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Abstract

In the brain, angiotensinergic pathways play a major role in chronic regulation of 

cardiovascular and electrolyte homeostasis. Increases in plasma angiotensin II (Ang II), 

aldosterone, [Na+] and cytokines can directly activate these pathways. Chronically, these 

stimuli also activate a slow neuromodulatory pathway involving local aldosterone, 

mineralocorticoid receptors (MRs), epithelial sodium channels and endogenous ouabain 

(EO). This pathway increases AT1R and NADPH oxidase subunits and maintains/further 

increases the activity of angiotensinergic pathways. These brain pathways not only 

increase the setpoint of sympathetic activity per se, but also enhance its effectiveness 

by increasing plasma EO and EO-dependent reprogramming of arterial and cardiac 

function. Blockade of any step in this slow pathway or of AT1R prevents Ang II-, 

aldosterone- or salt and renal injury-induced forms of hypertension. MR/AT1R activation 

in the CNS also contributes to the activation of sympathetic activity, the circulatory 

and cardiac RAAS and increase in circulating cytokines in HF post MI. Chronic central 

infusion of an aldosterone synthase inhibitor, MR blocker or AT1R blocker prevents a 

major part of the structural remodeling of the heart and the decrease in LV function 

post MI, indicating that MR activation in the CNS post MI depends on aldosterone, 

locally produced in the CNS. Thus, Ang II, aldosterone and EO are not simply circulating 

hormones that act on the CNS but rather they are also paracrine neurohormones, locally 

produced in the CNS, that exert powerful effects in key CNS pathways involved in the 

long-term control of sympathetic and neuro-endocrine function and cardiovascular 

homeostasis.

Introduction

The classical view of the role of the central nervous system 
(CNS) in the regulation of the cardiovascular homeostasis 
focuses on the critical importance of the CNS in the 
acute, short-term control. In this paradigm, a variety 
of reflexes send afferent information to the brain and 
control sympathetic nerve traffic to arteries and veins, 
heart and kidneys. According to the Guytonian view 

of the circulation, these reflexes reset and the CNS and 
sympathetic activity have only limited involvement in 
the chronic regulation of the cardiovascular homeostasis 
and are not involved in the setpoint of the blood pressure 
(BP). In the last two decades, it has become apparent 
that this concept is too narrow. Endocrine afferent and 
efferent connections to and from the brain can play a 
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powerful role in the long-term control of the circulation 
in, for example, heart failure and hypertension. In this 
brief review, we address only one aspect of these extensive 
endocrine interactions, i.e. the important new concept 
that angiotensin II (Ang II), aldosterone and endogenous 
ouabain (EO) are not simply circulating hormones that 
act on the CNS but rather that they are also paracrine 
neurohormones, locally produced in the CNS, that exert 
powerful effects in key CNS pathways involved in the 
long-term control of sympathetic and neuroendocrine 
function and the regulation of cardiovascular homeostasis. 
We will first provide an update on CNS angiotensinergic 
pathways, and then review the actions of plasma Ang II, 
aldosterone and EO mediated through these pathways. 
The next section reviews studies on the role of brain 
Ang II in the regulation of plasma aldosterone and EO, 
and effects of EO on arteries and the heart. We conclude 
with a review of recent studies on blockade of the CNS 
angiotensinergic pathways as a therapeutic strategy for 
treatment of hypertension and heart failure.

CNS pathways contributing to long-term 
regulation of the circulation

Daily living depends critically on the acute millisecond-
to-millisecond regulation by the CNS of sympathetic and 
parasympathetic nerve traffic to the heart and arteries. 
After release into the synaptic cleft, neurotransmitters 
such as glutamate or GABA bind to ligand-gated ionotropic 
receptors, which change their conformation and open their 
ion channels in less than a millisecond. The resulting ion 
currents can initiate neuronal membrane depolarization 
and generate high-speed action potentials along the axon, 
as well as subsequent repolarization. The effectiveness 
of this fast synaptic transmission can be influenced by 
a variety of mechanisms. For example, the quantity of 
neurotransmitter release from the presynaptic terminal 
in response to an action potential can be modulated. 
Also, the responsiveness of the post-synaptic neuron to 
a given amount of neurotransmitter can be altered by 
changing the number of receptors and/or the activity of 
intracellular signaling pathways (1). Such pre- and post-
synaptic changes may blunt or enhance autonomic and 
cardiovascular responses. In general, however, autonomic 
activity will return quickly to its setpoint due to buffering 
mechanisms such as arterial baroreflex resetting. These 
glutamat-/GABA-ergic autonomic pathways are primarily 
intended for the acute regulation of autonomic tone. 

Nonetheless, overcoming this resetting by chronic 
electrical stimulation of the carotid baroreceptors causes 
persistent decreases in sympathetic activity and BP (2). 
The resulting enhanced GABA-ergic inhibition lowers 
the setpoint for sympathetic tone but may also inhibit 
responsiveness to acute stresses.

In contrast, slow-acting CNS pathways involve 
signal transduction over seconds to minutes. In the 
case of angiotensinergic pathways, Ang II released into 
the synaptic cleft binds to angiotensin type 1 receptors 
(AT1R); this stimulates a G-protein signaling pathway, 
activates NADPH oxidases and increases intracellular 
reactive oxygen species (ROS) (3, 4). The increased ROS, 
by altering gene expression and other mechanisms, leads 
to the activation of presympathetic neurons that project 
to the intermediolateral cell column in the spinal cord (5, 
6). Angiotensinergic pathways originate from neurons in 
circumventricular organs (CVOs) in the forebrain such as 
the subfornical organ (SFO) and the organum vasculosum 
of the lamina terminalis (OVLT). These CVOs are located 
outside the blood–brain barrier (BBB), and project to the 
paraventricular nucleus (PVN) in the hypothalamus and to 
the rostral ventrolateral medulla (RVLM) in the brainstem. 
Ang II-containing neuronal cell bodies and axonal end-
terminals are present in these major cardiovascular 
regulatory nuclei and AT1R are found on both pre- and 
post-synaptic terminals in these nuclei. Besides direct 
neuronal actions, Ang II/AT1R can also activate microglia 
to generate proinflammatory cytokines, which in 
nuclei such as the PVN contribute to ROS production  
and downstream sympatho-excitatory and pressor 
responses (7, 8).

