showing
apparent dissociation constants ranging between 0.19 and
3.32 nM. Starting from these results, in our recent work,40 the
interaction of ER with nanometric plastic particles was studied
using a nanoplasmonic platform, obtaining a biosensor that
responds within the concentration range of the expected
environmental loads without sample pretreatment. In the
present work, as a proof of concept, an AI-based approach for
the detection and classification of plastic particles in terms of
size (micro-; nano-) and material (PMMA; PS) was proposed.
To this purpose, the ER “smart” recognizing element38 was
grafted onto a nonexpensive and easy-to-produce D-shaped

Figure 1. (a) Scheme of the SPR-POF platform production process. In the inset: the actual image of the obtained platform. (b) Scheme of coupling
reactions with ER and (c) experimental setup of the ER−SPR−POF platform with an open (on the top) and capped lid (on the bottom). (d)
Variation of the resonance wavelength, calculated with respect to the bare platform value, considering water as the surrounding medium, after each
step of the functionalization process on ER−SPR−POF (n = 3, standard deviation (SD) = 0.15 nm).
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plasmonic plastic optical fiber (POF) probe based on the
Surface Plasmon Resonance (SPR) phenomenon.41 The sensor
was interrogated over time in order to record specific kinetic
patterns for the different classes of plastic particles. The optical
mapping over time of interaction of ER with plastic particles
was used to provide a multiparametric description of the
particle’s characteristics in terms of the size and type of
material. A subsequent AI training enabled to develop a
prediction model for the sensor data set and to analyze the
plastic content in water samples.

2. RESULTS
2.1. Functionalization Process of SPR−POF Probes.

With the aim of producing a sensor capable of interacting with
micro- and nanoplastics, an SPR−POF platform41 was
functionalized with the ER as a recognition element.38 The
preparation of the SPR-POF and its functionalization with ER
are schematically reported in Figure 1a,1b, and described in
detail in Sections 4.2 and 4.3, respectively, while the employed
experimental setup is shown in Figure 1c. The sensor
configuration was chosen for its low cost and simple setup,
which is foreseen as ideal for in-field measurements.
Concerning the cost analysis, it should be stressed that the
ER−SPR−POF platforms cost about 5 USD each comprising
material, machine, and process costs; the white light source is
around 1000 USD, while the spectrometer costs around 3000
USD. Nevertheless, despite the fact that the instrumentation
(white light source and spectrometer) represents a one-time
cost, a cheaper light-emitting diode (LED) and a photo-
detector could be used in order to further reduce experimental
setup costs.

In detail, the SPR−POF surface was functionalized with ER
according to the protocol reported by Arcadio et al.42 and
optimized by Pasquardini et al.;43 the coupling protocol
consisted of a multistep procedure in which an α-lipoic acid
self-assembled monolayer (SAM) was formed on the gold
surface; subsequently, the carboxyl terminal moieties were
activated with N-(3-(dimethylamino)propyl)-N′-ethylcarbodii-
mide hydrochloride/N-hydroxysuccinimide (EDC/NHS), and
then the ER was covalently coupled to SAM. Finally, the
surface was passivated with ethanolamine. Figure 1d reports
the resonance wavelength shifts obtained with the setup
depicted in Figure 1c (described in Section 4.5) after each step
of the functionalization process outlined in Figure 1b. It was
observed that the SPR wavelength variation (Δλ), calculated
with respect to the value obtained by a bare surface and
acquired with the same bulk (water, refractive index (RI)
1.332), showed a progressive increase (red shift) after each
functionalization step (i.e., SAM, EDC/NHS, ER, passivation).
In other words, the bulk solution (water) being fixed, the RI in
contact with the plasmonic surface increases during the
functionalization process. Furthermore, the success of the
reactions was verified with an independent method through
the attenuated total reflectance-FTIR (ATR-FTIR) character-
ization of the surface at different functionalization steps (bare
surface, SAM, ER). As shown in Figure 2, although the bare
surface does not show any relevant IR signal, the SAM and ER
spectra confirm that the functionalization steps effectively took
place.

