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ABSTRACT

Gallbladder cancer (GBC) is an aggressive malignancy. Although surgical 
resection may be curable, most patients are diagnosed at an advanced unresectable 
disease stage. Cholelithiasis is the major risk factor; however the pathogenesis of the 
disease, from gallstone cholecystitis to cancer, is still not understood. To understand 
the molecular genetic underpinnings of this cancer and explore novel therapeutic 
targets for GBC, we examined the key genes and pathways involved in GBC using 
RNA sequencing. We performed gene expression analysis of 32 cases of surgically-
resected GBC along with normal gallbladder tissue controls. We observed that 519 
genes were differentially expressed between GBC and normal GB mucosal controls. 
The liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid X receptor (FXR) 
/RXR pathways were the top canonical pathways involved in GBC. Key genes in these 
pathways, including SERPINB3 and KLK1, were overexpressed in GBC, especially 
in female GBC patients. Additionally, ApoA1 gene expression suppressed in GBC as 
compared with normal control tissues. LXR and FXR genes, known to be important 
in lipid metabolism also function as tumor suppressors and their down regulation 
appears to be critical for GBC pathogenesis. LXR agonists may have therapeutic value 
and as potential therapeutic targets.

INTRODUCTION

GBC is an aggressive but uncommon malignancy 
affecting about 5000 individuals in the United States 
annually. Although the incidence of this disease is 
decreasing in the Western Hemisphere, it continues to pose 

a challenge in certain geographic locations such as in Latin 
America and Asia. [1, 2] Gallstone is a known risk factor 
for this cancer. However, the actual incidence of GBC in 
patients with gallstones is very low and 10-15% of adults 
in the western world have gallstones. Other risk factors 
include Salmonella typhi infection, primary sclerosing 
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cholangitis, obesity, and gallbladder polyps. Still unknown 
is why certain ethnic groups have a higher predisposition 
to GBC than others. Molecular characterization of this 
cancer has been very limited thus far. We investigated 
the genetic variants in GBCs and compared them with 
in normal gallbladder tissue using the powerful RNA 
sequencing (RNA-seq) technology to better understand 
the pathogenesis of this disease and define targets for its 
therapy.

RESULTS

RNA-seq: gene expression alterations in 
GBC cases

We analyzed alterations in gene expression in eight 
GBC and three normal gallbladder tissue specimens using 

RNA-seq. We identified 519 genes as being differentially 
expressed in the GBC samples as compared with normal 
GB tissue (p < 0.05) (Figure 1, Supplemental Table 1). 
The heat map (Figure 2) depicts the 100 most frequently 
overexpressed and underexpressed genes in the GBC 
specimens. These genes were ranked according to log 
fold-change. Table 1 lists the top upregulated and down-
regulated genes in the GBC specimens tested.

Ingenuity pathway analysis (IPA)

We used IPA to identify the significantly different 
pathways in GBC and normal gallbladder tissue specimens 
and used log fold-change as a major observation of the 
cell signaling pathways analysis. Of the 519 significantly 
different genes, 503 genes were matched in the IPA 
database. Figure 3 shows the top 10 canonical pathways 

Figure 1: Volcano plot of gallbladder cancer vs. control. The 519 differentially expressed genes that fall above our threshold 
value are pictured in red.
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Figure 2: Heat map of the 100 most overexpressed (red) and underexpressed (green) genes in the formalin-fixed, 
paraffin-embedded GBC specimens. The depth of the colors reflects the degree of upregulation and downregulation: the deeper the 
color, the more extreme the log fold-change in expression.
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Table 1: Fold-change in gene expression in GBC specimens

Gene Description Fold-change (log ratio)

