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Abstract

The gut microbiota represent a highly complex ecosystem comprised of approximately
1000 species that forms a mutualistic relationship with the human host. A critical attribute of
the microbiota is high species diversity, which provides system robustness through overlap-
ping and redundant metabolic capabilities. The gradual loss of bacterial diversity has been
associated with a broad array of gut pathologies and diseases including malnutrition, obe-
sity, diabetes and inflammatory bowel disease. We formulated an in silico community model
of the gut microbiota by combining genome-scale metabolic reconstructions of 28 represen-
tative species to explore the relationship between species diversity and community growth.
While the individual species offered a broad range of metabolic capabilities, communities
optimized for maximal growth on simulated Western and high-fiber diets had low diversities
and imbalances in short-chain fatty acid (SCFA) synthesis characterized by acetate over-
production. Community flux variability analysis performed with the 28-species model and a
reduced 20-species model suggested that enhanced species diversity and more balanced
SCFA production were achievable at suboptimal growth rates. We developed a simple
method for constraining species abundances to sample the growth-diversity tradeoff and
used the 20-species model to show that tradeoff curves for Western and high-fiber diets
resembled Pareto-optimal surfaces. Compared to maximal growth solutions, suboptimal
growth solutions were characterized by higher species diversity, more balanced SCFA syn-
thesis and lower exchange rates of crossfed metabolites between more species. We
hypothesized that modulation of crossfeeding relationships through host-microbiota interac-
tions could be an important means for maintaining species diversity and suggest that com-
munity metabolic modeling approaches that allow multiobjective optimization of growth and
diversity are needed for more realistic simulation of complex communities.

Author summary

The gut microbiota serve a critical role in maintaining a healthy state in the human host.
The gut contains approximately 1,000 bacterial species that provide a wide range of
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those species. The gradual loss of diversity is a key element of microbiota dysbiosis, which
has been correlated with a wide range of health problems including inflammatory bowel
disease. To investigate species diversity in the gut microbiota, we developed an in silico
community model by combining genome-scale metabolic reconstructions of 28 represen-
tative species from the most abundant genera in the human gut. Our model predicted that
maximal community growth produced low species diversity and no synthesis of the
health-promoting metabolite butyrate. After reducing the community model to 20 species,
we showed that suboptimal community growth allowed much higher species diversity and
butyrate synthesis more consistent with in vivo studies. The model predicted that
increased diversity could be achieved through modulation of metabolite crossfeeding rela-
tionships between species, an experimentally testable hypothesis.

Introduction

The gut microbiota comprise a highly complex ecosystem that has been characterized as an
additional organ within the human host [1, 2]. The microbiota form a mutualistic relationship
with the host, with saccharolytic species enzymatically degrading complex carbohydrates into
fermentable sugars and fermentative species converting sugars and other available nutrients
into a variety of absorbable metabolites [3, 4]. A particularly important function of the micro-
biota is to ferment dietary fiber into the short-chain fatty acids (SCFAs) acetate, butyrate and
propionate [5, 6]. While significant variations are possible depending on diet, the molar ratio
of these three SCFAs is approximately 60:20:20 [7]. SCFAs are consumed by host colonocytes
as a primary energy source, with butyrate being the preferred SCFA but acetate probably sup-
plying more energy to its higher concentration in vivo.

The gut microbiota consist of approximately 1,000 species [8] and 7,000 unique strains [2]
in a typical human host. The two dominant phyla in healthy humans are Firmicutes and Bac-
teroidetes, which comprise more than 90% of the community [9, 10]. Other important but
much less abundant phyla are Proteobacteria, Actinobacteria, Euryarchaeota and Verrucomi-
crobia as well as Eukaryota such as fungi [11, 12]. Metagenomic studies have shown wide vari-
ations in bacterial composition in healthy humans [13, 14], demonstrating that microbiota
composition is an individual characteristic and an inadequate measure for assessing gut health
across patient populations.