Particularly, at least two distinctive features could be
highlighted in the SAM spectrum, i.e., the C�O stretching
at ∼1660 and ∼1540 cm−1 and the O−H stretching, from the
weak broad band at ∼3300 cm−1, both coming from the

carboxylic group of the anchored α-lipoic acid molecules.
Similarly, the same absorptions could be seen in the ER
spectrum, plus additional signals reasonably pointing to the
stretching of the C−O (∼1080 cm−1) and N−H (∼3300
cm−1) protein functional groups.
2.2. Binding Isotherm of the ER−SPR−POF Sensor for

Micro- and Nanoplastics. In order to representatively
differentiate the plastic particles in terms of both dimensions
and materials, four types of plastic particles different in size and
composition were selected: PMMA microplastics (20 μm), PS
microplastics (20 μm), PMMA nanoplastics (100 nm), and PS
nanoplastics (100 nm).

The response of the ER−SPR−POF biosensor to increasing
particle concentrations (ranging from 1 to 10 mg/mL) was
tested at 8 min of incubation time.

The resonance wavelength red-shifted for increasing
concentrations of plastic particles (PMMA microplastics,
PMMA nanoplastics, PS microplastics, and PS nanoplastics)
as shown in the SPR spectra reported in Figure S1. As a
control, bare platforms were tested in the same plastic particles’
concentration range, and no Δλs were observed (Figure S2).
Figure 3 reports the binding isotherms for the different plastic
particles tested (PMMA microplastics, PMMA nanoplastics,
PS microplastics, and PS nanoplastics), in which the
experimental data were fitted with the Hill model equation,
which has the general formula herein reported (eq 1)
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where λc is the resonance wavelength at the analyte
concentration c; λ0 is the resonance wavelength in the absence
of the analyte (blank); Δλmax is the maximum value of Δλ;
calculated by subtracting the blank value from the saturation
value; n is the Hill coefficient, and EC50 is the ligand
concentration at half-saturation. The resulting parameters,
obtained by Origin Pro 9 software, are listed in Table 1. This
fitting model was chosen because it is apt to describe
heterogeneous binding. Indeed, the sensor reported here is
based on the ER recognition element, exploited to recognize
non-natural ligands (nano- and microplastics), characterized by
various sizes and compositions. On the contrary, when the
receptor was tested for the binding to its own target
(estradiol), the binding isotherm was described by a Langmuir
model, as reported in Arcadio et al.42

Figure 2. FTIR transmittance spectra of the bare surface (yellow),
SAM (blue), and ER (red), with partial functional group assignation
of the main absorption bands.
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Additionally, from the fitting parameters obtained by the
Hill model equation, the sensitivity at low concentration
(Slowc) and the apparent binding affinity (Kaff) were calculated
as reported in eqs 2 and 3, respectively

S /EClowc max 50= (2)

K 1/ECaff 50= (3)

Table 2 reports the Slowc and Kaff values. From the EC50 value
comparison, it is possible to deduce that the interaction
between the ER-based recognition element and different
types/sizes of plastic particles appears different, according to
the results reported by Huang et al.38 This discrepancy appears
even more evident if the concentrations are converted from
milligrams per milliliter to molar concentrations (see Section
S3). The conversion was carried out in order to obtain an
estimation of the number of moles and therefore of the

number of particles contained in the samples. By comparing
the fitting parameters obtained from the experimental value
plotted as a function of plastic particles concentration
calculated in mg/mL (reported in Table 1) and in molarity
(reported in Table S1), it is possible to underline an amplified
difference between the type of plastic particles, and a trend
reversal of the EC50 linked to the correction as a function of
the number of particles, which appear for microplastics

Figure 3. Variation in resonance wavelength as a function of (a) PMMA nanoplastics, (b) PMMA microplastics, (c) PS nanoplastics, and (d) PS
microplastics concentrations on bare and functionalized platform and Hill fitting of the experimental data. The error bars were calculated as the SD
of the data set (n = 3).

