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Functional brain connectivity is the co-occurrence of brain activity in different areas

during resting and while doing tasks. The data of interest are multivariate timeseries

measured simultaneously across brain parcels using resting-state fMRI (rfMRI). We

analyze functional connectivity using two heteroscedasticity models. Our first model is

low-dimensional and scales linearly in the number of brain parcels. Our second model

scales quadratically. We apply both models to data from the Human Connectome Project

(HCP) comparing connectivity between short and conventional sleepers.We find stronger

functional connectivity in short than conventional sleepers in brain areas consistent

with previous findings. This might be due to subjects falling asleep in the scanner.

Consequently, we recommend the inclusion of average sleep duration as a covariate to

remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows

that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%.

We provide implementations using R and the probabilistic programming language Stan.

Keywords: Bayesian analysis, functional connectivity, heteroscedasticity, covariance regression, sleep duration

1. INTRODUCTION

Functional connectivity focuses on the exploration of neurophysiological measures of brain activity
between brain regions (Friston, 2011; Smith, 2012; Varoquaux and Craddock, 2013). Functional
connectivity studies have increased our understanding of the basic structure of the brain (Eguíluz
et al., 2005; Sporns et al., 2004; Bassett and Bullmore, 2006; Fox and Raichle, 2007; Bullmore and
Sporns, 2009; Van Den Heuvel and Pol, 2010) and provided insights into pathologies (Greicius
et al., 2003; Greicius, 2008; Biswal et al., 2010; Fox and Greicius, 2010).

From a statistical viewpoint, functional connectivity is the problem of estimating covariance
matrices, precision matrices, or correlation matrices from timeseries data. These matrices encode
the level of connectivity between any two brain regions. The timeseries are derived from resting-
state fMRI (rfMRI) by averaging individual voxels over parcels in the graymatter.We define parcels
manually or with data-driven brain parcellation algorithms. The final goal can be an exploratory or
a differential analysis comparing connectivity across regions between experimental conditions and
time (Preti et al., 2016). Many statistical methods are available to estimate covariance matrices,
precision matrices, or correlation matrices from multivariate data. The sample covariance and
its inverse, or the sample correlation matrix are usually poor estimators because of the high-
dimensionality of the data (large number of parcels p and small number of subjects). The number
of parameters grows quadratically in the number of regions with p(p − 1)/2 possible pairwise
connections between parcels. Therefore more elaborate estimators need to be employed, such as
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the Graphical Lasso (Friedman et al., 2008) estimator for inverse-
covariance matrices or the Ledoit-Wolf shrinkage estimator
(Ledoit and Wolf, 2004) for correlation matrices. Application of
these methods to rfMRI are available (Varoquaux et al., 2010a,b;
Smith et al., 2011; Ryali et al., 2012; Varoquaux et al., 2012; Liang
et al., 2016).

The estimation of connectivity is usually only the first step and
leads to downstream differential analyses comparing connectivity
between experimental conditions or between subgroups. For
instance, we will compare the connectivity of short sleepers
with conventional sleepers available as preprocessed timeseries
from the Human Connectome Project (Van Essen et al., 2013).
One approach is massive univariate testing of each of the
p(p − 1)/2 connections by linear modeling. Such an approach
allows us to test different contrasts and include batch factors or
random effect terms (Lewis et al., 2009; Grillon et al., 2013). It
lacks statistical power because it ignores possible dependencies
between elements in the connectivity matrix. An alternative
is to assess selected functionals or summary statistics rather
than individual elements in the connectivity matrix (Stam, 2004;
Salvador et al., 2005; Achard et al., 2006; Marrelec et al., 2008;
Bullmore and Sporns, 2009; Ginestet et al., to appear). Another
approach is to flip response variable and explanatory variable and
predict experimental condition (or subgroup) from connectivity
matrices (or functionals of matrices) through machine learning
(Dosenbach et al., 2010; Craddock et al., 2012). These approaches
lack interpretability in terms of brain function.

