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Abstract

Background: Ridge regression is a regularization technique that penalizes the L2-norm of the coefficients in linear
regression. One of the challenges of using ridge regression is the need to set a hyperparameter (α) that controls the amount
of regularization. Cross-validation is typically used to select the best α from a set of candidates. However, efficient and
appropriate selection of α can be challenging. This becomes prohibitive when large amounts of data are analyzed. Because
the selected α depends on the scale of the data and correlations across predictors, it is also not straightforwardly
interpretable. Results: The present work addresses these challenges through a novel approach to ridge regression. We
propose to reparameterize ridge regression in terms of the ratio γ between the L2-norms of the regularized and
unregularized coefficients. We provide an algorithm that efficiently implements this approach, called fractional ridge
regression, as well as open-source software implementations in Python and MATLAB (https://github.com/nrdg/fracridge).
We show that the proposed method is fast and scalable for large-scale data problems. In brain imaging data, we
demonstrate that this approach delivers results that are straightforward to interpret and compare across models and
datasets. Conclusion: Fractional ridge regression has several benefits: the solutions obtained for different γ are guaranteed
to vary, guarding against wasted calculations; and automatically span the relevant range of regularization, avoiding the
need for arduous manual exploration. These properties make fractional ridge regression particularly suitable for analysis of
large complex datasets.
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Introduction

Consider the standard linear model setting Y = Xβ solved for β,
where Y is a data matrix of dimensionality d by t (d data points
in each of t targets), X is the design matrix with dimensional-
ity d by p (d data points for each of p predictors), and β is a co-
efficient matrix with dimensionality p by t (with p coefficients,
one for each predictor, for each of the targets). Ordinary least-
squares regression (OLS) and regression based on the Moore-
Penrose pseudoinverse (in cases where p > d) attempt to find

the set of coefficients β that minimize squared error for each
of the targets y. While these unregularized approaches have
some desirable properties, in practical applications where noise
is present, they tend to overfit the coefficient parameters to the
noise present in the data. Moreover, they tend to cause unstable
parameter estimates in situations where predictors are highly
correlated.

Ridge regression [1] addresses these issues by trading off the
addition of some bias for the reduction of eventual error (e.g.,
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2 Fractional ridge regression

measured using cross-validation [2, 3]). It does so by not only pe-
nalizing the sum of the squared errors in fitting the data for each
target but by also minimizing the squared L2-norm of the solu-
tion, ||β||22 = ∑

(β2). Fortunately, this form of regularization does
not incur a substantial computational cost. This is because it can
be implemented using the same numerical approach for solving
unregularized regression, with the simple addition of a diagonal
matrix αI to the standard matrix equations. Thus, the compu-
tational cost of solving ridge regression is essentially identical
to that of the unregularized solution. Thanks to its simplicity,
computational expedience, and its robustness in different data
regimes, ridge regression is a popular technique, with the clas-
sic references describing the method [1, 4] cited >25,000 times
according to Google Scholar.

However, beneath the apparent simplicity of ridge regres-
sion is the fact that for most applications, it is impossible to
determine a priori the degree of regularization that yields the
best solution. This means that in typical practice, researchers
must test several different hyperparameter values α and se-
lect the one that yields the least cross-validation error on a set
of data specifically held out for hyperparameter selection. In
large-scale data problems, the number of data points d, num-
ber of predictors p, and/or number of targets t can be quite large.
This has the consequence that the number of hyperparameter
values that are tested, f, can pose a prohibitive computational
barrier.

Given the difficulty of predicting the effect of α on solution
outcomes, it is common practice to test values that are widely
distributed on a log scale (e.g., see [5]). Although this approach
is not grounded in a particular theory, as long as the values span
a large enough range and are spaced densely enough, an ap-
proximate minimum of the cross-validation error is likely to be
found. But testing many α values can be quite costly, and the
practitioner might feel tempted to cull the set of values tested.
In addition, it is always a possibility that the initial chosen range
might be mismatched to the problem at hand. Sampling α val-
ues that are too high or too low will produce non-informative
candidate solutions that are either over-regularized (α too high)
or too similar to the unregularized solution (α too low). Thus, in
practice, conventional implementations of ridge regression may
produce poor solutions and/or waste substantial computational
time.