Table 1. ER−SPR−POF Fitting Parameters for Micro- and Nanoplastics

statistics

ER−SPR−POF Δλ0 [nm] Δλmax [nm] EC50 [mg/mL] n reduced χ2 adj. R2

PMMA nanoplastics −0.17 ± 0.01 1.57 ± 0.01 2.23 ± 0.02 2.11 ± 0.02 0.01 0.999
PMMA microplastics 0.01 ± 0.05 0.62 ± 0.05 2.97 ± 0.32 3.15 ± 1.12 0.01 0.971
PS nanoplastics −0.34 ± 0.20 1.94 ± 0.21 2.04 ± 0.27 1.82 ± 0.60 0.60 0.990
PS microplastics 0.12 ± 0.02 0.69 ± 0.03 2.52 ± 0.14 3.13 ± 0.55 0.19 0.991

Table 2. ER−SPR−POF Sensitivity at Low Concentrations
for Micro- and Nanoplastics Detection

ER−SPR−POF Slowc [nm/(mg mL−1)]
Kaff =1/EC50
[(mg/mL)−1]

PMMA nanoplastics 0.70 0.45
PMMA microplastics 0.21 0.34
PS nanoplastics 0.95 0.95
PS microplastics 0.27 0.40
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approximately 7 orders of magnitude smaller with respect to
nanoplastics.

This reversal of trends also appears when calculating the Kaff.
The Kaff of the tested plastic particles, by varying the material

(PS and PMMA), showed a behavior in agreement with the
results of interaction studies of synthetic polymers with
biomacromolecules, such as the ER, as in Enyoh et al.,44

showing a greater affinity for PS than PMMA. Instead, at
different particle sizes, a higher Kaff value was obtained for
microplastics compared to nanoplastics by expressing the Kaff
in molar concentration, due to the larger size and the related
multisite interaction (reported in Table S2). However, for an
easier data treatment (i.e., avoiding to estimate the plastic
particle’s molecular weight), the apparent Kaff was expressed in
mg/mL, in which there was a trend reversal (Kaff nanoplastic >
Kaff microplastic) as reported in Table 1, due to the higher
number of particles in nanoplastic samples compared to
microplastics one for the same concentration calculated in mg/
mL. Also, the different Slowc confirmed the dissimilar
interaction behavior of the tested plastic particles. In particular,
the Slowc appears different for nano- compared to microplastics
and obtains better performances for PS compared to PMMA.
Also in this case, the Slowc is influenced by the method of
reporting the concentration (i.e., molar concentration or mg/
mL) for the same reason reported above for Kaff. The behavior
for different particle sizes reports a larger Slowc for microplastics
compared to that for nanoplastics, calculating the Slowc in molar
concentration (as reported in Table S2). Instead, for the Slowc
calculated as nm/(mg mL−1), the trend is reversed (Slowc
nanoplastic > Slowc microplastic), as reported in Table 2.

The binding kinetics were evaluated by monitoring the
spectral shift at different time intervals for 8 min as shown in
Figure 4 for all kinds of tested plastic particles. The response
results were in accordance with the Slowc values.
2.3. Plastic Particles Characterization via Artificial

Intelligence. To meet the environmental challenge in the
recognition and characterization of plastic particles,29 an AI-
based approach was applied to demonstrate the potential
discriminations of size and composition. In fact, at varying size
and type of plastic particles, the ER−SPR−POF response
results are different, as reported in Section 2.2, hence paving
the way to an ML-based approach for the classification. To this
purpose, the prediction model was built using a standard
Matlab toolbox called “Statistics and Machine Learning”,
which is a toolbox that offers a classification learner capable of
training models and classify data. A known collection of data
input and responses to those data were used in a supervised
ML approach. Once the data was used to train the model, it
made predictions about responses to the new data.

In this work, as a proof of concept, an ML-based model was
developed to discriminate different plastic targets: nanoplastics
(100 nm), and microplastics (20 μm), each tested in two
different materials (PMMA and PS). Additionally, silica
microparticles were selected as an example of nonplastic
materials. These materials were chosen for their differences in
the intrinsic physicochemical characteristics of materials and
for their differences in terms of size.