The problem boils down to modeling heteroscedasticity.
Heteroscedasticity is said to occur when the variance of the
unobservable error, conditional on explanatory variables, is
not constant. For example, consider the regression problem
predicting expenditure on meals from income. People with
higher income will have greater variability in their choices of
food consumption. A poorer person will have less choice, and
be constrained to inexpensive foods. In functional connectivity,
heteroscedasticity is multivariate and variances become
covariance matrices. In other words, heteroscedasticity co-
occurs among brain parcels and can be explained as a function of
explanatory variables.

In this article, we propose a low-dimensional multivariate
heteroscedasticity model for functional connectivity. Our model
is of intermediary complexity, between modeling all p(p− 1)/2
connections and only using global summary statistics. Ourmodel
builds on the covariance regression model introduced by Hoff
and Niu (2012). It includes a random effects term that describes
heteroscedasticity in the multivariate response variable. We
adapt it for functional connectivity and implement it using the
statistical programming language Stan. Additionally, we perform
preliminary thinning of the observed multivariate timeseries
from N to the effective sample size n. Using n reduces false
positives and speeds up computations by a factor of N/n. To
find the appropriate n, we compute the autocorrelation as it
is common in the Markov chain Monte Carlo literature. We
compare our low-dimensional model to a full covariance model
contained in the class of linear covariance models introduced by
Anderson (1973). Both models are used to analyze real data from

HCP comparing connectivity between short and conventional
sleepers.

From a neuroscience viewpoint, our low-dimensional model
is applicable if we belief that multiple brain parcels work
together to accomplish cognitive tasks. Even if this assumption
is not entirely true, our low-dimensional model can serve a
way to simplify functional connectivity analyses and improve
interpretability. One can think of a low-dimensional model as
a way to reduce the dimensions of the original data to an
interpretable number of variables.

2. MATERIALS AND METHODS

2.1. Data
We analyzed data from the WU-Minn HCP 1200 Subjects
Data Release. We focus on the functional-resting fMRI (rfMRI)
data of 820 subjects. The images were acquired in four runs
of approximately 15 min each. Acquisition ranged over 13
periods (Q01, Q02, . . . , Q13). We separated the subjects
into two groups: short sleepers (≤ 6 h) or conventional
sleepers (7–9 h) as defined by the National Sleep Foundation
(Hirshkowitz et al., 2015). This results in 489 conventional and
241 short sleepers. The HCP 1200 data repository contains
images processed at different levels: spatially registered images,
functional timeseries, and connectivity matrices. We work
with the preprocessed timeseries data. In particular, the rfMRI
preprocessing pipeline includes both spatial (Glasser et al., 2013)
and temporal preprocessing (Smith et al., 2013). The spatial
preprocessing uses tools from FSL (Jenkinson et al., 2012) and
FreeSurfer (Fischl et al., 1999) to minimize distortions and
align subject-specific brain anatomy to reference atlases using
volume-based and surface-based registration methods. After
spatial preprocessing, artifacts are removed from each subject
individually (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014),
then the data are temporally demeaned and variance stabilized
(Beckmann and Smith, 2004), and further denoised using a
group-PCA (Smith et al., 2014). Components of a spatial group-
ICA (Hyvärinen, 1999; Beckmann and Smith, 2004) are mapped
to each subject defining parcels (Glasser et al., 2013). The
ICA-weighted voxelwise rfMRI signal are averaged over each
component. Each weighted average represents one row in the
multivariate timeseries. Note that parcels obtained in this way are
not necessary spatially contiguous, in particular, they can overlap
and include multiple spatially separated regions. HCP provides
a range of ICA components 15, 25, 50, 100, 200, and 300. We
choose 15 (Figure 1) for our analysis to allow for comparison
with prior sleep related findings on a partially overlapping dataset
(Curtis et al., 2016).

2.2. Low-Dimensional Covariance
Regression
In this section, we introduce a low-dimensional linear model
to compare connectivity between experimental conditions or
subgroups.
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FIGURE 1 | Parcels derived from spatial group-ICA. Created at the most relevant axial slices in MNI152 space. According to Smith et al. (2009), these parcels map to

visual areas (R1, R3, R4, and R8), sensorimotor (R7 and R11), cognition-language (R2, R5, R10, and R14), perception-somesthesis-pain (R2, R6, R10, and R14),

cerebellum (R9), executive control (R12), auditory (R12 and R13), and default network (R15).