SERPINB3 Serpin peptidase inhibitor, clade B (ovalbumin), member 3 9.981

DUSP1 Dual-specificity phosphatase 1 9.504

FOXJ1 Forkhead box J1 9.236

CHP1 Calcineurin-like EF-hand protein 1 9.124

KLK5 Kallikrein-related peptidase 5 8.476

HOXB13 Homeobox B13 8.414

MAGEB2 Melanoma antigen family B, 2 8.211

KLK1 Kallikrein-related peptidase 1 7.974

HOXC10 Homeobox C10 7.816

CLCA4 Chloride channel accessory 4 7.767

DCAF12L1 DDB1- and CUL4-associated factor 12-like 1 -8.218

PPAN-P2RY11 PPAN-P2RY11 readthrough -8.041

MT1A Metallothionein 1A -7.726

ZNF275 Zinc finger protein 275 -7.636

GIMAP1-5 GIMAP1-GIMAP5 readthrough -7.572

MT1M Metallothionein 1M -7.342

APOA1 Apolipoprotein A-I -7.292

PGLYRP2 Peptidoglycan recognition protein 2 -7.274

SHBG Sex hormone-binding globulin -7.120

CYP1A1 Cytochrome P450, family 1, subfamily A, polypeptide 1 -6.770

Figure 3: The top 10 canonical pathways that differed in GBC and normal gallbladder tissue specimens.
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based on the 500 significant genes that differed in the 
GBC and normal gallbladder specimens. The IPA results 
demonstrated that the alteration of the LXR/ RXR and 
FXR/RXR pathways occurring as a result of LXR and 
FXR down regulation play important roles in GBC 
(Table 2). Also, the results show the lipid metabolism 
pathway and gallbladder cell transport system are critical 
in gallbladder cancer pathogenesis. The causal network 
relationship of the top canonical pathways is shown in 
Figure 4.

Validation of next-generation sequencing data 
using RT-PCR

To validate the next-generation sequencing findings, 
we extracted total RNA from the 32 formalin-fixed, 
paraffin-embedded (FFPE) GBC and normal gallbladder 
tissue specimens. We assayed five upregulated genes 
and four down-regulated genes with different biologic 
functions and involvement in diverse molecular pathways. 
These genes consisted of overexpressed (SERPINB3, 
DUSP1, CHP1, KLK5, and KLK1) and underexpressed 
(MT1A, MT1M, APOA1, and SHBG) genes. RT-PCR 
data on the expression of these genes were normalized 
according to those on the expression of glyceraldehyde-
3-phosphate dehydrogenase (GAPDH). The results 
demonstrated that SERPINB3 and KLK1 were expressed 
at higher levels and APOA1 was expressed at lower levels 
in GBC than in normal gallbladder tissue specimens. 
Furthermore, SERPINB3 expression was markedly higher 
in female than in male patients (Figure 5).

DISCUSSION

Our study suggests that unique genetic events result 
in alteration of the LXR/RXR and FXR/RXR pathways 
in GBC cells. LXRs are nuclear receptor family members 
that function in cholesterol transport, glucose metabolism 
and the modulation of inflammatory responses. There is 
now strong evidence to support the involvement of LXR 
and FXR in a variety of malignancies as tumor suppressors 
and the potential efficacy of their ligands in these diseases. 
FXR is a bile acid-activated transcription factor that is 
involved in metabolic regulation in the gut-liver axis. 

LXR and FXR play critical roles in bile acid homeostasis, 
glucose regulation and lipid metabolism.

Cancer cells depend on increased cholesterol 
biosynthesis for active signaling and tumor growth. 
The sterol response element-binding proteins are the 
master transcriptional regulators of cholesterol and fatty 
acid pathway. Nuclear sterol receptors (LXR and FXR) 
coordinate with these molecules when cholesterol is 
available. LXR and FXR function as intracellular sensors 
for sterols and bile acids, respectively. In addition, LXR/
RXR is a “permissive heterodimer” that may be activated 
by either an LXR agonist or RXR ligand. The LXR/
RXR heterodimer binds to a direct repeat 4 response 
element in regulatory regions of their target genes, such as 
ABCA1, ABCG5, and APOE [3, 4]. LXRs may also bind 
to all three peroxisome proliferator-activated receptor 
(PPAR) subtypes (PPARα, PPARγ, and PPARδ) with 
different binding affinities. PPARs, which are activated 
by free fatty acid, are widely accepted as having roles in 
metabolic pathways and inflammation. Mounting evidence 
demonstrates that PPARs repress nuclear factor NF-κB, 
signal transducer and activator of transcription, and AP-1 
target genes in response to a variety of inflammatory 
stimuli. [5–7]

Prior studies have described the association of these 
pathways in the development of gallstones, the primary 
risk factor associated with GBC. LXR-β polymorphisms 
influence GBC susceptibility through estrogen and 
gallstone-dependent pathways [8]. LDLR-mediated 
hepatic cholesterol uptake and intestinal cholesterol 
absorption play important roles in LXR-promoted 
lithogenesis. [9] The ability of these receptors linking 
metabolism with inflammatory signaling makes them 
potentially attractive targets for treatment of metabolic 
diseases, inflammation, and cancer.