Here, we propose a simple reparameterization of ridge re-
gression that overcomes the aforementioned challenges. Our
approach is to produce coefficient solutions that have an L2-
norm that is a pre-specified fraction of the L2-norm of the un-
regularized solution. In this approach, called “fractional ridge re-
gression” (FRR), redundancies in candidate solutions are avoided
because solutions with different fractional L2-norms are guaran-
teed to be different. Moreover, by targeting fractional L2-norms
that span the full range from 0 to 1, the FRR approach explores
the full range of effects of regularization on β values from under-
to over-regularization, thus ensuring that the best possible solu-
tion is within the range of solutions explored. We provide a fast
and automated algorithm to calculate FRR, and provide open-
source software implementations in Python and MATLAB. We
demonstrate in benchmarking simulations that FRR is compu-
tationally efficient for even extremely large data problems, and
we show that FRR can be applied successfully to real-world data
and delivers clear and interpretable results. Overall, FRR may
prove particularly useful for researchers tackling large-scale
datasets where automation, efficiency, and interpretability are
critical.

Methods
Background and theory

Consider the dataset Y with dimensionality d (number of data
points) by t (number of targets). Each column in Y represents a
separate target for linear regression:

y = Xβ + ε, (1)

where y is the measured data for a single target (dimensionality
d by 1), X is the “design” matrix with predictors (dimensionality
d by p), β are the coefficients (dimensionality p by 1), and ε is a
noise term. Our typical objective is to solve for β in a way that
minimizes the squared error. If X is full rank, the OLS solution
to this problem is

β̂OLS = (XᵀX)−1 Xᵀy, (2)

where Xᵀ is the transpose of X. This solution optimally finds the
values of β that provide the minimal sum-of-squared error on
the data:

∑
(y − Xβ)2. In cases where X is not full rank, the OLS

solution is no longer well defined and the Moore-Penrose pseu-
doinverse is used instead. We refer to these unregularized ap-
proaches collectively as OLS.

To regularize the OLS solution, ridge regression applies a
penalty (α) to the squared L2-norm of the coefficients, leading
to a different estimator for β:

β̂RR = (XᵀX + α I )−1 Xᵀy, (3)

where α is a hyperparameter and I is the identity matrix [1, 4].
For computational efficiency, it is well known that the original
problem can be rewritten using singular value decomposition
(SVD) of the matrix X [6]:

X = U SVᵀ (4)

with U having dimensionality d by p, S having dimensionality p
by p, and V having dimensionality p by p.

Note that S is a square matrix:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 ...

0 λ2 0 ...

0 0 λ3 0 ...

...
... 0 0 0 λp

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

with λi as the singular values ordered from largest to smallest.
Replacing the design matrix X with its SVD, we obtain

y = U SVᵀβ + ε. (5)

Given that U and V are unitary (e.g., UᵀU is I), left-multiplying
each side with Uᵀ produces

Uᵀy = SVᵀβ + Uᵀε. (6)

Let ỹ = Ut y, β̃ = Vᵀβ, and ε̃ = Utε. These are transformations
(rotations) of the original quantities (y, β, and ε) through the uni-
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tary matrices Ut and Vt. In cases where p < d, this also projects
the quantities into a lower-dimensional space of dimensionality
p. The OLS solution can be obtained in this space:

˜̂βOLS = (SᵀS)−1Sᵀ ỹ, (7)

which simplifies to the following:

˜̂βOLS = S−2(Sᵀ ỹ), (8)

where

S−2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
λ2

1
0 ...

0 1
λ2

2
0 ...

0 0 1
λ2

3
0 ...