A hallmark of healthy gut communities is high diversity [15, 16], both in terms of the spe-
cies present and the relative abundance of these species [17, 18]. An integrated gene catalog
developed from 1,267 sequenced samples and comprising almost 10 million genes provides
detailed information on the number of genes from over 700 gut genera [19]. The high diversity
of the gut microbiota is demonstrated by 75 genera having relative gene counts (genes counts
in that genus divided by total gene counts) of at least 0.1%. Numerous studies have shown a
strong correlation between bacterial diversity and health/disease states, with long-term loss of
diversity a key characteristic of dysbiosis [20-22]. The loss of bacterial diversity has been impli-
cated in broad range of diseases including Clostridium difficile infections [23], inflammatory
bowel and Crohn’s diseases [24, 25], obesity [26], diabetes [27], cardiovascular disease [28],
rheumatoid arthritis [29], colorectal cancer [30], cystic fibrosis [31] and depression [32].
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Genome-scale metabolic modeling has emerged as an important tool for computationally
interrogating the metabolism of microbial communities. A number of alternative methods for
combining metabolic reconstructions of single species into community models are now avail-
able. These methods are invariably based on growth rate maximization, either with regard to
the species individually [33, 34] or the community as a whole [35-37]. Compared to other
techniques, the recently developed StEADYCoOM method represents an important advance by
performing community flux balance analysis (FBA) to determine the relative abundance of
each species for maximal community growth while ensuring that all metabolites are properly
balanced within each species and the community [38]. While the usual FBA objective of maxi-
mal growth has been experimentally demonstrated for individual bacteria such as Escherichia
coli [39, 40], limited data is available to support the adoption of maximal growth as a commu-
nity objective [41-43]. Indeed this objective has the potential to favor the fastest growing spe-
cies and produce communities with low diversity that are inconsistent with healthy gut
communities observed in vivo. In this study, we utilized the STEADYCoMm method to investigate
the tradeoff between community growth and species diversity for in silico communities com-
prised of 20 and 28 representative gut species.

Materials and methods

Gut microbiota models

Semi-curated genome-scale metabolic reconstructions for representative species within the 28
most abundant genera [19] in the human gut were obtained from the Virtual Metabolic
Human database (vimh.uni.lu) [44]. These models represented the five major bacterial phyla
(Actinobacteria, 2 species; Bacteroidetes, 4 species; Firmicutes, 15 species; Fusobacteria, 1 spe-
cies; Proteobacteria, 6 species), including 10 species from the highly prevalent Firmicutes
order Clostridia (Table 1). The 28 genera covered almost 85% of reference genes by occurrence
frequency according to a recent integrated catalog of the human gut microbiota [19]. Each spe-
cies was constrained according to either a Western or high-fiber diet [44] and assigned a non-
growth ATP maintenance (ATPM) value of 10 mmol/gDW/h, which is within the range
reported for curated bacterial reconstructions. Because the species biomass equations were not
curated [44], all species models used the same growth-dependent maintenance energy. The
community metabolic model was constructed from the single-species reconstructions using
the creaTECoMmMMOoDEL function provided within the STEADYCoM suite of MATLAB tools [38].
The community model accounted for 22,203 genes, 26,867 metabolites and 35,031 reactions
within the 28 species as well as 354 uptake and 354 secretion reactions for the extracellular
space.

The uptake reactions in the extracellular space of the community model were constrained
with the chosen diet as the union of all the maximum nutrient uptake rate constraints from
the 28 species models. An Excel file with community uptake constraints for the four models
(20 and 28 species; Western and high-fiber diets) is available in the Supporting Information
(S1 File). With the exceptions noted below, the maximum nutrient uptake rates of each species
were set equal to values defined by the chosen diet for that species. This approach ensured that
each species would produce the same single-species growth rate with SteaApYCoMm as obtained
with standard flux balance analysis (FBA). Crossfeeding of all 21 amino acids and eight com-
mon metabolic byproducts (acetate, CO,, ethanol, formate, H,, D-lactate, L-lactate, succinate)
was promoted by increasing the maximum nutrient uptake rates of these nutrients to 10
mmol/gDW/h. A single value was used due to the lack of metabolite- and species-dependent
data for byproduct uptakes in the literature. While these constraints had no effect on single-
species metabolism due to the extracellular constraints, they allowed species with different
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Table 1. Properties of the 28 genome-scale metabolic reconstructions comprising the gut microbiota model.

Number” Species” Genes Metabolites Reactions
1/1 Bacteroides thetaiotaomicron 841 1032 1370
2/2 Clostridium clostridioforme 1277 990 1352
3/3 Faecalibacterium prausnitzii 619 825 1008
4/4 Eubacterium rectale 700 941 1194
5/5 Blautia wexlerae 854 1006 1248
6/6 Streptococcus salivarius 604 868 1156
717 Ruminococcus callidus 564 912 1138
8/8 Collinsella tanakaei 691 959 1239
9/9 Escherichia coli 1193 1152 1795

10/10 Roseburia inulinivorans 663 903 1097
11/- Lactobacillus mucosae 582 852 1080
12/11 Prevotella ruminicola 695 916 1119
13/- Alistipes finegoldii 667 882 1139
14/- Bifidobacterium longum 529 729 890
15/12 Enterobacter cloacae 1330 1223 1776
16/13 Klebsiella pneumoniae 1395 1186 1801
17/14 Coprococcus catus 824 969 1211
18/15 Veillonella atypica 663 895 1120
19/- Parabacteroides distasonis 797 1049 1357
20/16 Fusobacterium varium 805 963 1228
21/17 Haemophilus parainfluenzae 656 973 1257
22/- Pseudoflavonifractor capillosus 678 885 1070
23/18 Dorea longicatena 689 851 1017
24/19 Citrobacter amalonaticus 1317 1218 1811
25/- Phascolarctobacterium succinatutens 560 832 1018
26/20 Desulfovibrio desulfuricans 717 1022 1279
27/- Megasphaera elsdenii 649 931 1172
28/- Acidaminococcus fermentans 644 903 1089
Total 28 species model 22203 26867 35031
Total 20 species model 17097 19804 26216