Active renin is almost undetectable in the brain. 
Recently, it has become apparent that instead, prorenin 
binds to the membrane prorenin receptor (PRR) and plays 
a major role in the local production of Ang II both in 
physiological and pathophysiological conditions such as 
hypertension (9, 10). Upon release into the synaptic cleft, 
Ang II (Ang 1–8) could directly bind to AT1R, but in the 
brain Ang III (Ang 2–8) appears to act as the primary AT1R 
agonist (11, 12). High aminopeptidase A (APA) activity is 
present in hypothalamic and brainstem nuclei (13, 14), 
and Ang III, generated from Ang II by APA, may act as the 
main AT1R agonist of the brain RAS (15).

The above outlined angiotensinergic signaling 
pathways initiate sympatho-excitatory, neurohormonal 
and pressor responses to a variety of stimuli. These 
mechanisms, alone, are apparently not sufficient for 
persistent activation. Chronic s.c. infusion of Ang II 
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increases the expression of immediate early genes (IEGs) 
in the SFO only for the first few days, but the increase 
is progressive and persistent in the supraoptic nucleus 
(SON) and magno- and parvocellular subdivisions of the 
PVN (16, 17). Similarly, ROS is markedly increased in the 
SFO at 7 days but no longer after 2 weeks, whereas ROS 
activation persists in the PVN and RVLM (4). These findings 
are consistent with the concept that Ang II/III induced  
AT1R/ROS signaling is the primary driver for the increase 
in neuronal activity in the SFO/PVN/RVLM pathways, but 
that another, more slowly acting, signaling mechanism 
is also being activated that amplifies and maintains 
downstream responses. Several lines of evidence indicate 
that a slow-acting neuromodulatory pathway involving 
aldosterone, mineralocorticoid receptors (MR), epithelial 
sodium channels (ENaC), EO and its receptor, the α2 Na+ 
pump, plays a critical role in this regard. All components 
of this pathway are present in hypothalamic nuclei such 
as the SFO, PVN and SON (5). These nuclei co-express 
MR (18, 19) and 11β-hydroxysteroid dehydrogenase 
type 2 (11β-HSD2) (18, 20, 21, 22) or 11β-HSD type 1 
(23), which both can confer aldosterone specificity to 
MRs (23). A variety of groups have demonstrated the 
presence in the hypothalamus of an ouabain-like factor. 
Aldosterone via MR increases the release of this factor 
from magnocellular neurons of the PVN and SON (24) 
for local action (25) or via the pituitary (26) release into 
the circulation. This brain factor appears to be identical 
to plasma EO (27, 28). In the brain, the ouabain-sensitive 
α3-isoform of Na+, K+-ATPase is highly expressed in 
neurons, and the ouabain-sensitive α2-isoform is the 
isoform in glia (29). Unexpectedly, in mice with an 
ouabain-resistant α2-isoform (α2

R/R), pressor responses to 
central infusion of ouabain or sodium (acting by release 
of EO) are largely absent (30, 31). This finding suggests 
that ouabain or EO may act mainly on glia rather than 
neurons in the CNS.

Aldosterone, acting though this slow neuromodulatory 
pathway, increases mRNA and protein expression of ACE, 
AT1R and NADPH oxidase subunits (25) and elevates 
intracellular superoxide levels and Ca2+ influx (32, 33). 
Aldosterone can, thereby, enhance Ang II release and 
AT1R signaling in, for example, the SFO (34) and the 
PVN (25). Consistent with this concept, central infusion 
of aldosterone or ouabain causes a gradual increase in 
sympathetic nerve activity (SNA), BP and heart rate that 
can be prevented by central infusion of an AT1R blocker 
(32, 35). Finally, and most importantly, central infusion 
of Ang II at a low rate (not effective when infused 

peripherally) increases hypothalamic aldosterone 2-to 
3-fold; this increase can be prevented by central infusion 
of an aldosterone synthase (AS) inhibitor. Moreover, when 
combined with central infusion of an AS inhibitor or MR 
blocker, central Ang II only causes a transient increase 
in BP rather than persistent hypertension (36). Together, 
these findings suggest that aldosterone, produced locally 
in the CNS, acts on MR in, for example, the SON or 
PVN, and via this neuromodulatory mechanism causes 
persistent activation of angiotensinergic sympatho-
humoral pathways.

CNS actions of circulating Ang II, 
aldosterone and EO

The CNS actions of Ang II, aldosterone and EO are often 
overlooked and/or not integrated with the peripheral 
actions. The relative role of these different actions is still 
being debated and may depend on the disease model or 
the extent of the increase in plasma levels. In a recent 
‘state-of-the-art’ article (37), we reviewed the accumulating 
evidence that, at modest increases in plasma levels, the 
CNS actions can play a critical role, with peripheral actions 
of the same hormones acting as important amplifiers. 
Newer studies have provided additional support for these 
CNS actions (Fig. 1).

