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Abstract

Modeling the behavior of zoonotic pandemic threats is a key component of their control.

Many emerging zoonoses, such as SARS, Nipah, and Hendra, mutated from their wild type

while circulating in an intermediate host population, usually a domestic species, to become

more transmissible among humans, and this transmission route will only become more likely

as agriculture and trade intensifies around the world. Passage through an intermediate host

enables many otherwise rare diseases to become better adapted to humans, and so under-

standing this process with accurate mathematical models is necessary to prevent epidemics

of emerging zoonoses, guide policy interventions in public health, and predict the behavior

of an epidemic. In this paper, we account for a zoonotic disease mutating in an intermediate

host by introducing a new mathematical model for disease transmission among three spe-

cies. We present a model of these disease dynamics, including the equilibria of the system

and the basic reproductive number of the pathogen, finding that in the presence of biologi-

cally realistic interspecies transmission parameters, a zoonotic disease with the capacity to

mutate in an intermediate host population can establish itself in humans even if its R0 in

humans is less than 1. This result and model can be used to predict the behavior of any zoo-

nosis with an intermediate host and assist efforts to protect public health.

Introduction

Zoonotic diseases, which originate in animals and infect humans, are one of the most concern-

ing epidemic threats of the 21st century and form 60% of all known infectious diseases [1].

Zoonoses such as HIV-AIDS, avian influenza, SARS, Ebola, Nipah, Hendra, and rabies all

trace their origin to nonhuman reservoir species [2], and zoonoses comprise 75% of emerging

infectious disease [3]. The World Health Organization cites “Disease X”, a pathogen currently

unknown to cause human disease that might evolve to become more transmissible among

humans, as a priority for research and development in pandemic prevention [4], a threat

underscored in recent months by the SARS-CoV2 pandemic.
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While the dynamics of a zoonosis in its reservoir host are frequently cited as an influence

on its emergence in humans [1], current mathematical models of zoonoses lack the capacity to

represent their complete evolution. Some of the most pressing unaddressed questions in estab-

lishing the mathematical theory of zoonoses include better capturing disease dynamics within

nonhuman species in order to characterize changes in the disease before it infects humans;

focusing on the first cases of human infection to understand how a pathogen actively adapts to

humans; and developing a theory for the role of intermediate hosts in the emergence of the dis-

ease [5]. Lloyd et al. (2009) [6] blame a desire to view zoonoses in a piecewise manner, as a

concatenation of different epidemics rather than a connected system, for the lack of quantita-

tive understanding of zoonoses as a new type of disease; in particular, there are few unifying

mathematical theories or sets of principles that can be used to frame discussions of zoonotic

spillovers [5]. This gap in modeling spillover dynamics limits our understanding of zoonoses,

as does a general lack of mathematical modeling of multihost pathogens and quantification of

the rate of human-to-human transmission [6, 7]. This paper provides such a mathematical

model for a zoonosis emerging through an intermediate host.

In contrast to pathogens which evolved to infect humans, such as smallpox, the biology of

emerging zoonoses is adapted to their reservoir host species. Since a pathogen’s transmissibil-

ity can also be affected by anthropogenic factors such as the host species’ population structure

or resource and habitat availability [7], intermediate hosts−a non-reservoir animal species in

which a zoonotic pathogen circulates−particularly domestic animals, provide greater opportu-

nity for a pathogen to mutate to a human-transmissible form, because these species are biolog-

ically similar to the pathogen’s wild reservoir and have greater contact with humans. As an

example of the role of intermediate hosts, the adaptation of avian influenza, one of the most

well-studied zoonoses, to humans requires a mutation in domestic pigs or poultry. Avian influ-

enza’s success in a new host species is governed by its receptor binding specificity [8]; with cir-

culation in domestic pigs, which express both human- and avian-influenza type receptors in

their tracheae, the virus has an opportunity to mutate to a form that can infect humans ([9],

[10]). The influenzas are perhaps the easiest example to understand, as reassortment of differ-

ent hemagglutinin and neuraminidase subtypes within one infected pig can produce entirely

new pathogens [9], but less drastic mutations can alter the transmissibility or lethality of any

zoonosis. The disease dynamics that resulted from repeated introductions of Nipah virus from

bats, the pathogen’s reservoir host, to pigs enambled the pathogen to persist in its intermediate

host and thus infect humans [11–13]). Table 1, a sampling of zoonoses for which an intermedi-

ate host has been identified, shows notable case studies of zoonoses with domesticated species

as intermediate hosts.