*underlined species are not included in the 20 species community

*species numbers for 28 species/20 species communities

https://doi.org/10.1371/journal.pcbi.1006558.t001

single-species growth rates to coexist through crossfeeding. The SCFAs butyrate and propio-
nate were not allowed to be consumed under the assumption that crossfeeding of these two
SCFAs was negligible compared to utilization by the host [45].

Community simulations

The community metabolic models were solved with the STEADYCoMCpLEX function within
SteaDpYCoM [38]. The IBM ILOG Cplex solver was used for linear program (LP) solution.
SteaDYCoM performs community FBA by computing the relative abundance of each species
for maximal community growth while ensuring that all metabolites are properly balanced
within each species and the community. STEaApYCoM provides the capability to constrain the
species abundances to explore various features of community behavior. Most simulations were
performed with the default abundance constraints (lower bound zero, upper bound unity),
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which is referred to as the unconstrained case. Community flux variability analysis (FVA) was
performed with respect to the species abundances using the STEADYCoMFV ACpLEX function
within STEADYCoM. FVA showed that all maximal growth communities had unique species
abundances. Using community FVA results for the 28-species community, species which
could only coexist at 70% or less of the maximal community growth rate were eliminated to
yield a 20-species community (Table 1). The 20-species model was used to explore the trade-
offs between community growth and diversity by constraining the species abundances with
upper bounds computed from community FVA results obtained at different percentages of the
maximal growth rate (see below).

Simulation results were analyzed with respect to the community growth rate, species abun-
dances and diversity in the community, and the number and type of crossfeeding relation-
ships. The growth rate and species abundances were direct outputs of STEADYCoM. Species
diversity was quantified using the Inverse Simpson equitability index [46-48] that accounted
both for the number of participating species (e.g. richness) and the abundance of each species
(e.g. evenness),

1 1
com =3 N (1)
N> b

where N is the total number of species and p; € [0, 1] is the relative abundance of species i,
another direct output of STEADYCoMm. The diversity measure D,,,, varied from 4 if the commu-
nity has a single participating member to unity if the all species participated and had the equal
abundances. While the community models were built from metabolic reconstructions of par-
ticular species, the species name and associated genus were used interchangeably since the
modeling goal was to achieve diversity in the genera.

To investigate the tradeoff between community growth and species diversity, maximum
abundances in the 20-species community model were constrained using FVA results as fol-
lows,

p;nax

Pl =2r———
SR AN

(2)

where p"** is the maximum abundance of species j calculated at a specified percentage of the

maximal growth rate using FVA, r is a uniform random number in the closed interval [0 1]
and p!” is the upper abundance bound of species j. The maximum abundance of species j was

divided by the sum of the maximum abundances of all species such that the scaled maximum
abundances summed to unity. The bounds were randomized to more completely sample the

growth-diversity tradeoff and were generated subject to the constraint Z}IL p{ > 1toavoid

producing structurally infeasible LP problems. The multiplier 2 was introduced because r was
uniformly distributed with expected value 0.5. As compared to completely random bounds,
Eq (2) allowed species with higher FVA abundances to have higher upper bounds on average.
These bounds tended to constrain the solution such that higher diversity than the optimal
solution was obtained, especially when FVA solutions at lower growth rates (e.g. 60% of maxi-
mal) were used. Eq (2) is heuristic in the sense that the calculated upper bounds do not ensure
Pareto optimality [49, 50] of the resulting solutions in the growth-diversity space. More sophis-
ticated methods that allow the calculation of the maximal diversity at a given growth rate
would be required for this purpose. For each diet, a total of 900 cases were performed at FVA
growth rates 60-99% of the maximal value, with more cases run at lower growth rates (150
cases at 60% and 65%, 125 cases at 70% and 75%, 100 cases at 80%, 85% and 90%, 25 cases at
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95% and 99%) to adequately sample higher diversities. When >°7 | p; was close to unity,

StEADYCOM often returned a solution where 3" | p™* was outside the default tolerance of 10~
specified within STEADYCoM. These solutions were discarded to maintain the same accuracy

of all suboptimal growth solution, substantially reducing the total number of cases (e.g. 900 to
595 for the Western diet).