Plasma Ang II

Chronic small increases in plasma Ang II by s.c. infusion 
gradually increase BP by up to 60 mmHg (17), associated 
with an increase in neuronal AT1R and IEG expression, 
and in ROS in hypothalamic and brainstem nuclei (4, 17). 
Knockdown of AT1R specifically in the SFO prevents the 
increase in AT1R in the PVN and of ROS in the PVN and 
RVLM. Knockdown of AT1R or of NADPH oxidase in the 
SFO also prevents circulating Ang II-induced hypertension 
in rats or mice (4, 38). Activation of angiotensinergic 
projections from the SFO to the PVN appears critical 
in this regard, because knockdown of AT1R in the PVN 
also prevents the Ang II induced hypertension (39), and 
infusion of an AT1R-blocker in the PVN reverses the 
hypertension (40). These findings indicate that circulating 
Ang II increases AT1R/ROS in the SFO, followed by  
AT1R/ROS activation in the PVN, presumably by locally 
produced Ang II. Activation of this angiotensinergic 
pathway appears essential for the circulating 
Ang II-induced hypertension.
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As observed for central infusion of Ang II (see above), 
persistent activation of AT1R/ROS in the CNS by plasma 
Ang II also appears to depend on the stimulation of 
the aldosterone-MR-EO neuromodulatory pathway. 
Elevation of plasma Ang II by s.c. infusion increases 
both the expression of aldosterone synthase (AS) (22) 
and aldosterone levels (17) in the hypothalamus. 
Central infusion of an AS inhibitor prevents this increase 
in hypothalamic aldosterone without affecting the 
Ang II-induced increase in plasma aldosterone (17); this 
implies that plasma Ang II increases local production of 
aldosterone. Central infusion of an AS inhibitor or MR 
blocker also markedly attenuates the IEG activation in 
both the magnocellular (neurosecretory) and parvocellular 
(presympathetic) parts of the PVN (17). Thus, persistent 
PVN activation depends on aldosterone/MR signaling. 
Further supporting this concept, central AS/MR blockade 
fully prevents the gradual ~20 mmHg increase in BP 
induced by a low s.c. Ang II infusion rate, that does not 
cause a detectable increase in plasma Ang II levels. On the 
other hand, a higher rate of infusion, that raises plasma 
Ang II ~3-fold, increases BP by 15–20 mmHg within 
1–2  days, and then gradually, by another 40–45 mmHg, 
over the next 1–2  weeks. Central AS/MR blockade does 
not affect the initial increase in BP, but does block the 

subsequent further increase  (17). Central  MR blockade 
also normalizes the BP and normalizes the enhanced 
BP decrease in response to AT1R blockade in the PVN of 
rats with established s.c. Ang II-induced hypertension 
(40). These patterns of change in the hypothalamus/
brainstem and in BP in response to central or circulating 
Ang II indicate that central aldosterone-MR signaling 
plays a critical role in the persistent activation of CNS 
angiotensinergic pathways and hypertension.

Recent studies have addressed where in the CNS 
these MR are located. Knockdown of either MR or 
AT1R in the SFO, by intra-SFO infusion of AAV-MR- or  
AAV-AT1R siRNA, similarly prevents Ang II-induced 
increases in AT1R expression in the SFO, in ROS in the PVN 
and RVLM and most of the hypertension (4). Knockdown 
of either MR or AT1R in the PVN also prevents the s.c. 
Ang II-induced hypertension (39). These findings suggest 
that MR-AT1R cross-talk in the SFO represents a critical 
first step, and (in the PVN) an essential downstream step. 
Both steps are apparently required to maintain increased 
activity in the angiotensinergic pathways and for long-
term control of cardiovascular homeostasis by plasma 
Ang II. An increase in plasma aldosterone may contribute 
to the MR activation in the SFO (22), whereas locally 
produced aldosterone (possibly in magnocellular neurons 

Figure 1
Acute and chronic effects of plasma Ang II, aldosterone and EO on brain angiotensinergic pathways. Circulating Ang II, aldosterone or EO can activate 
Ang II/AT1R/ROS signaling in circumventricular organs such as the SFO and OVLT, which are located outside of the BBB, followed by activation of 
angiotensinergic projections to the PVN, SON and RVLM (red lines). Prolonged stimulation of AT1R/MR in the SFO also activates a slow neuromodulatory 
pathway in the hypothalamus (box at upper right) that involves locally produced aldosterone, which binds MR in, for example, SON and PVN and, via 
ENaC increases hypothalamic EO. Ouabain or EO acutely inhibits α2 Na+ pumps and, chronically, also activates an α2 Na+ pump-associated protein kinase 
cascade that increases the expression of ACE, AT1R and NADPH oxidase subunits. As a consequence, chronic Ang II/AT1R/ROS signaling is maintained/
enhanced. Effective sympathetic tone is increased by enhanced secretion of EO (see Figs 2 and 3). See text for references.
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in the SON and/or PVN) may, by volume transmission, be 
responsible for the MR activation in the PVN (17).

The above reviewed findings all indicate that 
activation of hypothalamic MR/AT1R signaling is essential 
for Ang II-induced hypertension, at least at small/modest 
increases in plasma Ang II. However, when comparing BP 
responses to central vs peripheral infusion of Ang II, it 
appears that these CNS actions per se are not sufficient for 
the progressive increase in BP caused by plasma Ang  II. 
Central infusion of Ang II at a rate of 2.5 ng/min (well 
below peripheral rates) increases BP by ~20 mmHg within 
a day, but in contrast to s.c. Ang II, does not further 
increase BP over the subsequent days despite activating 
the same CNS mechanisms (36). This different pattern 
of BP responses suggests that the peripheral actions of 
plasma Ang II play an essential amplifier role for the 
CNS actions. The higher the plasma [Ang II], the more 
these peripheral actions on their own may be sufficient 
to cause severe hypertension. Indeed, in mice, the rapid 
development of s.c. Ang II-induced severe hypertension 
(+50–60 mmHg within 1–2 days) appears to depend solely 
on renal AT1R activation (41).