Table 1. Zoonotic diseases with intermediate hosts.

Disease Reservoir Host Intermediate Host Source

Nipah virus encephalitis bats pigs [1, 2, 5, 11]

Hendra virus disease bats horses [2, 5, 11]

SARS bats civets [5]

Avian influenza wild birds domestic poultry, pigs [16, 20, 21]

Menangle virus disease bats pigs [2, 11]

Middle East Respiratory Syndrome bats camels [22]

Campylobacteriosis wild birds domestic poultry [23]

Japanese encephalitis wild birds pigs [23]

Covid-19 bats unknown [24]

https://doi.org/10.1371/journal.pone.0237780.t001
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In an intermediate host species, a pathogen can gain more exposure to humans and mutate

to a human-transmissible form, an evolution not previously studied. Childs et al. (2019) [14]

consider the risk of yellow fever spillover in Brazil, but do not investigate reservoir infection

dynamics nor consider pathogen mutation over the course of an epidemic. Similarly, Wash-

burne et al. (2019) [15] introduce percolation models of pathogen spillover in an attempt to

capture the complexity of multispecies diseases, but note that this type of model does not cap-

ture epidemiological feedback between nonhuman species. Iwami et al. (2007) [16] and Gumel

et al. (2009) [17] conceptualize avian influenza mutation as occurring within humans rather

than another species, a framework which ignores the key population in the spread of a zoono-

sis: Richard et al. (2014) [8] cite two barriers, jumping to humans and efficient human-to-

human transmission, that a zoonotic pathogen must overcome, and this change frequently

occurs in the “mixing vessel” of an intermediate host species [9]. Plowright et al. (2017) [18]

present a conceptual model of spillover intended to assess zoonotic risk and identify barriers

to spillover, but their quantitative model lacks SIR dynamics in nonhuman species, instead

conceptualizing disease in animals as merely a force of infection applied to the human popula-

tion, and makes no mention of the crucial role played by intermediate hosts. Further, control-

ling a human epidemic of a zoonotic disease depends on controlling the basic reproduction

number in both animals and humans [19], interventions not previously studied together. With

a mathematical theory for a human-transmissible disease arising from a zoonotic pathogen in

an intermediate host population, researchers can investigate the cumulative effect of evolution

in multiple species and policymakers can move towards prevention of a human pandemic

rather than amelioration of one [5]. While recent modeling efforts have addressed the spillover

process from reservoir host to humans, the role of intermediate hosts as amplifiers or mutators

of a pathogen, a defining part of zoonotic spillover, remains underdeveloped and lacks a strong

theoretical foundation.

The model presented here is based on the basic SIR model first presented by Kermack and

McKendrick (1927) [25], as well as the introduction to multihost SIR models presented by

Allen et al. (2012) [7]. We build on more well-known examples such as models for vector-

borne diseases, which must infect both its host species (rather than opportunistically jumping

to a new species) and follows set steps in its life cycle in both (rather than unpredictably mutat-

ing in a new host), contrasting our model with a vector-borne SIR one which merely adds

more compartments for the pathogen to run through. Andraud et al. (2012) [26], in a review

paper of deterministic models of dengue, note that the disease dynamics among the vector

population are frequently simplified to a mere force of infection for the human one, since the

disease does not evolve within the vector species. In contrast, a zoonosis model must consider

the disease dynamics in its nonhuman compartments, since these dynamics determine

whether the pathogen reaches humans at all. Attempts have been made to model zoonotic

spillovers [6, 7, 27], but without incorporating changes in the pathogen’s ecology over the

course of an epidemic, these models are mathematically indistinguishable from those model-

ing a vector-borne disease with more hosts or a multispecies model. While a sizeable literature

exists on mathematical models of vectorborne diseases, and this class of pathogen provides a

useful comparison for the type of behavior modeled here, no model captures the unintentional

opportunism of zoonoses or incorporates selective pressure on viruses [7]. In this paper, we

present a model which incorporates a pathogen mutation to a human-transmissible form in an

intermediate host species, filling the gap noted by Lloyd et al. (2015) [5] with the introduction

of a mathematical model that simulates the entire course of an emerging zoonosis. We model