Many recent studies report the antiproliferative 
effect of LXR activation in colon [10–13], prostate 
[14–16], breast [17, 18], and pancreatic [19] cancer and 
GBC [20] cells. Deletion of both LXRβ alleles in female 
mice leads to a wide range of preneoplastic lesions in the 
gallbladder, such as dysplasia, metaplasia, hyperplasia, 
and adenomas on a background of chronic cholecystitis. 
[20] Interestingly, ovariectomy prevented the formation 
of these lesions, providing experimental evidence for 

Table 2: Top canonical signaling pathways in gallbladder cancer

Pathway p Ratio

LXR/RXR activation 3.73 E-32 39/136 (0.287)

Acute-phase response signaling 6.58 E-22 35/179 (0.196)

FXR/RXR activation 9.14 E-20 25/101 (0.248)

Coagulation system 2.58 E-18 17/38 (0.447)

Intrinsic prothrombin activation 3.79 E-17 15/35 (0.429)
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Figure 5: Fold-change in gene expression in GCB patients. A. The fold-change in all patients (n = 32). B. The fold-change in 
female patients (n = 21) compared with that in male patients (n = 11). **p < 0.01.

Figure 4: The interaction network analysis of key pathways in GBC.
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an hormonal regulation of GBC progression and the 
well-known epidemiological association that women 
have a higher risk of developing GBC than men [21]. 
Importantly, these appeared in the absence of gallstones, 
suggesting a potential role for LXRβ in gallbladder 
carcinogenesis irrespective of lithiasis. [20] The inhibitory 
effects of LXR activation on cancer cells may be related 
to alteration of tumor metabolism , microenvironment, key 
growth pathways, and activation of apoptotic processes. 
[22] FXR also appears to be critical in the development 
of liver tumors. Huang et all showed that FXR -/- mice 
spontaneously developed liver tumors. [23] Given the 
critical roles of these receptors in various diseases, 
researchers have identified many natural and synthetic 
agonists of the LXRs. These agonists include the 
synthetic LXR agonist T0901317 [24–27] and the more 
LXR-selective agonist GW3965 [28], the partial and 
tissue-selective LXRβ-specific agonist WYE-672, and 
the intestine-specific ligand GW6340 without lipogenic 
activities. [7, 29, 30] Investigators have extensively 
studied the first-generation LXR agonists (T0901317 and 
GW3965) in various cancers, including colon, prostate, 
pancreatic, breast, and lung cancer. [31]

Our results demonstrated that the SERPINB3 and 
KLK1 genes were highly expressed in GBC specimens. 
SERPINB3 is a member of the ovalbumin-serine protease 
inhibitor family whose expression is upregulated in many 
advanced cancers with poor prognoses, including breast, 
lung, ovarian, and liver cancers [32–35]. Researchers 
detected high levels of SERPINB3 expression in primary 
liver tumors but not in normal liver tissue and showed a 
significant correlation with transforming growth factor-β1 
and cytoplasmic β-catenin expression in hepatocellular 
carcinomas with poor prognoses. Furthermore, high 
levels of SERPINB3 expression have been significantly 
associated with early tumor recurrence [36]. SERPINB3 
also induces epithelial-mesenchymal transition and 
cell proliferation associated with downregulation of 
E-cadherin expression and increased β-catenin expression. 
High expression of SERPIN3, therefore, maybe a marker 
of prognostic relevance in GBC. KLK1 is a member of 
the human kallikrein family and is functionally conserved 
in its capacity to release the vasoactive peptide and 
Lys-bradykinin. The kallikreins are serine proteases that 
have been recognized as cancer biomarkers and have also 
been implicated in cancer-related processes, including cell-
growth regulation, angiogenesis, invasion and metastasis.

Our study has several limitations. While we 
hypothesize the role of LXR and FXR dimers in GBC 
pathogenesis, the nature of the pathogenic role of LXR 
suppression is not yet demonstrated in this observational, 
non-mechanistic study. Furthermore, our sample size is 
limited. However, the validation of our findings in a larger 
cohort adds to the strength of our findings.

In conclusion, this RNA sequencing analysis 
highlights the role of metabolic alterations in GBC and 
the potential benefit of targeting LXR/RXR pathway in 
this disease. LXR suppression may have an important 
pathogenic roles in GBC. LXR agonist may have clinical 
and therapeutic implications.