Further confounding the traditional view of the 
pre-eminence of the kidneys are studies on Ang II-high 
salt hypertension. A high salt diet markedly enhances 
the hypertensive response to chronic s.c. infusion of 
Ang II. For example, in rats on a ‘regular’ salt diet (0.4% 
NaCl), chronic s.c. infusion of Ang II at the low rate 
of 150 ng/kg/min increases BP by 15–20 mmHg after 
8–10 days, but in rats on 2.0% high salt diet, this dose 
increases BP by ~50 mmHg (42, 43). In the classical 
paradigm, one might expect that this is a typical kidney-
dependent form of severe hypertension. In fact, however, 
CNS mechanisms play a critical role, and as in the case for 
Ang II alone, MR/ENaC/AT1R signaling (43, 44) and the 
PVN (45, 46) are involved.

Plasma aldosterone

The well-known renal actions of aldosterone are 
important for the maintenance of sodium homeostasis 
and are often considered to be pivotal for aldosterone’s 
role in hypertension or heart failure. In rodents on regular 
salt intake, s.c. infusion of aldosterone at low rates, that 
increase plasma levels 2–3 fold, does not, alone, elevate BP 
(22), but when combined with high salt intake gradually 
raises BP by 20–30 mmHg over 2–3  weeks (22, 47). 
Studies in adrenalectomized rats showed hypothalamic 

aldosterone levels parallel plasma aldosterone levels (48). 
In contrast, in intact rats, circulating aldosterone poorly 
penetrates most brain areas protected by the BBB, and 
chronic infusion of aldosterone at rates that increase 
plasma aldosterone 5- to 8-fold cause only a minimal 
increase in hypothalamic aldosterone (17). Substantial 
competition by corticosterone for both uptake and 
binding to MR in the cell (49) may explain this different 
penetration pattern. However, circulating aldosterone 
can readily access neurons in brain nuclei outside 
the BBB, such as the SFO, which express both MR and 
ENaC (19). Aldosterone can enhance the Ang II-induced 
increase in intracellular Ca2+ in SFO neurons (33), and 
thereby activate downstream angiotensinergic pathways. 
Indeed, lesioning of the SFO prevents 60%–70% of the 
hypertension induced by aldosterone salt (22), as does 
central infusion of an AT1R blocker (47). Not surprisingly 
then, central infusion of an MR blocker is similarly 
effective (22, 47), but, unexpectedly, central infusion 
of an AS inhibitor is as effective (22). This suggests that 
circulating aldosterone, like Ang II, activates central 
angiotensinergic pathways involving local production of 
aldosterone. These pathways appear to project from the 
SFO to the PVN since knockdown of either AT1R or MR 
in the PVN also prevents most of the hypertension (22). 
Altogether, it appears that a modest increase in plasma 
aldosterone when combined with an increase in plasma 
[Na+] (induced by, e.g., 0.9% saline drinking water), 
activates the aldosterone/MR/ENaC/EO neuromodulatory 
pathway via MR/AT1R signaling in the SFO. This is critical 
for persistent Ang II/AT1R signaling in the PVN and, 
therefore, the hypertension.

The preceding studies employed direct central 
blockades to assess for CNS actions of plasma aldosterone. 
In humans and dogs, sympathetic activity often serves 
as an index for central actions of plasma aldosterone. 
Humans with primary hyperaldosteronism (PA) caused by 
an aldosterone-producing adenoma or adrenal hyperplasia 
have high plasma aldosterone levels and elevated BP. 
One study (50) reported that muscle sympathetic nerve 
activity (MSNA) was increased by about 30% in a group 
of US patients with PA. Both MSNA and BP normalized 
after removal of the adenoma. In contrast, Japanese 
patients with PA exhibited a significantly reduced MSNA, 
and MSNA increased to normal after the removal of the 
adenoma (51). A variety of factors (50) may contribute to 
these opposite findings, including duration of aldosterone 
excess, extent of cardiac and renal fibrosis and damage by 
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the hypertension and aldosterone per se, and the level of 
salt intake. In a recent study in dogs (52), i.v. infusion of 
aldosterone and saline increased plasma aldosterone by 
15-fold, plasma Na+ by 3 mM and plasma vasopressin by 
2-fold and caused a marked drinking response. BP increased 
~20 mmHg associated with a minor decrease in plasma 
norepinephrine (NE). Prolonged baroreflex activation 
similarly lowered plasma NE and heart rate before and 
after the induction of aldosterone-salt hypertension, but 
the BP fall was less: −7 ± 1 vs −16 ± 2 mmHg in control 
conditions. The authors concluded that sympatho-
excitation does not contribute to the hypertension 
induced by mineralocorticoid excess. However, even if 
their conclusion is correct, this would not exclude central 
actions of plasma aldosterone on neuroendocrine outputs 
involved in cardiovascular regulation. Indeed, chronic 
central infusion of aldosterone in dogs increased TPR and 
elevated BP by ~20 mmHg, but in contrast to studies in 
rats (32), did not increase plasma NE or heart rate (53). 
The authors suggested that release of a Na+, K+ ATPase 
inhibitor from the hypothalamus could contribute to the 
increase in TPR and BP.

In summary, although CNS actions of aldosterone 
are well established, their contribution to the chronic 
cardiovascular effects of circulating aldosterone is still 
being debated. Species differences, modest vs large 
increases in plasma aldosterone and the level of salt intake 
may all be relevant factors in this regard.

Plasma EO

In 1991, a substance ‘indistinguishable from ouabain’ was 
identified by mass spectroscopy (MS) as an endogenous 
cardiotonic steroid (CTS) in human plasma (54). This 
discovery was validated by MS and NMR identification 
of EO in bovine, rodent and human plasma and tissue 
samples by laboratories on 3 continents (26, 27, 55, 56, 
57). A few investigators reported that they were unable to 
detect EO in human plasma (58), but none of these reports 
detailed how they attempted to separate EO by column 
chromatography prior to MS. A recent commentary 
provides a more in-depth review of this topic (28).