2.2.1. Model
The data we observe are p-dimensional multivariate vectors
y1, . . . , yN . We assume that the observations are mean-centered

so that 1
N

∑N
i=1 yi = 0. After centering, we subsample each

timeseries at n<N time points to remove temporal dependencies
between observations (section 2.2.2). We are given a set of
explanatory variables xi that encode experimental conditions or
subgroups, e.g., element one is the intercept 1 and element two
is 0 for conventional and 1 for short sleepers. We bind the xi’s
row-wise into the usual design matrix X. Our model:

yi = γi × Bxi + ǫi for i = 1, . . . , n

has a random effects term γi × Bxi and an independent and
identically distributed error term ǫi. We suppose the two random
variables to have:

E (ǫi) = 0, Cov (ǫi) = σ
2Ip

E (γi) = 0, Var (γi) = 1, E (γi × ǫi) = 0.

Then, the expected covariance is of the form:

E
(

yiy
T
i

)

= Bxix
T
i B

T + σ
2Ip = 6xi .

resulting from the inclusion of the random variable γi. The
covariance matrix 6 is indexed by xi to indicate that it changes
as a function of the explanatory variables. As with usual
univariate linear modeling, we can interpret the coefficients
B as explaining differences between experimental conditions.
The matrix B is p × J dimensional, where J is the number
of columns in the n × J dimensional design matrix X. Here
J = 2 and the second column encodes the contrast between
short sleepers and conventional sleepers. The interpretation
of B is that small values indicate little heteroscedasticity,
identical signs indicates positive correlation, and opposite signs
indicate negative correlation. For instance, assume that the
second column of B is b2 = (−1, 3, 0, 2)T . The interpretation

for these four regions is as follows: region one and two
are negatively correlated, so are region one and four, region
two and four are positively correlated, and region three is
uncorrelated.

The general form of this model was introduced by Hoff and
Niu (2012) with the idea of decomposing covariance matrices
into covariates explained and unexplained terms. In this original
form the unexplained part is parametrized as a full covariance
matrix scaling quadratically in the number of regions, i.e.,
p(p− 1)/p parameters. Instead, we parametrize it as a diagonal
matrix with independent variance terms for each region. This
simplified model scales linearly in the number of regions p and
can therefore be applied to large brain parcellations.

We use flat priors on both parameters σ and B. The elements
of the B matrix have a uniform prior on (−∞,∞), and the
elements of σ vector have a uniform prior on (0,∞). These priors
are improper and do not integrate to one over their support. In
case of prior knowledge, it is preferable to use more informative
priors. For large p, we can add an additional hierarchical level to
adjusting for multiple testing by including a common inclusion
probability per column in B (Scott and Berger, 2006, 2010).

As is common in univariate linear modeling, it is possible
to encode additional explanatory variables such as subject ID
and possible batch factors. It would also be possible to extend
the model to include temporal dependencies in the form of
spline coefficients. We have not done so here because we
wanted to focus explicitly on functional connectivity between
regions.

2.2.2. Effective Sample Size
We subsample n time points to obtain the Effective Sample Size
(ESS). This n is smaller than the total number N of time points
because it accounts for temporal dependency. We propose a
procedure to automatically choose n using an autocorrelation
estimate of the timeseries. This is current practice in the field
of Markov chain Monte Carlo and implemented in R package
coda (Plummer et al., 2006). The ESS describes how much
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a dependent sample is worth with respect to an independent
sample of the same size. Kass et al. (1998) define ESS via the lag t

autocorrelation Corr
(

y
(j)
1 , y

(j)
1+t

)

as:

n = min
j= 1,...,p





N

1+ 2
∑∞

t= 1 Corr
(

y
(j)
1 , y

(j)
1+ t

)



 .

This is a component-wise definition and we follow a conservative
approach by taking the minimum over all p components as the
overall estimator. Intuitively, the larger the autocorrelation the
lower is our ESS because we can predict future form current time
points. A convenient side-produce of subsampling is reduced
computational costs.