MATERIALS AND METHODS

Patients and tissues

The specimens used in this study were obtained 
from formalin-fixed, paraffin-embedded specimens from 
32 patients with gallbladder carcinoma and controls (11 
male and 21 female) at MD Anderson Cancer Center and 
Professor Kapoor’s laboratory. RNA-seq was performed 
for 11 cases, and reverse transcription (RT)-polymerase 
chain reaction (PCR) analysis was used to confirm 
these aberrant gene expressions found in RNA-seq in 
all 32 cases. All GBC specimens were confirmed by a 
pathologist at The University of Texas MD Anderson 
Cancer Center. Patient demographics, clinical and 
survival data, and treatment history were retrieved from 
the patients’ medical records. The study protocol was 
approved by the MD Anderson Institutional Review 
Board. Patient characteristics, including sex, age, GBC 
stage, and histology, are listed in Table 3.

RNA-seq analysis [37–39]

One slide from each specimen had been stained 
with hematoxylin and eosin and marked by a pathologist 
to ensure that the tissue section contained more than 
80% tumor cells for macrodissection. Two sets of 
slides containing both normal GB and GBC tissue were 
scraped and poled into two separate tubes. These pooled 
specimens were then subjected to RNA isolation. An 
RNeasy kit (QIAGEN, Valencia, CA) was used for total 
RNA preparation. RNA samples were converted into 
cDNA libraries using a TruSeq Stranded Total RNA 
sample preparation kit (Illumina, San Diego, CA). Briefly, 
total RNA samples were concentration-normalized, and 
ribosomal RNA was removed using biotinylated probes 
that selectively bind ribosomal RNA species. This 
preserved messenger RNA and other noncoding RNA 
species, including long noncoding RNA, small nuclear 
RNA, and small nucleolar RNA. The resulting ribosomal 
RNA-depleted RNA was fragmented using heat in the 
presence of divalent cations, with fragmentation times 
varying according to input RNA degradation. Fragmented 
RNA was converted into double-stranded cDNA, with 
dUTP used in place of dTTP in a second-strand master 
mix. A single base was added to the cDNA, and forked 
adaptors that included index, or barcode, sequences 
were attached via ligation. The resulting molecules 
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were amplified via PCR for 15 cycles. During PCR, the 
polymerase stalled when a dUTP base was encountered 
in the template. Final libraries were quantified via PCR, 
normalized to 2 nM, and pooled. Pooled libraries were 
bound to the surface of a flow cell, and each bound 
template molecule was clonally amplified up to 1000-fold 

to create individual clusters. Four fluorescently labeled 
nucleotides were then flowed over the surface of the flow 
cell and incorporated into each nucleic acid chain. Each 
nucleotide label acted as a terminator for polymerization. 
The fluorescence of each cluster was measured during the 
base identification. Dye was then enzymatically removed 

Table 3: Patient characteristics

Case number Age at 
diagnosis, years

Sex Ethnicity GBC stage at 
diagnosis

Histology

1 49 F White IIIA Adenocarcinoma

2 61 M Hispanic IIIA Adenocarcinoma

3 45 M Hispanic IVA Adenocarcinoma

4 52 F Black II Adenocarcinoma

5 55 F White IVB Adenocarcinoma

6 70 F Hispanic II Adenocarcinoma

7 66 F Hispanic II Adenocarcinoma

8 84 M White IIIA Adenocarcinoma

9 62 F White IIIB Adenocarcinoma

10 62 F Hispanic III A Adenocarcinoma

11 56 F White II Adenocarcinoma

12 53 M White IVB Adenocarcinoma

13 74 F White IIIA Adenocarcinoma

14 77 F Hispanic IIIB Neuroendocrine

15 55 F Hispanic II Adenocarcinoma

16 61 M White IIIB Adenocarcinoma

17 47 M White II Adenocarcinoma

18 44 M White IIIB Adenosquamous

19 58 M White IIIB Adenosquamous

20 59 F White IIIB Adenosquamous

21 68 M White II Adenocarcinoma

22 58 F White IIIA Adenocarcinoma

23 48 F Black II Adenocarcinoma

24 73 F White IIIB Adenocarcinoma

25 71 F Hispanic IIIA Adenocarcinoma

26 68 F Hispanic II Adenocarcinoma

27 82 F White II Adenocarcinoma

28 55 F White IIIB Adenocarcinoma

29 51 F Black IIIB Adenocarcinoma

30 84 F White IIIA Adenocarcinoma

31 58 M White II Adenosquamous

32 61 M White IIIB Adenocarcinoma
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to allow for incorporation of the next nucleotide during 
the next cycle.