the adaptation of a zoonotic pathogen to a human-transmissible form in an intermediate host

population and investigate whether the presence of pathogen adaptation in intermediate hosts

creates or amplifies an epidemic among humans, with the goal of informing public health
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efforts to curb emerging infectious diseases. As a baseline and example, we use parameters that

most closely reflect highly pathogenic avian influenza, a classical example of a zoonosis with

an intermediate host [2] and one for which the most data is available. However, our model is

intended to codify the idea of an intermediate host mathematically and therefore does not

focus on a particular infectious disease. By changing its parameters, this model can be applied

to study any zoonosis that passes through an intermediate host population, and its results are

general to that theory.

We find that completely accounting for the spillover and interpopulation dynamics exhib-

ited by emerging zoonoses links human populations to animal ones more deeply than previ-

ously thought. Zoonotic diseases are currently classified on the basis of their human-to-human

transmissibility [6], which is assumed to be a critical distinction between pathogens with pan-

demic potential and pathogens that remain relatively rare [1, 3, 5]. The major distinction in

zoonotic spread within humans is whether the pathogen can spread beyond its primary indi-

vidual host to infect other humans: whether the basic reproduction number R0, the number of

secondary cases produced by an index case in an entirely naive population, is greater than 1

[5]. This classification rests on a three-stage framework summarized by Lloyd et al. (2009),

Morse et al. (2012), and Wolfe et al. (2005) [6, 28, 29]. Stage 1, pre-emergence, represents zoo-

noses circulating in an intermediate host but only capable of spillover into a dead-end human

host, with no further transmission. Stage 2, localized emergence, defines diseases that can

maintain stuttering chains in a human population with reinfection from animal hosts but are

incapable of sustaining themselves in humans alone. Stage 3, pandemic emergence, classifies

diseases that are fully adapted to humans and thus capable of causing outbreaks in our species

alone [6, 28].

Here, we examine the process of pathogen evolution through these different stages to show

that with a mutation to a human-transmissible strain in an intermediate host, a pathogen can

maintain an endemic equilibrium in humans even in stage 1 (an R0 < 1 in the human com-

partment), refuting the transmissibility framework that currently forms the basis for classifica-

tion of emerging zoonoses [6, 28, 29]. Since the epidemiological stratification of zoonotic

diseases currently rests on their perceived threat to humans, the result that zoonotic epidemics

can persist in human populations without achieving an R0 > 1 in humans sounds an alarm for

current public health policy.

Methods

We link three species−a wild reservoir host, a domestic intermediate host, and humans−using

a deterministic SIR model [25, 30, 31] with vital dynamics in each species compartment. These

compartments are linked by transmission routes. An infected wild host can pass the disease to

a susceptible domestic animal with transmission probability pd, and an infected domestic ani-

mal can pass the human-transmissible strain of the disease to a human with probability ph.
Finally, the model incorporates the hallmark of an emerging zoonosis: the pathogen’s ability to

mutate to a human-transmissible strain while circulating in a domestic host. To model this

phenomenon, we introduce a category T (transmissible) for domestic animals in which the

zoonosis has mutated to a human-transmissible form. This mutation happens at a rate μ in

infected domestic animals, who then transition from the original infected category to the

transmissible one and can infect other susceptible domestic animals with the new, human-

transmissible strain. The full system of 10 ordinary differential equations is shown in Table 2,

with subscripts indicating the species (wild, domestic, or human) to which the compartment

belongs. Fig 1 provides a representation of the connections between populations, and Table 3

gives the definition of each variable.
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As this is an introductory model, we make several assumptions to clarify the essential

dynamics of the system. Firstly, we equate the domestic animal recovery and transmission

rates for both strains of the pathogen; the human-transmissible strain is different from the

wild one only in that its transmission rate in humans is nonzero. We further assume that the

population of each compartment is constant over the course of the simulation, with each spe-

cies’ vital dynamics set at replacement rates, and thus calculate the proportion of susceptible,

infected, and recovered animals in each species rather than the raw numbers present in each

category. To maintain a focus on population biology and the potential for the spread of disease

from infected individuals, we do not consider disease-induced mortality; our model is thus

best suited to the first phase of diseases such as the 2009 H1N1 pandemic influenza, which

spread between hosts in days but can take weeks to kill. Finally, only domestic animals infected

with the T strain can pass the disease to humans, although both strains circulate in the

Table 2. ODE systems of our model with three host compartments (species), composed of wild reservoir hosts,

intermediate domestic animal hosts, and human hosts.