The adrenal glands are highly enriched with EO in 
humans, rodents and cattle (54, 56), and plasma EO 
is extremely low in adrenalectomized rats (54) and 
patients with adrenal insufficiency (59). Also, primary 
cultured bovine and human adrenocortical cells exhibit 
net synthesis of EO (60) and, in awake dogs, the adrenal 
venous EO concentration is 4- to 5-fold higher than that 

in the arterial blood (61). Thus, the adrenals are likely the 
primary source of circulating EO under normal conditions. 
In addition, there is evidence for local biosynthesis 
in the brain (see above). The extent to which brain EO 
contributes to the plasma levels is yet to be determined 
(26). The full EO biosynthetic pathway has not yet been 
elucidated. Nevertheless, EO, like aldosterone, is derived 
from progesterone but the distal steps are not yet known 
(62, 63). A related CTS, marinobufagenin (MBG), also has 
been linked to rodent hypertension (64, 65). MBG binds 
preferentially to rodent α1 Na+ pumps (65, 66), whereas 
EO favors the α2 and α3 isoforms.

Chronic increases in plasma EO or plant-derived 
ouabain activate multiple intracellular signaling pathways 
involved in cardiac and arterial function and remodeling 
(67, 68). CNS actions appear to play an important role as 
well. Several groups have shown that in rats chronic s.c. or 
i.v. infusion of ouabain causes a gradual, dose-dependent 
increase in BP, TPR and heart rate up to 40 mmHg and 
100 bpm (69, 70). Ouabain appears to initiate these 
CNS actions through the forebrain CVOs (71). Both 
the hypertension and the tachycardia can be prevented 
by central infusion of antibody Fab fragments raised 
against ouabain and can be reversed by acute ganglionic 
blockade. This suggests that central effects of ouabain 
increasing sympathetic tone play an essential role (70). 
Moreover, central infusion of an AT1R blocker prevents 
the sympatho-excitatory and pressor responses to both 
central and s.c. infusion of ouabain (35, 72), indicating 
that these responses to ouabain are mediated by  
AT1R-dependent activation of angiotensinergic pathways 
in the CNS. Since the actions of ouabain appear to be glia 
dependent, and components of the RAS are also present 
in glia (73), this interaction may occur in glia rather than 
neurons, i.e. ouabain may increase Ang II release by glia 
cells, acting on AT1R in glia and/or neurons.

In conclusion, there is now compelling evidence that 
the CNS actions of plasma Ang II, aldosterone and EO play 
an important role in their cardiovascular effects. All of 
these effects depend on the activation of angiotensinergic 
pathways.

Brain Ang II and neuroendocrine control of 
the circulation

There is extensive literature on the regulation of 
the secretion of a number of hormones by CNS 
angiotensinergic pathways. In this section, we will 
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focus on recent studies on the chronic effects of brain 
Ang II on plasma aldosterone and EO. Central infusion of  
Ang II at low rates (2.5–12.5 ng/min), that are not effective 
when infused peripherally, markedly increases plasma 
levels of aldosterone and corticosterone as well as EO (26, 
36). s.c. infusion of Ang II at the rate of 150 ng/kg/min 
does not cause detectable increases in plasma Ang II or 
the levels of these 3 steroids. When combined with high 
(2%) salt diet (HS), however, this dose of Ang II causes 
severe hypertension associated with 2- to 3-fold increases 
in the plasma levels of all 3 steroids (74). Concomitant 
central infusion of an AS inhibitor or MR blocker prevents 
most of these increases (26, 36, 74), indicating that central 
aldosterone-MR signaling is needed for these actions of 
central Ang II or peripheral Ang II-HS. ACTH release could 
be the link between the brain pathways and increased 
secretion of the 3 steroids by the adrenal cortex (60). 
However, ACTH tends to elevate plasma aldosterone 
only transiently and therefore seems unlikely to be 
the intermediary for chronic CNS Ang II actions (75). 
Alternative mechanisms include enhanced sympathetic 
drive to the adrenals (76), increases in plasma vasopressin 
(77) or direct adrenocortical effects of EO itself that 
stimulate aldosterone secretion (78). Low nanomolar 
concentrations of ouabain acutely stimulate basal and 
Ang II-evoked aldosterone secretion from bovine zona 
glomerulosa cells in primary culture. This stimulatory 
mechanism depends upon the ability of ouabain to raise 
intracellular Ca2+, augment the release of renin from the 
cells and, in the presence of angiotensinogen, to form 

locally high levels of Ang II (78). Moreover, in vivo, the 
chronic elevation of plasma ouabain into the range of 
1.5–2.5 nM produced by s.c. infusion increases the mass of 
the adrenal glands, especially the zona glomerulosa layer, 
and elevates plasma aldosterone and corticosterone (79, 
80) i.e., the same classical products of the rat adrenal zona 
glomerulosa layer that are augmented by brain Ang II. In 
addition, chronic active immunological neutralization of 
EO lowers plasma aldosterone (~30%) in otherwise normal 
rats on a low salt intake (81). When taken together, these 
results are consistent with the following interpretations: 
(1) The brain, via circulating EO, can provide a 
physiologically relevant stimulus to zona glomerulosa 
function; (2) The elevation of brain Ang II augments the 
CNS production of EO, raises circulating EO and thereby 
stimulates the adrenal secretions of aldosterone and 
corticosterone. Collectively, the rodent work summarized 
in Fig. 2 implicates EO as the humoral intermediary that 
may link brain Ang II with augmented adrenal secretion 
of corticosteroids (Fig. 2).