Results
Single species provide a broad range of metabolic capabilities

First the community model was constrained to investigate the metabolic capabilities of each
species individually on the in silico Western diet. These single-species simulations were per-
formed within STEADYCoM by constraining the abundance of all other species to zero. The
growth rate and the secretion rates of ten primary metabolic byproducts were determined for
each species (Fig 1). The 28 species exhibited a wide range of growth rates, including three spe-
cies (Escherichia, Enterobacter, Citrobacter) with growth rates exceeding 0.4 h™" and four spe-
cies (Bifidobacterium, Pseudoflavonifractor, Phascolarctobacterium, Megasphaera) with growth
rates of zero for the ATP maintenance value of 10 mmol/gDW/h. While species with high

Acidaminococcus | Acidaminococcus
Megasphaera Megasphaera
Desulfovibrio Desulfovibrio

Phascolarctobacterium 44 6PhascoIarctobacterium
Citrobacter Citrobacter
Dorea Dorea
Pseudoflavonifractor | 14 Pseudoflavonifractor
Haemophilus Haemophilus
Fusobacterium Fusobacterium
Parabacteroides =12 Parabacteroides
Veillonella Veillonella
Coprococcus Coprococcus
Klebsiella 10 Klebsiella
Enterobacter Enterobacter
Bifidobacterium Bifidobacterium
Alistipes 8 Alistipes
Prevotella Prevotella
Lactobacillus Lactobacillus
Roseburia 8 Roseburia
Escherichia - Escherichia
Collinsella 4 Collinsella
Ruminococcus Ruminococcus
Streptococcus Streptococcus
Blautia 2 Blautia
Eubacterium Eubacterium
Faecalibacterium Faecalibacterium
Clostridium [~ 0 Clostridium
Bacteroides Bacteroides

Ace But CO2 Eth For H2 D-Lacl-Lac Ppa Suc 0 01 02 03 04

Byproduct secretion (mmol/h) Growth rate (h™")

Fig 1. (A) Byproduct synthesis rates and (B) growth rates of the 28 species on an in silico Western diet. The species are listed by their genera. The
byproducts listed are acetate (ace), butyrate (but), carbon dioxide (CO5), ethanol (eth), formate (for), hydrogen (H,), D-lactate (D-lac), L-lactate (L-lac).
propionate (ppa) and succinate (suc).

https://doi.org/10.1371/journal.pchi.1006558.9001
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individual growth rates were expected to have a competitive advantage in the in silico commu-
nity, slower growing species had the possibility of coexisting by increasing their growth rates
through metabolite crossfeeding. With regard to SCFA synthesis, 24 species secreted acetate, 7
species secreted butyrate including 3 major butyrate producers (Faecalibacterium, Eubacte-
rium, Fusobacterium), and 13 species secreted propionate including 3 major propionate pro-
ducers (Bacteroides, Veillonella, Parabacteroides). While the SCFA synthesis capabilities of the
genera Bacteroides, Faecalibacterium and Eubacterium are well documented [51, 52], the other
SCFA predictions also appear to be consistent with experimental studies [53, 54].

Optimal community growth leads to low species diversity

SteaDYCoOM was used to determine the optimal growth rate and species abundances of the
28-member community on Western and high-fiber diets. The growth rate on each diet was
similar (0.69 h™ Western diet, 0.65 h™* high-fiber diet) (Fig 2A) and appeared to be consistent
with limited data available for in vivo gut community growth rates [55, 56]. Each community
consisted of a small number of species, with only five species for the Western diet and six

A B
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J E
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Fig 2. Optimized 28-species communities for in silico Western and high-fiber diets. (A) Growth rate (h™"), non-zero species abundances and
equitability measure D,,,,. (B) Single-species growth rates (h™") with species numbers corresponding to Table 1. (C) Net synthesis rates of major
metabolic byproducts including the three SCFAs acetate, butyrate and propionate. The byproducts ethanol, D-lactate, L-lactate and succinate are not
shown because their net secretion rates were zero. (D) Uptake and secretion fluxes of the five metabolites most significantly crossfed between the
participating species for the Western diet.

https://doi.org/10.1371/journal.pcbi.1006558.9002
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species for the high-fiber diet having non-zero abundances. The abundances of the 28 species
correlated strongly with their single-species growth rates (Fig 2B; P < 10~* for either diet), as
would be expected from a community modeling methodology based on growth maximization.
The dominant species included generally beneficial commensals from the genera Clostridium
[57], Collinsella [58] and Coprococcus [59] but also represented several genera associated with
inflammatory bowel disease (IBD) pathogenesis, including Escherichia [60], Enterobacter [61]
and Citrobacter [62]. As a result of dominance by a few species, both communities exhibited
low diversity, which has been correlated with a wide variety of gut pathologies [20-22]. Only
slightly higher diversity was achieved for the Western diet when the ATP maintenance value of
each species was tuned to the extent possible to achieve a uniform single-species growth rate of
0.2 h™" (S1 Fig), demonstrating that the domination of particular species was partially attribut-
able to their ability to more effectively exploit crossfed metabolites for growth.