Wild dSw/dt = bw − βwSwIw −mwSw
dIw/dt = βwSwIw − γwIw −mwIw
dRw/dt = γwIw −mw Rw

Domestic dSd/dt = bd − βdSdId − pdSdIw − βdSdTd −mdSd
dId/dt = βdSdId + pdSdIw − μId − γdId −mdId
dTd/dt = μId + βdSdTd − γdTd −mdTd

dRd/dt = γdId + γd Td −mdRd

Humans dSh/dt = bh − βhShIh − phShTd −mhSh
dIh/dt = βhShIh + phShTd − γhIh −mhIh
dRh/dt = γhIh −mhRh

https://doi.org/10.1371/journal.pone.0237780.t002

Fig 1. A representation of the model. Model parameters are summarized in Table 3.

https://doi.org/10.1371/journal.pone.0237780.g001
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domestic population. The model does not account for coinfection in a domestic animal, since

an individual infected with both strains is still capable of starting a human epidemic and is

thus counted in the T category.

For each species, the model’s value at equilibrium is given by at most a quadratic equation,

giving two possible equilibria in each compartment. At the disease-free equilibrium Ef, we

have Si ¼
bi
mi

for each species i, while the endemic equilibrium Ee can be shown to satisfy the

values shown in Table 4.

We use the next-generation method ([32] and [33]) to calculate R0 in a naive population,

giving

R0 ¼ max

(
bwbw

mwðgw þmwÞ
;

bdbd
mdðgd þmdÞ

;
bdbd

mdðmþ gd þmdÞ
;

bhbh
mhðgh þmhÞ

)

:

Note that this approach also gives a distinct reproduction number for each strain in each

species: we can define the original pathogen’s reproduction number as Rw
0
¼

bwbw
mwðgwþmwÞ

in the

wild compartment and Rd
0
¼

bdbd
mdðgdþmdÞ

, while that of the mutated strain is Rdm
0
¼

bdbd
mdðmþgdþmdÞ

in

Table 3. Parameter definitions.

Si susceptible individuals of species i
Ii infected individuals of species i
Td intermediate hosts infected with human-transmissible strain

Ri recovered individuals of species i
βi transmission rate among species i
γi recovery rate among species i
bi birth rate among species i
mi natural mortality rate among species i
pd transmission rate from reservoir to intermediate hosts

ph transmission rate from intermediate hosts to humans

μ mutation rate of the pathogen in the intermediate host population

https://doi.org/10.1371/journal.pone.0237780.t003

Table 4. The endemic equilibria values in each species compartment. A proof of the uniqueness of the equilibrium

value S�d is in S1 Appendix.

Wild S�w ¼
mwþgw
bw

I�w ¼
bw � mwS�w
bwS�w

R�w ¼
gwI�w
mw

Domestic S�d <minfbd=ðmd þ pdI�wÞ; ðgd þmdÞ=bdg

I�d ¼ 1

m
ðgd þmd � bdS�dÞT�d

T�d ¼
bd � mdS�d

ðgdþmd Þþ
1
mðgdþmdÞðgdþmd � bdS�d Þ

dR�d ¼
gdðI�dþT

�
d Þ

md

Humans S�h ¼
bhbhþðmhþghÞðphT�dþmdÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½bhbhþðmhþghÞðphT�dþmdÞ�

2 � 4bhmhbhðghþmhÞ
p

2bhmh

I�h ¼
bh � mhS�h
ghþmh

R�h ¼
ghI�h
mh

https://doi.org/10.1371/journal.pone.0237780.t004
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the domestic compartment and Rh
0
¼

bhbh
mhðghþmhÞ

in humans. While a full analysis of the global sta-

bility of the endemic equilibrium requires the Routh-Hurwitz criteria applied to J(Ee), as well

as Lyapunov functions specific to the 10-equation system in Table 2 [34], analyzing the eigen-

values of J(Ee) and J(Ef) give the local asymptotic stability for particular parameter values at

those equilibria, and we have included examples below. We further note that while R0 retains

its traditional value as a threshold for the stability of the disease-free equilibria, it is possible for