The most evident readily observable consequences of 
chronically elevated brain Ang II in the rat can therefore be 
summarized as hypertension with co-elevated circulating 
EO and aldosterone. The obvious question concerns 
the broader clinical significance of these experimental 
observations. Are the latter humoral features present 
among some patients with hypertension? In a recent 
study involving 590 patients with never-treated mild-to-
moderate essential hypertension, co-elevated circulating 
levels of EO and aldosterone were found in approximately 

Figure 2
Proposed role of EO as a link between the effects 
of brain Ang II and adrenocortical activity. In 
response to the prolonged elevation of brain 
Ang II arising from either local or peripheral 
sources, a CNS aldosterone-MR-ENaC pathway 
(see Fig. 1) stimulates the production and 
secretion of CNS EO into the circulation. 
The elevated plasma EO, reflecting a (yet to be 
determined) variable mixture arising from CNS 
and adrenal sources, raises intracellular sodium 
and, via sodium-calcium exchange, augments Ca2+ 
signaling, stimulates intra-adrenal renin activity 
and enhances the local generation of Ang II. 
The combination of these actions leads to the 
enlargement of the zona glomerulosa layer and 
augmented adrenal production of aldosterone, 
corticosterone and EO. The stimulatory effects of 
Ang II on EO secretion from the CNS as well as 
intra-adrenal effects of EO involve AT1R-mediated 
signaling. See text for references.
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one-third of the patients (82). In addition, it has long 
been known that co-elevated levels of EO and aldosterone 
occur in ~50% of patients with aldosterone-producing 
adrenal adenomas but, intriguingly, not among patients 
with hyperaldosteronism due to bilateral hyperplasia (83, 
84, 85). Among the patients with unilateral adenomas, 
removal of the diseased gland normalized EO, aldosterone 
and BP (84). This suggests that, in these patients, the 
elevated EO originates primarily from the adrenal glands 
and that the co-elevation of EO and aldosterone are 
sufficient to drive the hypertension. Moreover, it may be 
recalled that circulating EO and aldosterone both have 
actions that activate brain Ang II pathways and that 
the central blockade of either of these agents prevents 
hypertension. This implies that the CNS is positioned 
as a critical component between adrenocortical 
hyperfunction and the elevated arterial tone and BP even 
in patients with adenoma producing hyperaldosteronism. 
Further, as EO is a stimulus to aldosterone secretion, 
the question arises as to whether in some patients, their 
zona glomerular adenomas might primarily hypersecrete 
EO and thereby evoke a secondary form of aldosterone 
excess (86). Irrespective of the primacy of aldosterone in 
hyperaldosteronism, the impact of elevated plasma levels 
of EO, aldosterone and corticosterone extends beyond 
their effects on BP; these steroids and their receptors 
have been implicated in cardiac growth and fibrosis, 
podocyte damage, memory and mood (86, 87, 88, 89, 
90, 91). Thus, among those individuals in whom EO and 
aldosterone are inappropriately co-elevated, there may 
be a higher incidence of adverse cardiac, renal and CNS 
sequelae. Further mechanistic studies are clearly needed 
to elucidate the specific pathways through which the 
brain regulates and is influenced by the plasma levels of 
these important steroids.

Direct effects of EO on the heart 
and arteries

EO inhibits ouabain-sensitive cardiac Na+ pumps and 
raises local intracellular Na+ ([Na+]i), thereby promoting 
net Ca2+ gain via NCX and enhancing cardiac Ca2+ 
signaling and contraction: the well-documented ‘positive 
inotropic effect’ (68). If sustained, this can foster cardiac 
hypertrophy (68). Similar mechanisms are responsible 
for the analogous vasotonic effect of EO in arteries  
(68, 92). This action may contribute (along with enhanced 

sympathetic drive) to the elevated total peripheral 
vascular resistance that is a hallmark of hypertension 
(93) (Fig. 3).

In addition to these Na+ transport-dependent 
effects, sustained EO binding to Na+ pumps has Na+ 
transport-independent, chronic tissue-specific actions 
that involve protein kinase (PK) cascade activation. This 
leads to changes in the expression (reprogramming) of 
Ca2+ transporters and other proteins (94, 95, 96, 97). 
In arteries, for example, EO-induced upregulation of 
Na/Ca exchanger-1 (NCX1), sarcoplasmic reticulum 
Ca2+ pump-2 (SERCA2) and several Ca2+-permeable 
channels further promotes Ca2+ entry, vasoconstriction 
and hypertension (68, 94). In the heart, however, 
EO-induced PK activation upregulates NCX1, but 
downregulates SERCA2 expression; this fosters Ca2+ 
extrusion and attenuates Ca2+ signaling and contraction, 
thereby impairing systolic function (68). Note that 
the driving force on cardiac NCX1 favors Ca2+ efflux 
during diastole whereas, in arteries with tone, the 
myocyte plasma membrane is partially depolarized 
and the driving force on NCX1 favors Ca2+ influx (68). 
Both the chronic arterial and cardiac effects involve  
EO/ouabain-triggered activation of PK cascades (98, 99, 
100, 101, 102, 103). These can be stimulated by α1 Na+ 
pumps when micromolar concentrations of CTS are 
used (101). However, in rodents nanomolar ouabain 
concentrations can activate these signaling pathways 
(95, 103). This implies that α2 and α3 pumps are the 
functionally relevant receptors in vivo for EO and is 
consistent with circulating levels of EO that range from 
~0.2 to 1 nM.