RNA extraction and quantitative real-time  
RT-PCR

Total RNA was isolated from the 32 GBC-patient 
FFPE tissue specimens. RNA was extracted as performed in 
a next-generation sequencing assay. cDNA was synthesized 
from 1 μg of total RNA using an iScript cDNA Synthesis 
Kit (Life Technologies, Hercules, CA). Real-time RT-PCR 
analysis was performed using a QuantiFast SYBR Green 
PCR Kit (QIAGEN). The primer sequences were synthesized 
by Sigma (St. Louis, MO). Gene expression levels were 
normalized according to the average cycle threshold values 
for the internal control gene glyceraldehyde-3-phosphate 
dehydrogenase. Cycle threshold values were extracted 
using the SDS 2.3 software program (Applied Biosystems, 
Carlsbad, CA). Data analysis was performed using the ΔΔCt 
method. The primer sequences used in quantitative RT-PCR 
are listed in Table 4.

IPA

Ingenuity Pathway Analysis (IPA; QIAGEN) was 
used to identify the pathways that differed significantly 

in the GBC and normal gallbladder tissue specimens. A 
p value cutoff of 0.0001 was used to identify statistically 
significant difference in networks. This analysis was 
performed to identify gene interactions within these 
networks.

Bioinformatics and statistical analysis

The bioinformatic software program mRNAv7-
RSEM (Quintiles, Durham, NC) was used to analyze 
RNA-seq data. To prepare the reads for alignment, the 
sequencing adapters and other low-quality bases were 
clipped. RSEM was used to quantify genes and transcripts 
The RSEM v1.1.18 program rsem-calculate-expression 
was run with parameters optimized for Illumina 50 x 50 
paired-end sequencing. The University of California, Santa 
Cruz Known Gene transcriptome was used. Sustained 
misalignment of reads with the transcriptome may have 
resulted from missed or a lack of annotation or genomic 
DNA. To determine the origin of all reads as a method 
of quality control, the unaligned reads were aligned with 
the full genome (not the transcriptome) using BWA3. For 
cross-sample analysis, upper-quartile normalization of the 
read counts was performed. Two group comparisons were 
performed using edgeR [40, 41] and moderated separately 
using t-tests. The more conservative p value was used 

Table 4: Primer sequences used in quantitative RT-PCR analysis

Gene Sequence 5’ to 3’

SERPINB3 Forward 5'-GCA AAT GCT CCA GAA GAA AG-3'

Reverse 5'-CGA GGC AAA ATG AAA AAG ATG-3'

DUSP1 Forward 5’-CCT GAC AGC GCG GAATCT-3’

Reverse 5’-GAT TTC CAC CGG GCC AC-3’

CHP1 Forward 5’-CCA GAG GAT TCC AGA ACT TGC C-3’

Reverse 5’- GAA TCC TCG GAA GTT TAC CTG ATC -3’

KLK5 Forward 5’-CCG GTG ACA AAG CAG GTA GAG -3’

Reverse 5’-GTG AAC TTG CAG AGG TTG GTG TA -3’

KLK1 Forward 5’-GGA CTA CAG CCA CGA CCT CAT GCT GC-3’

Reverse 5’-GTC GGG GAA TTC GAA GTC GTC TGG-3’

MT1M Forward 5’-TTA TTT GGT GTA TAG TTT TTT TTG T-3’

Reverse 5’-TAA ACC CAA CAT AAA TAC CAA ACA-3’

APOA1 Forward 5'-CCC AGT TGT CAA GGA GCT TT-3'

Reverse 5'-TGG ATG TGC TCA AAG ACA GC-3'

SHBG Forward 5’-ACT CAG GCA GAA TTC AAT CTC -3’

Reverse 5'- CTT TAA TGG GAA GCG TCA GT-3’

CYP1A1 Forward 5’-TCC AAG AGT CCA CCC TTC C-3’

Reverse 5’-AAG CAT GAT CAG TGT AGG GAT CT-3’
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for any given gene. Heat maps were created using the R 
statistical programming language.

Abbreviations

FXR, farnesoid X receptor; GBC, gallbladder 
cancer; IPA, Ingenuity Pathway Analysis; LXR, liver 
X receptor; PCR, polymerase chain reaction; PPAR, 
peroxisome proliferator-activated receptor; RNA-seq, 
RNA sequencing; RT, reverse transcription; RXR, retinoid 
X receptor.
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