the disease to vanish from upstream compartments while reaching an endemic equilibria in

downstream ones. This behavior is a result of the intercompartment parameters pd, ph, and μ:

since the model presented here is deterministic, any positive number of infections in wild ani-

mals seeds infections in domestic ones, which in turn transmit the pathogen to humans. Once

established in all three species, the fate of the disease in each compartment depends on that

species’ Ri
0
. (It is thus possible that the wild species does not serve as a true ‘reservoir’ host,

in which the pathogen perpetually circulates.) However, R0 as defined above measures the sta-

bility of the epidemic when considered as a multispecies disease. The model’s key innovations

are linking three species together based on their proximity to humans and distinguishing

between human-transmissible and non-human-transmissible strains of the pathogen, as no

previous models simulate either intermediate hosts for zoonoses or a mutation to a human-

transmissible form during the course of the epidemic in animals to study the entire range of an

emerging infectious zoonosis.

Results

We provide numerical simulations to illustrate potential fates of a zoonotic epidemic in reser-

voir hosts, intermediate hosts, and humans. To provide a baseline for these simulations, we

use parameters corresponding to highly pathogenic avian influenza (Table 5).

To elucidate the effects of the interspecies transmission parameters−pd, ph, and μ−we simu-

late an outbreak of avian influenza mutating from a low-pathogenic to a highly-pathogenic

strain in an intermediate host. One of the best-known examples of a zoonosis with an interme-

diate host, avian influenza spreads from wild birds to domestic poultry to humans, a process

for which there is some publicly available data. Seeding the model with the parameters shown

in Table 5 (and assuming that βw = βd, γw = γd), we obtain the result shown in Fig 2.

Table 5. Parameter values and sources for the model. Due to a lack of data for transmission parameters in wild

animals, we assume βw, γw, bw, and mw to be equivalent to their counterparts in domestic animals. The timesteps

are given in days.

Parameter Value Source

initial Sw 0.5 [35]

initial Iw 0.5 [35]

pd 0.51 [35]

βd 0.89 [36]

γd 0.981 [36]

bd 1 assumed

md 1 assumed

ph 0.207 [37]

βh 0.078 [37]

γh 0.091 [37]

bh 0.0118 CDC

mh 0.009 CDC

μ 0.499 [35]

https://doi.org/10.1371/journal.pone.0237780.t005
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This example−which uses the most data publicly available−shows that even if a pathogen’s

R0 is less than one in both wild and intermediate hosts, it can still establish itself in the human

population. Here, both strains of avian influenza fade in the animal populations while estab-

lishing an endemic equilibrium in the human population, with a maximum of 10.94% and an

equilibrium of 7.65% of the population infected over a time span an order of magnitude larger

than that necessary in the previous examples (t = 2000 days, not shown in the figure). Although

the particular numbers will change with more exact disease parameters, these simulations illus-

trate that with nonzero transmission parameters, an initial infection in an upstream host spe-

cies will spread to an endemic equilibrium in downstream ones even if the pathogen fails to

establish itself in its animal hosts. This result indicates that human epidemics can occur even

without correspondingly severe outbreaks in animals.

We further evaluate the effect of varying the interspecies transmission parameters pd, μ, and

ph on the equilibrium values I�d , T�d , and I�h after 3000 days, in addition to βd and βh for compar-

ison. To produce the graphs in Fig 3, we vary the parameter in question from 0.01 to 5 (since

values of 0 inevitably lead to a disease-free equilibrium in the human compartment), with a

step size of 0.1, holding the other values constant at the endemic equilibrium parameters

detailed above.

Fig 2. A simulation of low-pathogenic avian influenza mutating to high-pathogenic avian influenza. Parameters are as shown in Table 5. While the epidemic dies

out in the animal species, its R0 is 2.0871, allowing an epidemic to persist in humans.

https://doi.org/10.1371/journal.pone.0237780.g002
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Similarly, we vary pd, μ, and ph to examine the effect of these parameters on the proportion

of infected humans, finding that while increasing the mutation and intermediate host-human

contact rate increases this proportion, increasing pd lowers it, as a larger contact rate between

wild and domestic animals leads to a larger proportion of animals infected with the non-

human-transmissible strain and thus unable to pass the disease to humans. Fig 4 shows heat-

maps relating the interspecies transmission rates to the proportion of humans infected for

four different values of μ. This result is robust even for a pathogen that cannot spread among

humans; as shown in Fig 5, even decreasing βh to 0 still leads to an endemic equilibrium, with

I�h > 0.