2.2.3. Inference
We implement our model in the probabilistic programming
language Stan (Carpenter et al., 2017) using R. Stan uses
Hamiltonian Monte Carlo to sample efficiently from posterior
distributions using automatic differentiation. It removes the need
for manually deriving gradients of the posterior distributions,
thus making it easy to extend models. Our Stan code is available
in our new R package CovRegFC from our GibHub repository.
Alternatively, using conjugate priors it is possible to derive a
Gibbs sampler to sample from the posterior distribution of a
related model as in Hoff and Niu (2012). However, this makes
it harder to extend the model.

Due to the non-identifiability of matrix B up to random
sign changes, B and −B corresponding to the same covariance
function, we need to align the posterior samples coming from
multiple chains. A general option is to use Procrustes alignment.
Procrustes alignment (Korth and Tucker, 1976) is a method for
landmark registration (Kendall, 1984; Bookstein, 1986) in the
shape statistics literature and an implementation is available in
the R package shape (Dryden and Mardia, 1998).

2.3. Full Covariance Regression
In this section, we introduce a full covariance linear model.

2.3.1. Model
Here we do not subsample and deal with temporal dependencies
in a different way. In this model, the number of observations
are the number of subjects k = 1, . . . ,K. After column-wise
centering of each N × p (recall that N is the total number of time
points) timeseries Y1, . . . ,YK , we compute sample covariance
matrices for each subject S1 = YT

1Y1, . . . , SK = YT
KYK . We

take this as our “observed” response. Additionally, we have
one explanatory vector x1, . . . , xn for each response covariance
matrix. In our HCP data subset, we have 730 subjects, soK = 730
and we have K data point pairs (S1, x1), . . . , (SK , xK). We assume
that the explanatory vector has two elements: the first element

x
(1)
k

representing the intercept and is equal to one, and the second

element x
(2)
k

is one for short and zero for conventional sleepers.
Our regression model:

Sk ∼ Wishart
(

x
(1)
k

6
(1) + x

(2)
k

6
(2), ν

)

decomposes the “observed” covariance matrix into an intercept
term and a term encoding the functional connectivity between
sleepers. The second parameter in the Wishart distribution
describes the degrees of freedom and has support (p− 1,∞).

We will now describe how to draw samples from the
Wishart distribution, this will give us a better intuition for
the proposed model. Matrices following a Wishart distribution
can be generated by drawing vectors y1, . . . , yN independently
from a Normal(0,6), storing vectors in a N × p matrices Y i,
and computing the sample covariance matrix Si = YT

i Y i.
Then, the constructed Si’s are distributed according to a Wishart
distribution with parameters 6 and degrees of freedom N. If
the ESS is smaller than N it will be reflected in the degrees of
freedom parameter ν. In our model, we will estimate ν from the
data. In this way, we account for the temporal dependencies in
the timeseries. The marginal posterior distribution of ν will be
highly concentrated around a small degree of freedom (close to p)
for strongly dependent samples and concentrated around a large
degree of freedom (close to N) for weakly dependent samples.

To complete our model description, we need to put priors on
covariance matrices and the degrees of freedom. We decompose
the covariance prior into a standard deviation σ vector and a
correlation matrix � for each term:

6
(1) = σ

(1)Ip �
(1)

σ
(1)Ip and 6

(2) = σ
(2)Ip �

(2)
σ
(2)Ip

and put a Lewandowski, Kurowicka, and Joe (LKJ) prior on the
correlation matrix (Lewandowski et al., 2009) independently for
each term:

�
(1) ∼ LKJcorr(η) and �

(2) ∼ LKJcorr(η).

This correlation matrix prior has one parameter η that defines
the amount of expected correlations. To gain intuition about η,
we draw samples from the prior for a range of dimensions and
parameter settings (Figure 2). The behavior in two dimension
is similar to a beta distribution putting mass on either the
boundary of the support of the prior or in the center. As we move
toward higher dimensions, we can see that the distribution is less
sensitive to the parameter η. For our model, we set η = 1 to
enforce a flat prior. We complete our prior description by putting
independent flat priors on both the vector of standard deviations
σ and the degrees of freedom ν, i.e., uniform prior on (0,∞) and
uniform prior on (p− 1,N − 1), respectively.