...
... 0 0 0 1

λ2
p

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the inverse of the square of the singular value matrix S. Thus,
for a single coordinate i in the lower-dimensional space, we can
solve the OLS problem with a scalar multiplication:

˜̂βOLS
i = 1

λ2
i

λi ỹi , (9)

which simplifies finally to

˜̂βOLS
i = ỹi

λi
. (10)

The SVD-based reformulation of regression described above
is additionally useful because it provides insight into the nature
of ridge regression [7]. Specifically, consider the ridge regression
solution in the low-dimensional space:

˜̂βRR = (SᵀS + α I )−1Sᵀ ỹ. (11)

To compute this solution, we note that:

St S + α I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ2
1 + α 0 ...

0 λ2
2 + α 0 ...

0 0 λ2
3 + α 0 ...

...
... 0 0 0 λ2

p + α

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

the inverse of which is

(St S + α I )−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
λ2

1+α
0 ...

0 1
λ2

2+α
0 ...

0 0 1
λ2

3+α
0 ...

...
... 0 0 0 1

λ2
p+α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

Finally, plugging into equation 11, we obtain

˜̂βRR
i = λi

λ2
i + α

ỹi . (14)

This shows that in the low-dimensional space, ridge regres-
sion can be solved using scalar operations.

To further illustrate the relationship between the ridge re-
gression and OLS solutions, by plugging equation 10 into equa-
tion 14, we observe the following:

˜̂βRR
i = λ2

i

λ2
i + α

˜̂βOLS
i . (15)

In other words, the ridge regression coefficients are simply
scaled-down versions of the OLS coefficients, with a different
amount of shrinkage for each coefficient. Coefficients associated
with larger singular values are less shrunken than those with
smaller singular values.

To obtain solutions in the original space, we left-multiply the
coefficients with V:

β̂ = V ˜̂β. (16)

We now turn to FRR. The core concept of FRR is to reparame-
terize ridge regression in terms of the amount of shrinkage ap-
plied to the overall L2-norm of the solution. Specifically, we de-
fine the fraction γ as follows:

γ = || ˜̂βRR||2
|| ˜̂βOLS||2

. (17)

Because V is a unitary transformation, the L2-norm of a coeffi-

cient solution in the low-dimensional space, || ˆ̃β||2, is identical
to the L2-norm of the coefficient solution in the original space,
||β̂||2. Thus, we can operate fully within the low-dimensional
space and be guaranteed that the fractions will be maintained
in the original space.

In FRR, instead of specifying desired values for α, we instead
specify values of γ between 1 (no regularization) and 0 (full reg-
ularization, corresponding to shrinking all the coefficients to
β = 0). But how can one compute the ridge regression solution
for a specific desired value of γ ? Based on equations 9 and 14,
it is easy to calculate the value of γ corresponding to a specific
given α value:

γ = || ˜̂βRR ||2
|| ˜̂βOL S||2

=

√√√√∑ [
λi ỹi /

(
λ2

i + α
)]2∑

(ỹi /λi )2
. (18)

In some special cases, this calculation can be considerably
simplified. For example, if the singular value spectrum of X is
flat (λi = λj for any i �= j), we can set all the singular values to λ,
yielding the following:

γ =
√

[λ/ (λ2 + α)]2
∑

ỹ2
i

(1/λ)2
∑

ỹi
2 = λ/

(
λ2 + α

)
1/λ

= λ2

λ2 + α
. (19)

This recapitulates the result obtained in Hoerl and Kennard [1],
equation 2.6. We can then solve for α:

α = λ2
(

1
γ

− 1
)

. (20)

Thus, in this case, there is an analytic solution for the appropri-
ate α value, and one can proceed to compute the ridge regression
solution using equation 14.
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Another special case is if we assume that the absolute values
of β̃OLS

i are all the same. In this case, we can use a few simplifi-
cations to calculate the shrinkage in terms of L1-norm:

|| ˜̂βRR||1
|| ˜̂βOLS||1

=
∑ ∣∣∣(λ2

i
˜̂βOLS
i

)
/
(
λ2

i + α
)∣∣∣∑ ∣∣∣ ˜̂βOLS

i

∣∣∣
=

∑ ∣∣[λ2
i (ỹi /λi )