The community model was formulated to allow crossfeeding of all 21 amino acids and
eight metabolic byproducts. Ethanol, D-lactate, L-lactate and succinate were crossfed to the
extent that their net secretion rates (difference between the sum of the species synthesis and
uptake rates) on either diet were zero (not shown). Both diets produced relatively high formate
and acetate net secretion rates (Fig 2C), while the rates of CO,, H,, propionate were compara-
tively low and no butyrate was produced. Predicted ratios of the acetate:butyrate:propionate
rates of 91:0:9 and 94:0:6 for the Western and high-fiber diets, respectively, were inconsistent
with reported in vivo SFCA levels, which commonly are in the range of 60:20:20 [7]. The SCFA
imbalance predicted for both diets was attributable to acetate production by all participating
species, a lack of propionate producers (only Clostridium and Collinsella), and the absence of
acetate consumers and butyrate producers. The five most significantly cross-fed metabolites
were predicted to be the amino acids aspartate and serine and the byproducts D-lactate, L-lac-
tate and CO, (Fig 2D). Clostridium, Escherichia and Enterobacter formed a mutualistic three-
species subcommunity with both large uptake and secretion rates of the five metabolites. By
contrast, Collinsella and Coprococcus exhibited commensal interactions by solely consuming
the secretion products while Citrobacter did not participate in the crossfeeding of these
metabolites.

Suboptimal community growth offers the potential for enhanced species
diversity

In silico communities optimized for maximal growth exhibited a lack of species diversity and
SCFA imbalance characterized by low butyrate levels, both of which are strongly correlated to
gut disease [5, 6, 20, 53]. To explore species diversity and SCFA synthesis at suboptimal growth
rates, STEADYCoM was used to perform community flux variability analysis (FVA) with respect
to the species abundances. For growth rates between 10% and 99.99% of the maximal value,
the number of species abundances that could be maximized to exceed 1% of the community
abundances (possible species) or could be minimized to be exceed 1% of the community abun-
dances (essential species) were determined. Uniqueness of the maximal growth communities
was indicated by the convergence of the number of possible and essential species to a single
value at the maximal growth rate (Fig 3A). FVA produced unique species abundances for all
maximal growth communities S1 Folder. While the Western diet could only support five spe-
cies at the maximal growth rate, the possible community size increased to 13 species at 99%
and to 18 species at 80% of the maximal growth rate. Nine species were predicted to be incapa-
ble of coexistence at growth rates greater than 70% of the maximal value (Fig 3B), including
saccharolytic Alistipes and the common probiotics Lactobacillus and Bifidobacterium (Fig 3C).
No species were essential until 96% of the maximal growth rate and all five species that
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Fig 3. Community FVA performed for the 28-species community with Western (solid lines) and high-fiber (dashed lines) diets. (A) Number of
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https://doi.org/10.1371/journal.pcbi.1006558.9003

comprised the optimized community were not essential until 99.92% (Fig 3D). Similar results
were obtained with the high-fiber diet. These results suggest that substantially enhanced diver-
sity may be achievable at even marginally suboptimal growth rates.

Based on the results in Fig 3B, the 28-species community was reduced to a 20-species com-
munity by removing eight species that could only coexist at growth rates less than 70% of the
maximal value on both diets (Table 1). These species belonged to the genera Lactobacillus, Alis-
tipes, Bifidobacterium, Parabacteroides, Pseudoflavonifractor, Phascolarctobacterium, Mega-
sphaera and Acidaminococcus. This reduction in community size allowed a more efficient
exploration of species diversity at growth rates above 70% of the maximal value, where the
eliminated species were ensured not to coexist. Community FVA performed with the 20-spe-
cies community suggested that 18 species could coexist at 80% and 15 species could coexist at
95% of the maximal growth rate on the Western diet (Fig 4A). Similar results were obtained
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and error bars represent the standard deviation.

https://doi.org/10.1371/journal.pcbi.1006558.9004

for the high-fiber diet. By construction, all species could coexist at 70% of the maximal growth
rate for at least one diet (Fig 4B).

We hypothesized that the tradeoff between community growth and species diversity could
be described by a Pareto optimal surface [49, 50, 63-65] with increased diversity achieved only
at the expense of reduced growth. However, community FVA did not necessarily provide a
means to sample this tradeoff surface since diversity is not considered as part of the analysis.
To investigate this issue, the 40 FVA solutions (20 solutions each for species abundance mini-
mization and maximization) generated at each growth rate were used to compute the equita-
bility measure D,,,,. The average D.,,, value for all growth rates and both diets was in the small
range 0.11-0.22 (Fig 4C). Of the 2,720 FVA solutions tested, the largest D,,,, was 0.43 and only
nine cases produced D,,,, > 0.35. In other words, the FVA solutions proved inadequate for
generating high diversity, which was not surprising given that FVA solutions were computed
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by minimizing or maximizing a particular species abundance. This lack of diversity again
translated to SCFA imbalance, with the average butyrate and propionate fractions over all
1,360 cases for the Western diet being 2% and 3%, respectively (Fig 4D).