Data from genetically engineered mouse models 
strongly support the view that the EO-Na+ pump 
endocrine system plays a pivotal role in cardiovascular 
function (68, 104). Normally ouabain-sensitive α2 Na+ 
pumps (the EO receptors in cardiac muscle and vascular 
smooth muscle) can be made ouabain resistant without 
altering transport activity by mutating just two amino 
acids (105, 106). This attenuates or delays pressure 
overload-induced cardiac hypertrophy (107) and prevents 
several forms of hypertension (105, 106, 107, 108, 109). 
Importantly, immuno-neutralization of EO has the same 
effects (107, 108). Furthermore, cardiac-specific knockout 
or overexpression of α2 pumps also delays or attenuates 
pressure overload-induced hypertrophy (110, 111). 
Clearly, the EO-α2 Na+ pump endocrine system, and not 
just myocyte stretch (112), contributes to the hypertrophy.
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Therapeutic implications of brain 
angiotensinergic pathways for 
cardiovascular disease

In addition to Ang II and aldosterone, plasma/CSF[Na+] and 
cytokine levels increase and activate brain angiotensinergic 
pathways in a variety of cardiovascular diseases. One may 
therefore anticipate that their CNS actions play a role 
in cardiovascular pathophysiology. Knockdown of for 
example MR or AT1R in specific brain nuclei or central 
infusions of blockers at low rates, that are ineffective 
peripherally, can be used to assess the overall role of CNS 
angiotensinergic signaling for the activation of peripheral 
mechanisms contributing to cardiovascular disease. This 
concept has so far mainly been employed to test for the role 
of CNS-activated peripheral mechanisms that contribute 
to hypertension or heart failure in animal models.

Hypertension

Using these approaches, many groups have shown that 
central AT1R signaling plays a pivotal role in both the 
development and maintenance of hypertension in a 
number of models including hypertension induced by 
renal ‘injury’/dysfunction (reviewed in (37). For example, 
central blockade of the aldosterone/MR/ENaC-EO 
neuromodulatory pathway can prevent or reverse the 
hypertension in many models (37), demonstrating that 
these CNS pathways are a valid potential therapeutic 
target. The key question is whether peripheral (for example 
s.c. or oral) dosing can cause central blockade, not only in 
brain nuclei outside the BBB, such as the SFO, but also in 
nuclei inside the BBB such as the PVN. Important factors 
in this regard are the lipophilicity of the specific drug 
(or active metabolite), drug dose and duration of dosing 

Figure 3
Acute and chronic effects of plasma EO on cardiac and arterial function The elevated plasma EO acutely inhibits α2 Na+ pumps in both the heart and 
arteries, and the rise in intracellular Na+ rapidly induces Na+/Ca2+ exchanger (NCX)-mediated Ca2+ gain, and cardiotonic and vasotonic effects. Prolonged 
plasma EO elevation also activates an α2 Na+ pump-associated protein kinase cascade (e.g. C-Src-mediated) that increases cardiomyocyte and arterial 
smooth muscle cell NCX expression, and arterial sarcoplasmic reticulum (SR) Ca2+ pump (SERCA2) expression. In arteries with tone, NCX normally favors 
Ca2+ entry and helps to sustain cytosolic Ca2+ ([Ca2+]CYT) above contraction threshold. The EO-induced NCX and SERCA2 upregulation enhance Ca2+ 
signaling and SNA to increase vascular tone and elevate BP. In the heart, NCX promotes Ca2+ extrusion during diastole, but prolonged α2 pump inhibition 
by EO reduces the Na+ gradient driving force so that [Na+]CYT and diastolic [Ca2+]CYT are both elevated; consequently, cardiac relaxation is slow and/or 
incomplete. Also, cardiac SERCA2 expression is usually reduced in heart failure (perhaps due to the high EO), as are SR Ca2+ stores and Ca2+ transients, 
and systolic function is impaired. See text for references. Reproduced, with permission, from Blaustein M, Chen L, Hamlyn J, Leenen FHH, Lingrel J, Wier 
W & Zhang J, Pivotal role of α2 Na+ pumps and their high affinity ouabain binding site in cardiovascular health and disease, Journal of Physiology, 2016, 
594, 6079–6103. Copyright 2016 The Physiological Society.
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(i.e., acute studies are not useful). Indeed, in rats, AT1R 
blockers, when administered in high enough doses, can 
cause marked and sustained AT1R blockade, not only in 
nuclei outside the BBB but also in important regulatory 
nuclei inside the barrier such as the PVN (113, 114). For 
example, in Dahl salt-sensitive (S) rats, central treatment 
with an AT1R blocker prevents salt-induced hypertension, 
and systemic treatment is similarly effective if the dose 
is high enough to cause sufficient central blockade (114, 
115). These findings suggest that the degree of central and 
not peripheral AT1R blockade determines the extent of the 
antihypertensive effect in the Dahl model.

Studies in humans with hypertension on possible 
CNS effects of AT1R blockers evaluated the effects of 
conventional, ‘clinically recommended’ doses, e.g. 
losartan 50 mg/day (116) or irbesartan 150 mg/day 
(117). Neither study showed a decrease in the elevated 
resting sympathetic tone, assessed by MSNA or whole-
body norepinephrine spillover. According to Krum and 
coworkers (116)  ‘reversal of sympathetic activation in 
hypertension cannot be expected with renin-angiotensin 
antagonism’. In contrast, Raheja and coworkers (117) 
considered the possibility that central AT1R may not have 
been inhibited, and that the results might have been 
different if a higher dose of irbesartan had been used. 
This concept has not yet been tested in patients with 
hypertension.

APA inhibitors are presently being tested in clinical 
studies as a new class of antihypertensive drugs to 
specifically target the brain RAS (118). RB150/QGC001 is 
a systemically active prodrug that crosses the BBB and is 
cleaved into 2 active EC33 molecules by brain reductases. 
Centrally administered EC33 or systemically administered 
RB150 similarly inhibit brain APA activity and lower BP in 
several experimental hypertension models (119, 120). The 
antihypertensive effectiveness of RB150 is presently being 
evaluated in patients with hypertension. The potential 
differences with standard systemic RAS blockade, for 
example, on renal function under different clinical 
conditions will need to be determined.