]
/
(
λ2

i + α
)∣∣∑ ∣∣ỹi /λi

∣∣ =
∑ (

λ2
i

∣∣ỹi /λi
∣∣) /

(
λ2

i + α
)

∑ ∣∣ỹi /λi
∣∣

=
∑

λ2
i /

(
λ2

i + α
)

p

(21)

Note that this is the average of the shrinkages for individual co-
efficients from equation 15. The sum of these shrinkages (this
quantity multiplied by p):

∑ λ2
i

λ2
i + α

(22)

has previously been defined as the effective degrees of freedom
of ridge regression (See [8], pg. 68). Note that the L1-norm here
refers to the rotated space and may not be identical to the L1-
norm in the original space.

These two special cases have the appealing feature that the
regularization level can be controlled on the basis of examining
only the design matrix X. However, they rely on strong assump-
tions that are not guaranteed to hold in general. Thus, for accu-
rate ridge regression outcomes, we see no choice but to develop
an algorithm that uses both the design matrix X and the data
values y.

Algorithm

Our proposed algorithm for solving FRR is straightforward: it
evaluates γ for a range of α values and uses interpolation to
determine the α value that achieves the desired fraction γ . Al-
though this method relies on brute force and may not seem
mathematically elegant, it achieves accurate outcomes and,
somewhat surprisingly, can be carried out with minimal com-
putational cost.

The algorithm receives as input a design matrix X, target
variables Y, and a set of requested fractions γ . The algorithm
calculates the FRR solutions for all targets in Y, returning es-
timates of the coefficients β̂ as well as the values of hyperpa-
rameter α that correspond to each requested γ . In the text be-
low, we indicate the lines of code that implement each step of
the algorithm in the MATLAB (designated with “M”) and Python
(designated with “P”) implementations, where line numbers re-
fer to version 1.2 of the software, available to download at: https:
//github.com/nrdg/fracridge/releases/tag/1.2:

(1) Compute the SVD of the design matrix, USVᵀ = X (M251,
P151). To avoid numerical instability, very small singular val-
ues of X are treated as 0.

(2) The data are transformed ỹ = Uᵀy (M258, P62).
(3) The OLS problem is solved with one broadcast division op-

eration (equation 10) (M276, P64).
(4) The values of α that correspond to the requested γ value

are within a range that depends on the singular values of
X (by equation 18). A series of initial candidate values of α

are selected to span a log-spaced range from 10−3λ2
p, much

smaller than the smallest singular value of the design ma-
trix, to 103λ2

1, much larger than the largest singular value of

the design matrix (M302, P165–168). On the basis of testing
on a variety of regression problems, we settled on a spac-
ing of 0.2 log10 units within the range of candidate α values.
This provides fine enough gridding such that interpolation
results are nearly perfect (empirical fractions are ∼1% or less
from the desired fractions).

(5) Based on equation 15, a scaling factor for every value of α

and every singular value λ is calculated as (M316, P173):

SFi, j = λ2
i /(λ2

i + α j ). (23)

(6) The main loop of the algorithm iterates over targets. For ev-
ery target, the scaling in equation 23 is applied to the com-
puted OLS coefficients (from Step 3), and the L2-norm of the
solution at each αj is divided by the L2-norm of the OLS solu-
tion to determine the fractional length, γ j (M336–349, P188–
191). Because the relationship between α and γ may be dif-
ferent for each target, the algorithm requires looping over
targets and cannot take advantage of broadcasting across
targets.

(7) Interpolation is used with αj and γ j to find values of α that
correspond to the desired values of γ (M367, P194). These
target α values are then used to calculate the ridge regres-
sion solutions via equation 15 (M373, P203).

(8) After the iteration over targets is complete, the solutions

are transformed to the original space by multiplying β̂ = V ˜̂β
(M422, P207).