Modulation of metabolite crossfeeding establishes tradeoff between
growth and diversity

While useful for generating bounds on achievable species diversity and SCFA production,
community FVA did not provide a direct means to investigate the tradeoff between commu-
nity growth and diversity. However, we found that this tradeoff could be explored effectively
by using FVA solutions at a particular growth rate as inputs to Eq 2 for calculation of an upper
bound on each species abundance. When FVA solutions at low growth rates (e.g. 60% of maxi-
mal) were used for constraint calculation, the resulting solutions tended to have relatively high
diversity and low growth. Using 575 simulation cases performed with the 20-species commu-
nity and the Western diet, the fraction of cases in which the abundance of each species
exceeded 1% was calculated as a measure of species fitness over a wide range of growth rates
(Fig 5A). The five species that comprised the community at the optimal growth rate were pres-
ent in all 575 communities. Citrobacter and the high butyrate producer Fusobacterium were
present in over 98% of communities, while Klebsiella and the high propionate producer Bacter-
oides were present in at least 80% of communities. By contrast, the high butyrate producer Fae-
calibacterium and and high propionate producer Veillonella were present in no more than 6%
of communities. Similar results were obtained with the high-fiber diet (S2A Fig).

Results of the 575 Western diet cases were collected into 15 bins in the growth rate space.
While the maximal growth solution consisted of only five species with non-zero abundances,
the richness of suboptimal solutions was found to routinely exceed ten species (Fig 5B) with a
maximum richness of 19 species achieved at 70.3% of the maximal growth rate. The binned
richnesses showed small variabilities, partially due to the use of FVA solutions with zero maxi-
mum abundance values for some species. Similar richness trends were observed for the high-
fiber diet, with 61% and 18% of the 568 simulation cases having richnesses of at least 10 and 15
species, respectively (S2B Fig).

The 575 Western diet cases produced a remarkably simple tradeoff between community
growth and species diversity represented by a line (R> = 0.996) for growth rates less than 97%
of the optimal value (Fig 5C). We hesitate to refer this curve as “Pareto optimal” because our
computational procedure does not ensure Pareto optimality of the calculated points. Regard-
less, this curve clearly showed that species diversity could only be achieved at the expense of
community growth and visa versa. A very similar growth-equitability curve was generated
with the high-fiber diet (S2C Fig).

Enhanced species diversity at suboptimal growth rates tended to produce more favorable
ratios of SCFA net synthesis rates (Fig 5D). For the Western diet, the bin centered at 0.79 pro-
duced average butyrate and propionate fractions of 18% and 17%, respectively, which appeared
to be more consistent than the maximal growth solution with the 20% values commonly
reported for in vivo levels of these two SCFAs. The binned SCFA fractions showed small vari-
abilities, consistent with predicted richness variations. Less favorable SCFA synthesis rates
were predicted for the high-fiber diet (S2D Fig). While the propionate fractional rate averaged
18% over the range of 70-95% of the maximal growth rate, the butyrate fractional rate never
averaged more 12% in any bin and reached a single-case maximum of 13%. Lower butyrate
synthesis compared to the Western diet was attributed to reduced participation of the high
butyrate producers Fusobacterium, Eubacterium and Faecalibacterium in the simulated
communities.
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https://doi.org/10.1371/journal.pcbi.1006558.9005

While our method of imposing calculated bounds on the species abundances proved effec-
tive for investigating the growth-diversity tradeoff, such a direct mechanism for modulating
species abundances is not biologically plausible. Several mechanisms for tuning community
composition have been widely studied, including spatial structuring of the participating spe-
cies in multispecies biofilms [66, 67] and the modulation of metabolite crossfeeding between
species [68-70]. Because STEADYCoM is based on the assumption of a homogeneous environ-
ment, the only mechanism available to tune community composition is modulation of nutrient
uptake rates, including the uptake rates of crossfed metabolites. To further investigate how
crossfeeding was modulated to achieve high diversity at suboptimal growth rates, we compared
the optimal solution for the Western diet to the results in Fig 5 for the simulation cases binned
at 79% of the optimal growth rate.

A heatmap of uptake/secretion rates of the 29 crossfed metabolites for each of the 20 species
shows that the optimal solution was characterized by relatively high crossfeeding rates between
a small number (five) of participating species (Fig 6A). Crossfed metabolites with the largest
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https://doi.org/10.1371/journal.pcbi.1006558.g006

uptake/secretion rates were aspartate, serine, CO,, D-lactate, L-lactate (metabolites 4, 17, 23,
27, 28; see also Fig 2D). Comparable results for suboptimal growth at 79% of the optimal
growth rate were generated by averaging the metabolite uptake/secretion rates across the 34
simulation cases within this bin. By contrast to the optimal case, suboptimal growth was char-
acterized by relatively low crossfeeding rates between a large number (15.4 on average) of par-
ticipating species (Fig 6B).