2.3.2. Inference
The number of parameters in the model scales quadratically
in the number of regions making this model applicable in the
classical statistical setting where we have larger sample sizes than
number of predictors. In section 3.1, we will show an application
to the HCP data with K = 730 subjects and p = 15 regions. Note,
Hoff (2009) devised a Gibbs sampler for a similar model using an
eigenmodel for the subject-level covariance matrices.

2.3.3. Posterior Analysis and Multiplicity Control
After drawing samples from the posterior, we can evaluate
the marginal posterior distributions of standard deviations σ ,
correlations �, and degrees of freedom ν. As mentioned, we
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FIGURE 2 | Density plots of 1,000 draws from the LKJ prior in 2, 15, and 50 dimensions. We plot one off-diagonal element in the correlation matrix for each matrix R

drawn form the LKJ prior. We pick element (1, 2) denoted by R12. This is representative of the other elements in the matrix because the LKJ prior is symmetric. We

evaluate different shape parameters η. In the low-dimensional setting, a small η assigns larger probability mass to correlations close to −1 and 1, whereas a large η

assigns larger mass around 0. In the high-dimensional setting, probability mass is concentrated around 0 irrespectively of η. The special case of η = 1 represents the

uniform distribution on correlation matrices.

assume that the second element in the explanatory vector encodes
whether a subject is a short or a conventional sleepers. In this
setting, �

(2) represents the difference in correlation between
short and conventional sleepers. As we have the marginal

posterior distribution for every �
(2)
ij , we can evaluate the

probability:

Pij =
∣

∣

∣
2 Prob

(

�
(2)
ij > 0

)

− 1
∣

∣

∣
.

Our interpretation in terms of connectivity is as follows: If Pij
is zero then the correlation is equally probable to be negative or
positive. In this case, we are unable to clearly classify the sign of
the correlation difference as negative or positive. If Pij is close to
one then the correlation is more probable to be either negative or
positive. In this case, we can say that parcel i can be seen to be
differentially connected to parcel j.

There are p(p − 1)/2 pairwise correlations and we wish to
find correlations that are different between the two groups. If
the probability Pij is large, we will report the connection as
significantly different. To control for multiple testing, we declare
correlations only as significant if they pass a threshold λ. We
choose λ to control the posterior expected FDR (Mitra et al.,
2016):

FDRλ =

∑

ij(1− Pij)I(Pij > λ)
∑

ij I(Pij > λ)
.

We find λ through grid search for a fixed FDR. This allow us to
report only correlations that survive the threshold at a given FDR.

3. RESULTS

The HCP released a dataset with 820 timeseries of normal
healthy subjects measured during resting-state fMRI (rfMRI).
The imaging data is accompanied by demographic and behavioral
data including a sleep questionnaire. Approximately 30%
Americans are reported short sleepers with 4–6 h of sleep
per night. The National Sleep Foundation recommends that
adults sleep between 7 and 9 h. We use both models to

analyze the HCP data on 730 participants (after subsetting
to short and conventional sleepers) to elucidate difference in
functional connectivity between short and conventional sleepers.
As mentioned before, the design matrix X has an intercept 1 and
a column encoding short sleepers 1 and conventional sleepers
0, i.e., conventional sleepers are the reference condition. We
use a burn-in of 500 steps during which Stan optimizes tuning
parameters for the HMC sampler, e.g., the mass matrix and
the integration step length. After burn-in, we run HMC for
additional 500 steps. To check convergence, we assess traceplots
of random parameter subsets. We obtain an effective sample
size of 167 for the 15 regions ICA-based parcellation. We
now analyze the marginal posterior distribution of each of the
parameters.