The importance of the interspecies transmission parameters is reflected in Fig 5, which

show that even when the transmission rates of the pathogen in humans or domestic animals is

set to 0, the disease can reach an endemic equilibrium in humans. Further, only by setting one

or more of the interspecies transmission parameters μ, pd, ph to 0 can the model avoid an

endemic equilibrium in humans. In particular, the pathogen can persist in humans even if βh
= 0. The results of these numerical simulations show that varying pd and μ can change the

relative prevalence of domestic animals infected with the wildtype and human-transmissible

strains, which in turn can change the proportion of infected humans. Thus, the interspecies

transmission parameters should be primary targets for intervention to lower the proportion of

infected humans in this model.

While varying traditional epidemic parameters such as βi and γi can change the relative

numbers of individuals in each compartment, we show that only pd, ph, and μ control the

movement of a zoonotic epidemic between species, a result detailed by the simulations above.

Fig 3. βh (right) and βd (left) are directly proportional to the proportion of humans infected with the mutated strain.

https://doi.org/10.1371/journal.pone.0237780.g003
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These results show that a zoonotic pathogen can establish itself in the human population as

long as it is seeded with an initial infection in the wild compartment and pd, ph and μ are

nonzero, even if the human-transmissible strain is incapable of being transmitted between

humans.

Discussion

Since the spillover potential of the pathogen depends on pd, ph, and μ, we distinguish between

intracompartment parameters−the transmission and recovery rates βi and γi, which describe

interactions in a single species−and intercompartment parameters−the spillover and mutation

probabilities pd, ph, and μ−which govern interactions between members of two species. We

illustrate through several numerical examples that the intercompartmental parameters, and

the initial proportion of infected wild animals, have the potential to alter the global dynamics

of the three-species system to a disease-free equilibrium. Changing intracompartmental para-

menters only changes the relative proportions of each type of individual present at an equilib-

rium, not the stability of the equilibria, while modifying the values of intercompartmental

parameters can change the global behavior of the pathogen. Isolating these parameters thus

provides suggestions for possible interventions. In particular, while many parameters of the

Fig 4. Graphing the equilibrium proportion of infected humans (Ih) against ph and pd for four different values of μ, with βh = 0.078. Parameters are as in Table 5,

with βw = βd = 0.118�5. While intracompartmental reproductive numbers vary between simulations, R0 for all four simulations is 2.2463.

https://doi.org/10.1371/journal.pone.0237780.g004
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model can be changed by human interventions, the only effective route for eliminating the

possibility of a zoonotic epidemic in humans is to eliminate contact between species or the

possibility of pathogen mutation, an impossible requirement in any real system.

Reflecting the lack of data for zoonoses over their entire range of species, the sources used

for the parameters in Table 5 reflect different strains of avian influenza. While the variety and

inconsistency of these sources reflects the need for more data and research into the actual

effects of particular zoonoses [35–38]), and it is crucial for public health interventions based

on a mathematical model to know the accuracy of each parameter, their specific values are rel-

atively unimportant for the theoretical results presented here, as the analysis of the system

holds for all parameter values. The lack of large, publicly available data sets, especially regard-

ing the prevalence of zoonotic infections in wild and domestic animals and the values for pd,
ph, and μ, limits our ability to refine any model [5–7], and so gathering such data should form

a key component of future efforts.

This complete simulation of an emerging zoonosis shows that even in cases where the dis-

ease dies out in the wild compartment and would fail without an external force of infection in

the domestic one, it can establish an endemic equilibrium in humans. Further, this result holds

even if βh = 0, reflecting a pathogen in Stage 1 of the traditional categorization for zoonoses

Fig 5. Graphing the equilibrium proportion of infected humans (Ih) against ph and pd for four different values of μ, with βh = 0. Parameters are as in Table 5, with βw
= βd = 0.118�5. While intracompartmental reproductive numbers vary between simulations, R0 for all four simulations is 2.2463.

https://doi.org/10.1371/journal.pone.0237780.g005
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that would not be deemed a pandemic threat under that framework and suggesting that the

threat posed by zoonoses is more severe than previously assumed. This result indicates that

even the slightest possibility of contact between species or selection for a pathogen more suited

to humans raises pd, ph, or μ above 0 and thus can lead to an endemic infection in humans.