To better understand the modulation of crossfeeding rates between optimal and suboptimal
growth, we averaged the absolute values of the exchange (uptake and secretion) rates of each
crossfed metabolite across the 20 species and the 34 simulation cases (for suboptimal growth).
While individual crossfed metabolites differed with respect to their average exchange rates, the
overall utilization of the 29 metabolites was similar (Fig 6C) with the average exchange rate
across all metabolites being 0.25 mmol/h for maximal growth and 0.24 mmol/h for the
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suboptimal growth cases. By contrast, the standard deviation of the exchange rate across all
metabolites was 0.64 mmol/h for maximal growth and 0.32 mmol/h for the suboptimal growth
cases. Similar results were obtained for the high-fiber diet (S3 Fig). This analysis reinforced a
central theme of this in silico study: optimal growth resulted in large metabolite exchange rates
between few species while suboptimal growth was characterized by reduced metabolite
exchange rates between many species.

Discussion

Metabolic modeling of the human gut microbiota has emerged as an important in silico tool
for investigating community growth and composition as well as species interactions. While
yielding useful insights into community behavior, previous gut microbiota models [38, 71-75]
have been limited with respect to the number of species included and the metabolic interac-
tions allowed. To our knowledge, the gut community models developed in this study represent
the most complete descriptions to date both with respect to the number of species (e.g. 28 bac-
teria) and model size (e.g. 26,867 metabolites, 35,031 reactions). Our ability to generate and
solve such large community models is directly attributable to the availability of gut bacteria
reconstructions in the Virtual Metabolic Human database (https://vmh.uni.lu) [44] and the
computational efficiency of the STEADYCoM method [38]. The model database allowed the spe-
cies to be chosen based on the most abundant genera in the gut [19] rather than by the avail-
ability of curated reconstructions, which remains limited to a few dozen species. The tradeoff
for this unprecedented diversity of modeled species was that the reconstructions were only
semi-curated and could not be expected to have the fidelity of fully curated models. Given the
qualitative nature of our study focused on examining community growth and diversity, this
limitation was deemed acceptable. Rather than requiring a priori specification of particular
interactions between species, STEADYCoM allowed arbitrary crossfeeding of secreted metabo-
lites between all species. We limited crossfeeding to the 21 amino acids and 8 common bypro-
ducts, yielding 21,924 possible crossfeeding relationships for the 28-species community.

The 28 species included in the first gut community offered a wide diversity of metabolic
capabilities, including the synthesis of short-chain fatty acids (SCFAs) used by host colono-
cytes as a primary energy source. As observed in healthy gut communities [5, 6, 76], SCFA syn-
thesis was diversified across the community, with 24 species, 7 species and 13 species secreting
acetate, butyrate and propionate, respectively. However, the maximal growth communities
determined with SteADYCoM consisted of only five species for the Western diet and six species
for the high-fiber diet. The optimized communities were enriched in genera known to be over-
represented in inflammatory bowel disease, namely Escherichia [60], Enterobacter [61] and
Citrobacter [62]. The communities also exhibited large imbalances in SCFA production, with
over 90% of SCFA synthesis yielding acetate and no butyrate secreted, another hallmark of
IBD [20-22]. Our simulation results suggest that maximal community growth unchecked by
the host may evolve to disease states such as IBD.

We used SteaDYCoM to perform community flux variability analysis (FVA) as a means to
determine limits on achievable species diversity and SCFA synthesis. FVA suggested that sub-
optimal community growth rates offered the potential for substantially enhanced diversity
with 20 of the 28 species capable of coexisting at 70% of the optimal growth rate for at least one
diet. Based on these results, we generated a reduced 20-species community by eliminating the
eight species capable of coexisting only at growth rates less than 70% of the maximal values.
The eight species eliminated represented several genera known to be beneficial for gut health,
most notably Lactobacillus [77], Alistipes and [78], Bifidobacterium [79]. Due to their low pre-
dicted growth rates compared to other community members, these species may need to
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establish favorable metabolic niches along the intestine to robustly coexist [80-82]. While out-
side the scope this study due to the homogeneous assumption underlying STEADYCoM, the
effect of such spatial gradients would be interesting topic for future research.