In terms of performance, this algorithm requires just one (po-
tentially computationally expensive) initial SVD of the design
matrix. Operations performed on a per-target basis are generally
inexpensive, relying on fast vectorized array operations, with
the exception of the interpolation step. Although a large range
of candidate α values are evaluated internally by the algorithm,
these values are eventually discarded, thereby avoiding costs as-
sociated with the final step (multiplication with V).

Software implementation

We implemented the algorithm described in Section Algorithm
in two different popular statistical computing languages: MAT-
LAB and Python (example code in Fig. 1). The code for both
implementations is available at the project home page (https:
//nrdg.github.io/fracridge) and released under an OSI-approved,
permissive open-source license to facilitate its broad use. In both
MATLAB and Python, we used broadcasting to rapidly perform
computations over multiple dimensions of arrays.

There are two potential performance bottlenecks in the code.
One is the SVD step, which is expensive in terms of both mem-
ory and computation time. In the case where d < p (the number
of data points is smaller than the number of parameters), the
number of singular values is set by d. In the case where d > p (the
number of data points is larger than the number of parameters),
the number of singular values is set by p, and our implementa-
tion exploits the fact that we can replace the singular values of X
by the square roots of the singular values of XᵀX, which is only p
by p. This optimization requires less memory for the SVD com-
putation than an SVD of the full matrix X. The other potential
performance bottleneck is the interpolation performed for each
target. To optimize this step, we used fast interpolation func-
tions that assume sorted inputs.

https://github.com/nrdg/fracridge/releases/tag/1.2
https://nrdg.github.io/fracridge
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Figure 1 Code examples. Top: MATLAB examples that demonstrate the software
API and correctness of the implementation. Bottom: Python examples demon-

strate a similar API and correctness. Python examples include the Scikit-Learn-
compatible API.

MATLAB
The MATLAB implementation of FRR relies only on core MATLAB
functions and a fast implementation of linear interpolation [9],
which is copied into the FRACRIDGE source code, together with
its license, which is compatible with the FRACRIDGE license. The
MATLAB implementation includes an option to automatically
standardize predictors (either center or also scale the predictors)
before regularization if desired.

Python
The Python implementation of FRR depends on Scipy [10] and
Numpy [11]. The object-oriented interface provided conforms
with the API of the popular Scikit-Learn library [12, 13], includ-
ing automated tests that verify compliance with this API (us-
ing Scikit Learn’s `check estimator` function, which automat-
ically confirms this compliance). In addition to an estimator
that fits FRR, a cross-validation object is implemented, using
Scikit Learn’s grid-search cross-validation API. Unit tests are im-
plemented using pytest [14]. Documentation is automatically
compiled using sphinx, with sphinx-gallery examples [15]. The
Python implementation also optionally uses Numba [16] for just-
in-time compilation of a few of the underlying numerical rou-
tines used in the implementation. This functionality relies on
an implementation provided in the hyperlearn library [17] and
copied into the FRACRIDGE source code, together with its li-
cense, which is compatible with the FRACRIDGE license. In addi-
tion to its release on GitHub, the software is available to install
through the Python Package Index (PyPI) through the standard
Python Package Installer (pip install fracridge). For Python, we
did not implement standardization procedures because those
are implemented as a part of Scikit-Learn.

Simulations

Numerical simulations were used to characterize FRR and com-
pare it to a heuristic approach for hyperparameter selection.
Simulations were conducted using the MATLAB implementation
(Figure 2). We simulated two simple regression scenarios. The
number of data points (d) was 100, and the number of predic-
tors (p) was either 5 or 100. In each simulation, we first created a
design matrix X (d, p) using the following procedure: (i) generate
normally distributed values for X, (ii) induce correlation between
predictors by selecting two predictors at random, setting one of
the predictors to the sum of the two predictors plus normally
distributed noise, and repeating this procedure 2p times, and (iii)
z-scoring each predictor. Next, we created a set of “ground truth”
coefficients β with dimensions (p, 1) by drawing values from the
normal distribution. Finally, we simulated responses from the
model (y = Xβ) and added normally distributed noise, producing
a target variable y with dimensions (d, 1).