Experimental studies have shown that systemic 
treatment with an MR blocker at low-to-regular doses 
appears to be able to cause sufficient central MR blockade 
to lower sympathetic hyperactivity (121). In humans 
with hypertension, the sympathetic effects of MR 
blockers are distinctly different from those caused by 
chlorthalidone or hydrochlorothiazide. Treatment with 
chlorthalidone and spironolactone similarly lowered 
BP, but only chlorthalidone increased MSNA (122). In 
older hypertensives, treatment with hydrochlorothiazide 

or spironolactone similarly lowered BP, but only 
spironolactone lowered plasma norepinephrine (123). The 
increase in MSNA by chlorthalidone was fully prevented 
by concomitant treatment with spironolactone at  
25 mg/day (117). These findings suggest that the modest 
increase in plasma aldosterone by chlorthalidone appears 
sufficient to activate CNS MRs, which may mediate the 
sympathetic hyperactivity induced by chlorthalidone. 
Moreover, low doses of the MR blocker appear sufficient 
suggesting that the relevant MR population is readily 
accessible to spironolactone or its active metabolites.

Heart failure

In animal studies, central MR or AT1R blockade by central 
infusions of blockers or knockdown of MR or AT1R in 
specific nuclei such as the PVN inhibits the activation of 
several peripheral mechanisms, including sympathetic 
hyperactivity, that contribute to progressive cardiac 
dysfunction (121, 124, 125, 126, 127). Systemic (oral or 
s.c.) treatment with MR or AT1R blockers also can inhibit 
the activation of the peripheral mechanisms (121, 126, 
127). Central treatment with spironolactone at low 
doses and oral treatment with much higher doses have 
comparable beneficial effects on cardiac remodeling as 
well as dysfunction suggesting that CNS MR blockade 
by chronic oral treatment with spironolactone plays an 
important role (126). On the other hand, although central 
and systemic treatment with the AT1R blocker losartan 
similarly prevent sympathetic hyperactivity and improve 
cardiac fibrosis and LVEDP, only central treatment 
improves LV systolic function, whereas s.c. or oral losartan 
treatment further lowers LVPSP and dP/dtmax (127, 128). 
Thus, peripheral AT1R blockade appears to exert an adverse 
effect on cardiac systolic function that overrides the 
positive effects of central AT1R blockade. The mechanisms 
contributing to this apparent adverse effect have not yet 
been elucidated, but may involve unopposed, enhanced 
cardiac AT2R activation (129) or blockade of Ang II-AT1R 
signaling in myocytes, thereby decreasing Ca2+-influx and 
myocardial contractility (130). If cardiac AT1R blockade 
does exert adverse effects on cardiac systolic function in 
heart failure, then a new therapeutic approach is needed. 
For example, orally active APA inhibitors that specifically 
inhibit the activation of brain angiotensinergic pathways 
(34), may lead to more optimal and specific approaches 
to the prevention/management of heart failure after 
MI. In patients with heart failure such an approach may 
lower/normalize CNS-dependent activation of peripheral 
mechanisms contributing to heart failure progression. 
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Sympathetic hyperactivity could be prevented/reversed 
without interfering with the acute millisecond-to-
millisecond sympathetic regulation of cardiovascular 
homeostasis and without causing nonspecific sympatho-
inhibition or nonspecific central sympatholysis, which 
may adversely affect outcome in patients with heart 
failure (131). Similarly, centrally induced decreases in 
plasma Ang II, aldosterone and EO would leave acute 
regulation intact and therefore may minimize adverse 
effects such as hypotension, hyperkalemia and renal 
dysfunction. Further preclinical and clinical studies are 
needed to assess whether orally active APA inhibitors are 
similarly effective in lowering SNA, but with less adverse 
effects and perhaps better cardiac outcomes.

Conclusions

The renal, cardiac and vascular actions of the endocrine, 
circulating RAAS play a major role in the short-term and 
chronic maintenance of the cardiovascular and electrolyte 
homeostasis. As a result, AT1R or MR blockade may lead to 
hypotension, renal dysfunction or hyperkalemia in, e.g., 
dehydration or low salt intake, or diseases such as heart 
failure or renal disease.

Plasma Ang II, aldosterone as well as EO (primarily 
via CVOs such as the SFO) also activate slow-acting CNS 
angiotensinergic pathways involved in cardiovascular 
regulation, e.g., by determining the setpoint of 
sympathetic activity without affecting its acute, second-
to-second role. AT1R-ROS signaling is the primary driver 
for neuronal activation in these pathways. Nevertheless, 
persistent activation depends on parallel gradual 
activation of a hypothalamic aldosterone/MR/ENaC/EO  
pathway, which increases the expression of key AT1R 
signaling components. These brain pathways appear to 
not only increase the setpoint of SNA per se, but also to 
enhance its effectiveness by increasing plasma EO and 
EO-dependent reprogramming of arterial and cardiac 
function. In contrast to peripheral blockades, blockade 
of central AT1R-ROS signaling normalizes the activity of 
the peripheral pathways and maintains physiological 
regulation and function.

The general outline of these concepts has been 
established, but important aspects of the regulation of 
these central and peripheral modulatory pathways still 
need to be established. The therapeutic potential of 
inhibiting these pathways to normalize rather than block 
(components of) the sympathetic nervous system or the 

circulating RAAS is apparent, and results from preclinical 
studies are promising. However, new therapeutic drug 
strategies will be needed as well as comparative clinical 
studies for efficacy and adverse effects.
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