3.1. Differential Analysis
3.1.1. Fifteen Parcels
In Figure 3, we summarize and visualize the marginal posterior
distribution of the second column in B. In the center part of
the plot, we show the posterior distribution as posterior medians
(dot) and credible intervals containing 95% of the posterior
density (segments). The credible intervals are Bonferroni
corrected by fixing the segment endpoints at the 0.05/15 and
(1− 0.05/15) quantiles. Care has to be taken when interpreting
the location of segments with respect to the zero coefficient
line (red line). Due to the sign non-identifiability of B, we have
to ignore on which side the segments are located. Recall that
regions on the same side are positively correlated, regions on
opposite sides are negatively correlation, and regions overlapping
the red line are undecided. To relate the region name back to
the anatomy, we plotted the most relevant axial slice in the
MNI152 space on the left and the right of the coefficient plot,
depending on their sign, respectively. We can make the following
observations: Parcels in set 1 (R4, R5, R7, and R9) are positively
correlated. Keep in mind that the sign of the coefficient carries
no information about the sign of the correlation. So, even though
the coefficients are negative the correlations are positive, because
they are on the same side of the red line. Parcels in set 2 (R1-R3,
R8, R10-R13, and R15) are also positively correlated, for the same
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FIGURE 3 | Low-dimensional covariance model. This is the second column in the design matrix encoding the contrast between short and conventional sleepers. The

sign is not identifiable; it only matters whether parcels are on the same or opposite side. If they are on the same side, then they are positively correlated. If they are on

the opposite side, then they are negatively correlated. The posterior credible intervals are widened according to the number of regions or channels in the plot using the

Bonferroni procedure.

FIGURE 4 | Regions are numbered from R1 to R15. SD stands for standard

deviations. Posterior mean correlations magnitude and standard deviations of

the difference between short and conventional sleepers.

reason as before. In contrast, the two parcel sets are negatively
correlated, because they are on opposite sides. The connectivity of
R6 and R14 are not different from conventional sleepers because
their credible intervals overlap the red line. According to themeta
analysis in Smith et al. (2009), parcel set 1 is associate with visual,
cognition-language, sensorimotor areas, and the cerebellum; and
parcel set 2 with visual, cognition-language, auditory areas, and
the default network.

We now compare the result from the low-dimensional
model with results from the full model. First, we compute
the posterior marginal mean of the standard deviations vector
σ
(2) and the correlation matrix magnitude |�(2)| encoding the

difference between short and conventional sleepers (Figure 4).
The standard deviation plot on the right shows that parcel

R3 varies the most, and that region R2 varies the least. The
magnitude correlation plot on the left shows that parcel pair R9
and R13 exhibit the strongest correlation. This is consistent with
the low-dimensional model results, where R9 and R13 are in
opposite parcel sets. Similarly, parcels R1 and R8 have a strong
correlation magnitude in the full model and large effect sizes in
the low-dimensional results.

In Figure 5, we assess the significance of differential
correlations. The color code indicates different FDR levels.
Overall strong differences in the correlation structure are visible
with a large portion of connections at an FDR of 0.001. In
contrast to the low-dimensional model, these are differences in
correlations and not whether they are more positively or more
negatively correlated.

3.1.2. Fifty Parcels
Modeling the data in a more compact representation makes
it easier for us to interpret the results and easier to estimate
parameters. For instance, consider analyzing p = 50 parcels of
160 randomly sampled subjects form the HCP (Figure 6). All
the information fits on one plot similar as in the p = 15 parcel
case. For p = 50 it starts to get harder to interpret the full
model because we have now 50(50 − 1)/2 = 1225 possible
pairwise correlations. It will be hard to interpret a plot of the full
correlation matrix. One way to make sense of it is to cluster rows
and columns of the correlation matrix. Even though such post-
processing approaches are useful, it is unclear how to propagate
uncertainty from the correlation estimation to the clustering
step. A low-dimensional model is therefore our preferred analysis
approach.

3.1.3. Note on Computation Time
For the low-dimensional model and the available 730 subjects,
the computation time for the HMC sampler is around 20 h on
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a single core on a modern CPU. For a subsample of 40 subjects,
the computation time is around 20–25 min, and for 80 subjects
around 50–55 min. It is possible to run more chains in parallel to
increase the sample size. To combine each run, we need to align
the posterior samples using Procrustes alignment as indicated in
the section 2.

The full model takes about 1 h on a single core, and we run
four chains in parallel to increase sample size.

FIGURE 5 | Thresholded connectivity matrix showing the level of differential

correlation between all pairs of parcels in short vs. conventional sleepers.

Thresholding is chosen to control for posterior expected FDR at three different

levels > 0.01, 0.01, and 0.001.