Given design matrix X and target y, cross-validated regres-
sion was carried out. This was done by splitting X and y into two
halves (50/50 training/testing split), solving ridge regression on
one half (training) and evaluating generalization performance
of the estimated regression β weights on the other half (testing).
Performance was quantified using the coefficient of determina-
tion (R2). For standard ridge regression (SRR), we evaluated a grid
of α values that included 0 and ranged from 10−4 through 105.5

in increments of 0.5 log10 units. For FRR, we evaluated a range of



6 Fractional ridge regression

fractions γ from 0 to 1 in increments of 0.05. Thus, the number
of hyperparameter values was f = 21 in both cases.

The code that implements these simulations is available in
the “examples” folder of the software.

Performance benchmark

To characterize the performance of the FRR and SRR approaches,
a set of numerical benchmarks was conducted using the MAT-
LAB implementation. A range of regression scenarios were con-
structed. In each experiment, we first constructed a design ma-
trix X (d, p) consisting of values drawn from a normal distribu-
tion. We then created “ground truth” coefficients β (p, t) also by
drawing values from the normal distribution. Finally, we gener-
ated a set of data Y (d, t) by predicting the model response (y =
Xβ) and adding zero-mean Gaussian noise with standard devia-
tion equal to the standard deviation of the data from each target
variable. Different levels of regularization (f) were obtained for
SRR by linearly spacing α values on a log10 scale from 10−4 to
105 and for FRR by linearly spacing fractions from 0.05 to 1 in
increments of 0.05.

Two versions of SRR were implemented and evaluated. The
first version (naive) involves a separate matrix pseudo-inversion
for each hyperparameter setting desired. The second version
(rotation-based) involves using the SVD decomposition method
described above (see Section Background and theory, specifically
equation 14).

All simulations were run on an Intel Xeon E5-2683 2.10 GHz
(32-core) workstation with 128 GB of RAM, a 64-bit Linux operat-
ing system, and MATLAB 8.3 (R2014a). Execution time was logged
for model fitting procedures only and did not include genera-
tion of the design matrix or the data. Likewise, memory require-
ments were recorded in terms of additional memory usage dur-
ing the course of model fitting (i.e., zero memory usage corre-
sponds to the total memory usage just prior to the start of model
fitting). Benchmarking results were averaged across 15 indepen-
dent simulations to reduce incidental variability.

The code that implements these benchmarks is available in
the “examples” folder of the software.

Brain magnetic resonance imaging data

Brain functional magnetic resonance imaging (fMRI) data were
collected as part of the Natural Scenes Dataset (http://naturalsce
nesdataset.org). Data were acquired in a 7T MRI instrument, at a
spatial resolution of 1.8 mm and a temporal resolution of 1.6 sec-
onds and using a matrix size of [81 104 83]. This yielded a total
of 783,432 voxels. Over the course of 40 separate scan sessions,
a neurologically healthy participant viewed 10,000 distinct im-
ages (three presentations per image) while fixating a small dot
placed at the center of the images. The images were 8.4◦ × 8.4◦

in size. Each image was presented for three seconds and was
followed by a one-second gap. Standard pre-processing steps
were applied to the fMRI data to remove artifacts due to head
motion and other confounding factors. To deal with session-
wise nonstationarities, response amplitudes of each voxel were
z-scored within each scan session. Responses were then con-
catenated across sessions and averaged across trials of the same
image, and then a final z-scoring of each voxel’s responses was
performed. The participant provided informed consent and the
experimental protocol was approved by the University of Min-
nesota Institutional Review Board. For the purposes of the exam-

ple demonstrated here, only the first 37 of the 40 scan sessions
are provided (data are being held out for a prediction challenge),
yielding a total of 9,841 distinct images.

A regression model was used to predict the response ob-
served from a voxel in terms of local contrast present in
the stimulus image. In the model, the stimulus image is pre-
processed by taking the original color image (425 pixels × 425
pixels × 3 RGB channels), converting the image to grayscale,
gridding the image into 25 × 25 regions, and then computing
the standard deviation of luminance values within each grid re-
gion . This produced 625 predictors, each of which was then z-
scored. The design matrix X has dimensionality 9,841 images ×
625 stimulus regions, while Y has dimensionality 9,841 images
× 783,432 voxels.