The concentration of particles (plastic and nonplastic
particles) was fixed at 3 mg/mL and the particles were tested
one at a time in order to realize a proof-of-concept sensor
system exploiting a reduction in the time of the training phase.

Figure 4. Variation in resonance wavelength (Δλ) as a function of incubation time for (a) PMMA nanoplastics, (b) PMMA microplastics, (c) PS
nanoplastics, and (d) PS microplastics.
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The binding kinetics between plastic particles and ER,
intended as variations of plasmonic wavelength (Δλ)
registered at different incubation times each minute for 8
min as reported in Figure 4 (whole SPR spectra reported in
Figure S4), were used as distinctive elements to build
mathematical functions to train the algorithm. The measures
were repeated (n = 10) for each sample, in order to build a
data set adequately robust. Figure 5a plots the parallel
coordinate plot showing the data set clustering results. In the

silica microparticles case, the bioreceptor layer (ER) does not
interact with this kind of particles.

In the next step, training of the classification algorithms,
available from the Matlab toolbox, was performed. Among all,
the K-nearest-neighbor (KNN) algorithm was chosen because
it showed the highest accuracy (94%), as illustrated in the
confusion matrix reported in Figure 5b.

Finally, the model obtained from the trained algorithm was
applied to test blind solution types, providing as input data the
resonance wavelength shifts (acquired every minute for 8 min).

Figure 5. Plastic particles characterization based on AI: (a) Parallel coordinates plot relative to data set clustering and (b) confusion matrix
obtained for the predictions over a stratified cross-validation procedure.

Figure 6. (a) Flowchart of the sensing scheme to characterize the plastic particles in terms of the concentration, size, and type. (b) Validation test
of the AI−ER−SPR−POF method carried out with a spiked sample (*PS nanoplastics at 2.5 mg/mL).
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The blind solutions were prepared by diluting different plastic
particle stock solutions (PMMA and PS nanoplastics, PMMA
and PS microplastics, and silica microparticles) at 3 mg/mL
and were tested one at a time. The prediction results
demonstrated an accuracy of 90.3%, paving the way for this
type of approach for the classification of nano- and
microplastics in terms of the size and material. The AI-based
sensor systems depend on the data acquired during the training
phase (data set). In this work, the mixtures of plastic particles
were not used in the data set, so the proposed sensor system
cannot identify these kinds of samples. In order to demonstrate
this aspect, Figure S5 reports the results obtained by the
binding kinetics relative to several mixtures. In particular,
concerning the response for nonhomogeneous samples, the
proposed sensor was tested for the following 50:50 mixtures of
plastic particles at a fixed final concentration of 3 mg/mL
(binding kinetics reported in Figure S5): PS nanoplastics/
PMMA nanoplastics; PS nanoplastics/PS microplastics; and
PS microplastics/PMMA nanoplastics. Hence, naturally, all of
the tested mixtures of plastic particles are not correctly
classified by the sensor system. In particular, the three
nonhomogeneous solutions were incorrectly classified as PS
nanoplastics, PS nanoplastics, and PMMA nanoplastics. In fact,
as expected for these types of samples, the identification and
classification system fails due to the simplified training fed to
the AI. Instead, to identify even complex mixtures, it is
necessary to expand the data set for AI training considerably or
improve the algorithm’s efficiency.45−50

2.4. Sensing Strategy to Evaluate the Size, Type, and
Concentration of Plastic Particles: Validation of Un-
known Samples. The sensing scheme outlined by the
flowchart in Figure 6a shows that by exploiting the ML-
based prediction model (Section 2.3) and the binding isotherm
(Figure 3), it is possible to characterize unknown samples in
terms of plastic particles concentration, size, and material.
More specifically, a small sample fraction can be used to
determine the SPR wavelength shift, whereas the remaining
sample can be used to concentrate the plastic particles at the
value used in the model training (3 mg/mL). This process can
be performed by filtration and evaporation treatment and
subsequent resuspension. Once the concentration is coherent
with the kinetic data set, the trained model can predict the
plastic particle size and material. Thus, the obtained result is
then used to select the correct binding isotherm to extrapolate
the concentration value from Δλ achieved in the first phase
(Δλ measured for the untreated sample).