3.2. Power Analysis
We design a power analysis (Figure 7) for low-dimensional
covariance regression with 15 parcels. As the population we
take the available 730 subjects in the HCP data repository that
are either short or conventional sleepers and have preprocessed
timeseries. We sample 100 times from this population keeping
the same ratio between the number of observations for each
group, i.e., two thirds conventional and one third short sleepers.
We report the average True Positive Rate (TPR) and the False
Discovery Rate (FDR) over the 100 samples. We assign a parcel
to a parcel set if its credible interval is located on one side of the
zero red line and does not overlap the line. The credible intervals
contain 100 × (1 − α)% of the marginal posterior distribution
with end points evaluated using quantiles. We need to take into
consideration that parcel sets are non-identifiable. We denote

the ith predicted parcel set as Z
pred
i and the true parcel set as

Ztrue
i . The index i can be either 1 or 2. Parcel sets are subsets of

{R1, R2, . . . , R15}.
With these definitions, we are now ready to calculate TPR and

FDR. The TPR measures the power of our procedure to detect
true parcels. We define true positives as:

TPijkl = #(Z
pred
i ∩ Ztrue

j )+ #(Z
pred
k

∩ Ztrue
l ).

To obtain the rate, we take the maximum of both possible
comparisons:

Correctly Predicted Parcels = max(TP1122, TP1221)

and divide by the total number of true parcels:

TPR =
Correctly Predicted Parcels

Total True Parcels
.

FIGURE 6 | Low-dimensional covariance model applied to 50 parcels of 160 randomly sampled subjects from the HCP after subsetting to short and conventional

sleepers.
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FIGURE 7 | Power analysis for low-dimensional covariance regression with 15

parcels. The two statistics are the True Positive Rate (TPR) and the False

Discovery Rate (FDR). The significance level is denoted by α. Points are

averages computed over 100 samples from the population.

The FDR measures the amount of falsely predicted parcels as:

FPijkl = #(Z
pred
i \ Ztrue

j )+ #(Z
pred
k

\ Ztrue
l )

by taking the minimum

Falsely Predicted Parcels = min(FP1122, FP1221)

divided by the total number of positives

FDR =
Falsely Predicted Parcels

Correctly Predicted Parcels+ Falsely Predicted Parcels
.

The tradeoff between the two can be controlled through the
significance level α. Power increases linearly with sample size.
FDR decrease linearly but at a lower rate with sample size. At
samples size 40, we have a power of 50% with an FDR of 20%.
This improves to a power of 80% with an FDR of 10% at sample
size 160.

4. DISCUSSION

We introduced two new models for functional connectivity.
In particular, the low-dimensional covariance model is able to
discover 50% of the correlation differences at a FDR of 20% in
a sample size as little as 40. Our Stan implementations make it
easy for others to extend our models. We applied both models to
the HCP data subset to compare functional connectivity between
short and conventional sleepers. Our findings are consistent with
Curtis et al. (2016) and Killgore et al. (2012) reporting increases
in functional connectivity in short sleepers for primary auditory,
primary motor, primary somatosensory, and primary visual

cortices. A similar neural signature was observed in experiments
examining the transition from resting wakefulness to sleep onset
using EEG and rfMRI (Larson-Prior et al., 2009; Tagliazucchi and
Laufs, 2014; Davis et al., 2016). Therefore, we recommend the
inclusion of the average sleep duration of a subject as a “batch”
covariate in the experimental design of rfMRI studies.

In addition to group comparisons encoded as a design matrix
with two columns, it is possible to extend our low-dimensional
model to more complicated experimental designs by appending
more columns to the design matrix. We can encode batch
factors and subject-specific variability by binding one column
per factor level. Besides categorical variables, we can model
continuous variables such as head-motion measurement made
using an accelerometer. Adding covariates to explain unwanted
variation in the data can move some of the preprocessing steps
to the functional connectivity analysis step. Such joint modeling
can enable the propagation of uncertainty to the downstream
analyses. Additional columns in the design matrix are called
blocking factors and can improve the statistical power. Without
modeling the blocking factor, the variability in the data is
absorbed by the noise term. The higher level of noise leads to
higher uncertainty in our parameter estimates. In contrast, a
model with additional blocking factors has more parameters that
need to be estimated. As in most practical problems, the right
modeling choice depends on the data.