FVA performed with the reduced 20-species community further demonstrated the potential
for achieving high species richness (defined as the number of species with abundances of at
least 1%) and equitability (see Eq 1) as well as balanced SCFA production at suboptimal growth
rates. We developed a simple randomized method for using the FVA results to constrain spe-
cies abundances in STEADYCoM to achieve suboptimal growth rates and sample the growth-
diversity tradeoff surface. A remarkably simple linear relationship between the community
growth rate and species equitability was predicted, with high levels of diversity (richness > 12
species, equitability > 0.55) achievable at growth rates below 85% of the maximal value.
Increased species diversity resulted in more balanced SCFA synthesis, with butyrate compris-
ing 14-18% of total production. These predictions are consistent with known characteristics of
healthy gut communities, suggesting that simulated suboptimal growth represents a “healthy”
state and simulated maximal growth represents a “dysbiosis” state such as IBD.

We further analyzed our suboptimal growth solutions to determine how SteapYCoMm
achieved enhanced diversity and how the host might promote diversity in vivo. In addition to
modulating the uptake of available nutrient across species, STEAbyCoMm tuned the secretion/
uptake rates of crossfed amino acids and metabolic byproducts to enhance the growth rates of
otherwise slower growing species. Compared to maximal growth, suboptimal solutions were
characterized by lower secretion and uptake rates of crossfed metabolites between a larger num-
ber of species. These results suggest modulation of crossfeeding relationships is one possible
mechanism available to the host for promoting diversity at the expense of growth. From a theo-
retical perspective, host-microbiota metabolic interactions might be viewed as a type of bilevel
optimization problem with the microbiota attempting to achieve maximal community growth
and the host modulating the gut environment to maximize species diversity. Gut diseases such
as IBD might result from the host “losing the battle” due to inflexibilities resulting from poor
diet and/or sudden loss of diversity due to antibiotic treatment. While a few metabolic model-
ing methods that address diversity have been proposed [83-85], additional modeling tools that
directly address the growth-diversity tradeoff in microbial communities are needed.

As has been reported in numerous in vivo studies [86-89], we expected the in silico high-
fiber diet to promote species diversity and enhance butyrate synthesis as compared to the
Western diet. Instead our model predicted that diet had little effect on the growth-diversity
tradeoff and high fiber actually resulted in reduced butyrate levels. These discrepancies could
reflect insufficient numbers of fiber-degrading and butyrate-producing species in our simu-
lated communities. Indeed only four members (Bacteroides, Prevotella, Alistipes, Desulfovibrio)
of the 28-species community exhibited faster single-species growth rates on the high-fiber diet,
and two of these species were removed to generate the 20-species community. The communi-
ties contained only three major butyrate producers, with one species (Faecalibacterium) being
among the least competitive members of the 20-species community. The computational effi-
ciency of STEADYCoM allows the construction of larger community models with more represen-
tation of fiber-degrading and butyrate-producing species.

Supporting information

S1 Fig. Optimized 28-species communities for the in silico Western diet with all ATP
maintenance values set to 10 mmol/gDW/h or tuned as possible to achieve equal single-
species growth rates of 0.2 h7%. (A) Growth rate (h™!), non-zero species abundances and equi-
tability measure D,,,,. (B) Single-species growth rates (h™) with species numbers
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corresponding to Table 1. (C) Net synthesis rates of major metabolic byproducts including the
three SCFAs acetate, butyrate and propionate. The byproducts ethanol, D-lactate, L-lactate
and succinate are not shown because their net secretion rates were zero. (D) Uptake and secre-
tion fluxes of the five metabolites most significantly crossfed between the participating species.
(TIF)

S2 Fig. Optimized 20-species communities for the high-fiber diet with species abundance
bounds calculated from community FVA solutions. (A) Fraction of the 568 simulation cases
for which the species abundance exceeded 1%. (B) Binned community richness, defined as the
number of species with abundances greater than 1%. Results of the 568 cases were collected
into 15 bins centered at growth rates ranging from 0.71 to 0.99 of the maximal value. The sym-
bols represent the mean and error bars represent the standard deviation in each bin. (C) Equi-
tability measure D,,,, calculated for all 568 cases. (D) Binned fractional butyrate and
propionate synthesis.

(TIF)

S3 Fig. Metabolite crossfeeding for the 20-species community and the high-fiber diet for
the maximal growth case and 36 suboptimal growth cases binned around 79% of the maxi-
mal growth rate. (A) Maximal growth heatmap of uptake (negative) and secretion (positive)
rates in mmol/h for each crossfed metabolite (numbered in S1 Table) and each species (num-
bered in Table 1). (B) Suboptimal growth heatmap of uptake and secretion rates in mmol/h for
each crossfed metabolite and each species averaged across 36 cases. (C) Absolute value of the
exchange rate of each crossfed metabolite averaged across the 20 species and the 36 cases (for
suboptimal growth). (D) Standard deviation of the exchange rates associated with S3 FigC.
(TIF)

S1 Table. Crossfed amino acids and metabolic byproducts.
(PDF)

S1 File. Uptake constraints. Community uptake constraints for the four models (20 and 28
species; Western and high-fiber diets).
(XLSX)

S1 Folder. Matlab codes. Matlab codes and data files used for generating results.
(Z1P)
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