The qualitative and quantitative validation of this sensing
strategy was carried out by testing a water sample added with
PS nanoplastics with a theoretical concentration of 2.5 mg/mL
(called the unknown sample, in Figure 6b).

In the first phase, a few microliters of the unknown sample
(40 μL) were used to monitor the variation in resonance
wavelength (Δλ) produced by the sample on the ER−SPR−
POF sensor. Such Δλ information is next used for quantitative
determination.

In the second step, 5 mL of the unknown sample was treated
by filtration and evaporation, followed by resuspension at the
concentration used for training (3 mg/mL). 40 μL of the so-
produced sample was placed on the ER−SPR−POF and the
signal was registered each minute for 8 min. By the binding
kinetics and from the KNN algorithm, the plastic particles in
the unknown sample were then classified in terms of the size

(micro/nano) and material (PMMA/PS). As a result, the
sample was identified as PS nanoplastics.

Next, the quantification of the plastic particles in the
unknown sample was attained by referring to the correspond-
ing binding isotherm (Figure 3). By selecting the correct
binding isotherm (PS nanoplastics) and using the Δλ
measured in the first step, a concentration of 2.5 mg/mL PS
nanoplastics was obtained. The validation process is schemati-
cally summarized in Figure 6b.

Moreover, in order to support the possibility of using the
sensing strategy in different matrices, the validation was also
performed in simulated seawater for a spiked sample, as
reported in Section S6.

It should be stressed that, by utilizing highly sensitive
plasmonic platforms, like the one based on gold nanograting
(GNG) recently presented in Seggio et al.40 for plastic particles
detection at an ultralow concentration range, the same AI-
based strategy here discussed could be used to detect plastic
particles in a different concentration range (e.g., ng/mL).
Nevertheless, in this work, considering the expensive and time-
consuming GNG production process and the need for a
discrete amount of sensing platforms to adequately build the
data set, a cheaper technology (the SPR−POF probes) was
chosen to demonstrate the capabilities of the proposed
approach.

3. DISCUSSION AND CONCLUSIONS
Optical and electrochemical sensing strategies integrated with
discrimination capability for the particle size and type
represent a growing field.51,52 In particular, different optical
and/or electrochemical platforms were developed for this
purpose.53−61 For instance, the coupling between optical
tweezers and ML was demonstrated for microplastics
classification in terms of both size and material.53 However,
this approach was not proven for plastic nanoparticles and
requires an expensive and complex experimental setup. Along
this line, Doi et al.54 demonstrated the use of optical tweezers
to distinguish nano- and microparticles but without the
discrimination of the material type. A very recent work55

proposes a sensing approach by hyperspectral stimulated
Raman scattering (SRS) microscopy, demonstrating the
nanoplastics classification in terms of different materials in
water samples,55 but in this case too, the approach requires
complex and expensive instrumentation. Analytical methods
for microplastics characterization exploiting FTIR analysis
coupled with AI-based tools were also available.56,57 Addition-
ally, the use of surface enhanced Raman scattering (SERS)
substrates paves the way for micro- and nanoplastics
identification.58 Lv et al.59 utilized a SERS substrate able to
effectively detect plastic particles of different sizes and
materials in water samples, despite the fact that any kind of
AI-based classification was performed.

So far, none of these approaches have been reported for
simultaneous identification and classification of both nano- and
microplastics in terms of size and material on one single sensor.

In this work, we reported the development of a plasmonic
biosensor coupled with the ER receptor, the latter suitable to
bind micrometric and submicrometric plastic fragments. This
recognition element was chosen because the literature reported
it as suitable for the detection of different microplastics via a
conventional SPR device.38 The interaction between the ER
and the microplastics is mainly hydrophobically driven.38 It
was reported that different kinds of microplastics interacted
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with the ER in a slightly different manner, according to their
physicochemical characteristics, and hence were characterized
by specific kinetics.38 Thus, the ER plasmonic surface was apt
for the recent definition of “MathMaterial interface”,62 which is
a nonspecific interface exploited for its ability to sense different
types of analytes by means of a quasi-nonspecific sensing layer.