While these factors may be negligible in real populations, our results that the threat of an

emerging zoonosis cannot be completely erased even with extraordinarily effective interven-

tions mathematically confirm the focus on prioritizing zoonoses and offer a warning for public

health officials.

This paper introduces a model capable of replicating all stages of the emergence of a zoono-

sis with an intermediate host; given adequate data, future research could adapt this model to

any specific emerging zoonosis. To keep this work at a preliminary level and to maximize its

use in more specialized contexts, we have not considered further modifications to the SIR pro-

totype model such as loss of immunity (SIRS) or exposure time (SEIR), or possible variation

patterns in the number of infected reservoir hosts, such as seasonal migration. In particular,

the model incorporates neither pathogen virulence in new host species nor logistic growth lim-

its on populations. It is thus best suited to a pathogen that does not cause significant host mor-

tality, and future research provides an excellent opportunity to investigate the complexities

arising in more virulent diseases. Future models could also incorporate backwards transmis-

sion to wild animals, direct interactions between humans and wild reservoirs, and interactions

between different pathogens in an intermediate host [6]. The effect of different transmission

rates for the two strains circulating in the intermediate host, as well as the relaxation of the

assumption of mass action in the human compartment, also provide areas for future study.

Finally, we were unable to investigate disease dynamics in individual hosts, with little data

regarding the effect of different expressions of pathogen genotypes or animal superspreaders

on transmissibility in humans [6]. As this effect is abstracted by our parameter μ, delving

deeper into individual-host pathogen dynamics such as cellular entry and replication [7] has

the potential to improve our model. No emerging infected disease has been predicted before

infecting humans [28], although progress is being made on identifying disease ‘hotspots’ [39],

and this inability reinforces the importance of studying the factors that lead to successful spill-

over and define transmission rates between species [28].

This research suggests future avenues of exploration for both researchers and policymakers

seeking to understand and control the spread of an emerging infectious zoonosis, and proves

that interspecies connections are critical to controlling and understanding the effect of an

emerging zoonosis on human populations. We show that with nonzero transmission parame-

ters and an initial population of infected wild animals, a pathogen can fail to achieve tradi-

tional markers of success, such as stage 3 transmissibility, and still maintain an endemic

equilibrium in the human population. This concerning result for public health offers areas in

which policy rather than medical interventions can be more effective in controlling disease.

Conclusion

We establish that this model of the entire path of an emerging infectious zoonosis has one

unique disease-free equilibrium and one endemic equilibrium, and that the stability of these

points depends on pd, ph, and μ, the contact probabilities between species and the pathogen’s

rate of mutation. Accurately identifying and describing the dynamics of a pathogen circulating

in wild and domestic animals provides an invaluable opportunity to avoid risk to humans [28],

and can be used to guide public health interventions for emerging zoonotic diseases.

With the ability to study the emergence of a zoonosis with an intermediate host, first quan-

tified by the model introduced here, scientists and policymakers have a more refined tool with
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which to study and confront the emergence of a new pandemic into the human population. To

our knowledge, this is the first model that accounts for the entire course−from infected wild

animals, through mutation in an intermediate host, to an endemic equilibrium in humans−of

the type of zoonotic pathogen the World Health Organization ranks in the highest tier of pri-

orities for research and development, and so provides a significant step forward in its study.

Our results primarily offer a warning to public health officials: without drastic interventions

to lower interspecies interactions or pathogen mutation rates, zoonoses with the capacity to

mutate in a human-adjacent intermediate host can spread to humans even if they are not

viable in a human population alone. More fundamentally to the field of mathematical epidemi-

ology, this result confirms previously held beliefs−unquantified until now−about the philo-

sophical importance of zoonoses to humanity. It is a pillar of the movement variously called

“global”, “one”, or “planetary health” that human populations cannot isolate themselves from

changes that affect other species with interventions targeting only humans. By mathematically

linking the progress of a zoonotic epidemic to parameters governing interactions between spe-

cies, this model shows that the framework of an interconnected human and natural world that

implicitly underlies much of the analysis in this field in the last twenty years agrees with the

mathematics of infectious disease, quantifying and confirming a widespread belief in global

health.
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