A main challenge in covariance regression is the positive
definiteness constraint. A solution is to transform the covariance
estimation problem into an unconstrained problem thus making
estimation and inference easier (Pourahmadi, 2011). One
possible transformation starts with a spectral decomposition
where the covariance matrix is decomposed into a diagonal
matrix of eigenvalues and an orthogonal matrix with normalized
eigenvectors as columns. The procedure continues with a global
log-transformation to the covariance matrix, which results in
a log-transformation of individual eigenvalues and removes
the constraint. However, mathematically and computationally
tempting this approach seems, it remains hard to interpret
the log-transformations statistically (Brown et al., 1994; Liechty
et al., 2004). An alternative transformation uses a Cholesky
decomposition of the covariance matrix. For the Cholesky
decomposition, we need a natural ordering of the variables
not known a priori for functional connectivity data—a natural
ordering could be given if the chronology is known.

Modeling of covariance matrices builds on important
geometrical concepts and the medical image analysis community
has made significant progress in terms of mathematical
descriptions and practical applications motivated by data in
diffusion tensor imaging (Pennec, 1999, 2006; Moakher, 2005;
Arsigny et al., 2006/2007; Lenglet et al., 2006; Fletcher and Joshi,
2007; Fillard et al., 2007; Schwartzman et al., 2008; Dryden et al.,
2009). The underlying geometry is called Lie group theory and
it appears when we consider the covariance matrices as elements
in a non-linear space. The matrix log-transformation from the
previous paragraph maps covariance matrices to the tangent
space where unconstrained operations can be performed; for
instance we create a mean by simple elementwise averaging. After
computing the mean in tangent space, this mean is mapped
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back to the constrained space of covariance matrices. Despite
the mathematical beauty and algorithmic convenience, statistical
interpretations are still unwieldy. However, this does provide a
fundamental geometric formulation and enables the use of handy
geometrical tools (Absil et al., 2008 for a book-length treatment).

We approach the problem from a statistical viewpoint
and frame functional connectivity in terms of modeling
heteroscedasticity. This allows us to take advantage of the rich
history in statistics and led us to the covariance regression model
introduced by Hoff and Niu (2012). We simplify the model
to meet the large p requirement in neuroscience. The running
time for 500 posterior samples on 80 subjects is less than an
hour on a single core. This makes our approach applicable to
many neuroimaging studies. For larger studies, such as the HCP
with 730 subjects, further speed improvements using GPU’s are
desirable to reduce computation time.

One possible future application is functional Near-Infrared
Spectroscopy (fNIRS), which has gained in popularity due its
portability and high temporal resolution. A common approach
is to set up a linear model between brain responses at channels
locations (Huppert et al., 2009; Ye et al., 2009; Tak and Ye, 2014)
and experimental conditions. Thus, our models apply to fNIRS
experiments. An additional challenge in fNIRS experiments is
channel registration acrossmultiple participants (Liu et al., 2016).
Connectivity differences could be due artifacts created by channel
misalignments not biology. In the absence of structural MRI, we
could add an additional hierarchical level in our low-dimensional
model to handle measurement errors accounting for possible
misalignments between channels.

We use a conservative component-wise estimate of the ESS.
Less conservative multivariate estimators (Vats et al., 2015) might
be able to increase statistical power at the cost of an increase in
the false discovery rate.

REPRODUCIBILITY AND
SUPPLEMENTARY MATERIAL

The entire data analysis workflow is available on our GitHub
repository:

• https://github.com/ChristofSeiler/CovRegFC_HCP

We also provide a new R package CovRegFC with Stan code:

• https://github.com/ChristofSeiler/CovRegFC

Data preparation and statistical analyses are contained in Rmd

files:

• Low_Dimensional.Rmd

• Full.Rmd

• Power.Rmd

By running these files all results and plots can be completely
reproduced as html files:

• Low_Dimensional.html

• Full.html

• Power.html

The HCP data is available here:

• https://www.humanconnectome.org/data/
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