The sets of changes occurring to the ER in response to
different analytes resulted in specific and distinctive functions
that ultimately produced specific patterns of signals, as
suggested by the variation of plasmonic resonance wavelength
at different times shown in Figure 5a. Here, the interactions of
the ER receptor to the plastic fragment that resulted in the
distinguished mathematical functions in dependence on the
changes in the plastic size (micro/nano) and type of plastic
material (PMMA and PS) were fed to an AI algorithm for size-
and type-dependent categorization. Additionally, it is envisaged
that the ER-based sensor would broaden or restrict the
selectivity by optimizing training algorithms and/or the data
set.

It should be stressed that in the specific detection of
substances based on nonspecific receptors combined with AI,
the ML-based prediction model efficiency in terms of sensor
selectivity can be improved by optimizing the training
algorithms45−47 and/or the data set.48−50

In this work, it has been shown that the ER−SPR−POF
responds with different functions to each type of tested plastic
particle.38

In the present work, a novel strategy to detect, classify, and
quantify the plastic particles in terms of the size and material
was proposed. In fact, in addition to the capability to detect
plastic particles with different sizes (micro- and nano-) and
materials (PMMA and PS), we also provide an ML-based
strategy (schematized in Figure 6) to classify and then quantify
the plastic particles content in water samples.

Along this line, the future perspective foresees to test several
plastic particles, both one at a time and in mixtures at different
ratios and in different matrices, in order to expand the data set
to train the algorithm to obtain a sensor capable of detecting
and identifying nonhomogeneous plastic particle samples
present in a real scenario.

4. MATERIALS AND METHODS
4.1. List of Chemicals. Recombinant human estrogen

receptor α protein (ER) (ab82606 abcam) was purchased from
Abcam (Cambridge, U.K.). Poly(methyl methacrylate)
(PMMA) nanoplastics (100 nm) (DNP-P034) and micro-
plastic (20 μm) (DMN-L015) and polystyrene (PS) nano-
plastics (100 nm) (DNT-B010) and microplastics (20 μm)
(DNT-B20) were purchased from CD Bioparticles (London,
U.K.) as a standard aqueous stock solution (10 mg/mL). Silica
microparticles 40−63 μm particle size (112926-00-8), N-
hydroxysucc in imide (NHS) (6066-82-6) , N - (3 -
(dimethylamino)propyl)-N′-ethylcarbodiimide hydrochloride
(EDC) (25952-53-8), α-lipoic acid (1077-28-7), ethanolamine
(141-43-5), phosphate buffered saline 10 mM, pH 7.4 (PBS)
(MFCD00131855), and 2-(N-morpholino)ethanesulfonic acid
(MES) (4432-31-9) were purchased from Sigma-Aldrich
(Darmstadt, Germany).
4.2. POF-Based Plasmonic Chip. The SPR−POF plat-

form fabrication is extensively described by Cennamo et al.41

Briefly, a POF is embedded in a resin support and polished
with papers (5 and 1 μm grits) to realize the D-shaped POF
area (l = 10 mm). Subsequently, a photoresist buffer layer

(Microposit S1813, MicroChem Corp., Westborough, MA) is
spin-coated to improve the optical performance.41 Finally, a 60
nm gold film is deposited by a sputter coater machine
(Safematic CCU-010, Zizers, Switzerland). The fabrication
scheme is summarized in Figure 1a. The planar sensing surface
of the chip (10 mm × 1 mm) can be used to carry out the
measurements by dropping the sample solution without
microfluidic cells.
4.3. ER Functionalization Protocol. The functionaliza-

tion of the plasmonic platform was performed according to the
protocol reported by Arcadio et al.42 and optimized by
Pasquardini et al.43 The gold surface, previously washed with
Milli-Q water, was treated overnight at room temperature with
α-lipoic acid (0.3 mM in 8% ethanolic solution) to let the thiol
groups react with the gold surfaces. The so-produced self-
assembled monolayer (SAM) with a carboxylic terminal group
was activated with EDC/NHS (both 10 mM) in MES buffer
50 mM pH 5.5, for 20 min at room temperature.

After washing to remove the reactant in excess, the surface
was incubated for 2 h with ER (30 ng) at room temperature in
a sealed humid box for covalent immobilization of the
receptor. Finally, the passivation of the surface was performed
by incubating ethanolamine (1 mM) for 30 min at room
temperature, in order to passivate unreacted activated
carboxylic groups. The prepared platforms were washed and
stored in PBS at 4 °C. The scheme of the platforms’
functionalization is reported in Figure 1b.
4.4. Analysis of ER−SPR−POF by ATR-FTIR. Attenuated

total reflectance (ATR)-FTIR spectra were recorded with a
Thermo Fisher Scientific Nicolet iS50 FTIR Spectrometer in
the mid-IR range, subtracting the contribution from air
(blank), and collecting 32 scans for each spectrum with a
resolution of 4 cm−1.
4.5. Measurement Setup. To test the SPR platform, a

simple experimental setup consisting of a halogen lamp with an
emission range 360−1700 nm (HL-2000LL, Ocean Insight,
Orlando, FL) and a spectrometer with a detection range 350−
1000 nm (FLAME-S-VIS-NIR-ES, Ocean Insight, Orlando,
FL) was used. The SPR−POF platform was connected to the
light source and spectrometer through SMA connectors. The
POF used to build the plasmonic platform is not bending-
insensitive. Hence, to avoid a possible effect induced by
mechanical deformations, the SPR−POF platform was
embedded in a resin cube (as shown in the scheme in Figure
1a) that was immobilized in a 3D-printed holder as shown in
Figure 1c. Finally, the spectrometer is connected to a PC by a
USB cable.
4.6. Measurement Procedures of Binding Isotherms.

Micro- and nanoplastic stock solutions were diluted to the final
tested concentrations (ranging from 1 to 10 mg/mL) with
water. Prior to use, all solutions were always sonicated for ∼15
min to ensure micro- and nanoplastics were homogeneously
dispersed. Measurements were performed by placing 40 μL of
the sample on the sensor and incubating the sample for 8 min.
The plasmonic spectra were collected after a washing step by
placing water (40 μL) as a bulk solution. The spectrum
acquired with air as a surrounding medium was considered as a
reference spectrum for the normalization since the plasmonic
phenomenon is not triggered.41 Error bars were calculated as
the maximum experimentally measured variation obtained by
testing three similar platforms under similar conditions.
4.7. Analysis via Artificial Intelligence. The ER−SPR−

POF platform was tested by monitoring the wavelength shifts
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over time for 8 min and for the different solutions, i.e., PMMA
and PS nanoplastic (100 nm), PMMA and PS microplastics
(20 μm), and silica microparticles (40−63 μm), all considered
at a fixed concentration equal to 3 mg/mL. All measurements
were performed under fixed conditions of temperature (25 °C)
and in Milli-Q water. In fact, changes in the environmental
conditions in terms of temperature or matrix produce
differences in the interaction of plastic particles with ER (the
recognition layer),63 and the phenomenon would lead the
algorithm to miss in recognizing. To mitigate this aspect, the
training phase of the sensor system could be expanded with a
greater number of samples by considering these environmental
conditions (in terms of temperature or matrix) in order to use
the sensor in a real scenario.

The resonance wavelength shifts (Δλ) were acquired at each
minute, for 8 min of incubation time, for each tested solution.
The acquisition was repeated 10 times for each sample to build
a robust data set to accurately train and validate the prediction
model. The prediction model was carried out using a standard
Matlab toolbox named as “Statistics and Machine Learning”
and choosing the K-nearest-neighbor (KNN) algorithm.
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