Cross-validation was carried out using a 80/20 train-
ing/testing split. For SRR, we evaluated a grid of alpha values
that included 0 and ranged from 10−4 to 105.5 in increments
of 0.5 log10 units. For fractional ridge regression, we evaluated
a range of fractions from 0 to 1 in increments of 0.05. Cross-
validation performance was quantified in terms of variance ex-
plained on the test set using the coefficient of determination
(R2).

The code that implements these analyses is available in the
“examples” folder of the software.

Results
Fractional ridge regression achieves the desired
outcomes

In simulations, we demonstrate that the FRR algorithm accu-
rately produces the desired fractions γ (Fig. 2A and B second
row, right column in each). We compare the results of FRR to
results of SRR, in which α values were selected using a com-
mon heuristic (log-spaced values spanning a large range). For
the SRR approach, we find that the fractional L2-norm is very
small and virtually indistinguishable for large values of α, and
is very similar to the OLS solution (fractional L2-norm ∼1) for
several small values of α (Fig. 2A and B second row, left col-
umn). In addition, cross-validation accuracy is indistinguishable
for many of the values of α evaluated in SRR. Only very few val-
ues of α produce cross-validated R2 values that are similar to
the value provided by the best α (Fig. 2A and B first row, left
column).

The SRR results can also be re-represented using effective de-
grees of freedom (DOF; Fig. 2A and B first row, middle column):
several values of α result in essentially the same number of DOF,
because these values are either much larger than the largest sin-
gular value or much smaller than the smallest singular value of
X. In contrast to SRR, FRR produces a nicely behaved range of
cross-validated R2 values and dense sampling around the peak
R2.

Another line of evidence highlighting the diversity of the so-
lutions provided by FRR is given by inspecting coefficient paths:
in the log-spaced case, coefficients start very close to 0 (for high
α) and rapidly increase (for lower α). Even when re-represented
using DOF, the coefficient paths exhibit some redundancy. In
contrast, FRR provides more gradual change in the coefficient
paths, indicating that this approach explores the space of pos-
sible coefficient configurations more uniformly. Taken together,
these analyses demonstrate that FRR provides a more useful
range of regularization levels than SRR.

http://naturalscenesdataset.org
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Figure 2 Fractional ridge regression (FRR) achieves desired outcomes. (A) Example regression scenario (d = 100, p = 5). The first 2 columns show the results of standard
ridge regression in which log-spaced α values are used to obtain different levels of regularization. Whereas the first column shows results as a function of log10(α), the
second column shows results as a function of α values converted to effective degrees of freedom (see Methods). The third column shows the results of FRR in which
different regularization levels are achieved by requesting specific fractional L2-norm (γ ). Solid blue dots mark peak cross-validation performance. Vertical gray lines in

the third column indicate regression solutions obtained by the FRR method (requested fractions range from 0 to 1 in increments of 0.05). The corresponding locations
of these regression solutions in the first and second columns are also shown using vertical gray lines. The bottom row shows coefficient paths, i.e., the values of β as
a function of log10(α), degrees of freedom, or fraction γ . (B) Example regression scenario (d = 100, p = 100). Same format as panel A. Note that in both scenarios, only
the FRR method achieves regression solutions whose L2-norms increase linearly, with gradually changing coefficient paths.

FRR is computationally efficient

A question of relevance to potential users of FRR is whether us-
ing the method incurs significant computational cost. We com-
pare FRR to two alternative approaches. The first approach is
a naive implementation of the matrix inversion specified in
equation 3, in which the Moore-Penrose pseudo-inverse (imple-
mented as `pinv` in Matlab and `numpy.linalg.pinv` in Python)
is performed independently for each setting of hyperparameter
α. The second approach takes advantage of the computational
expedience of the SVD-based approach: instead of a matrix in-
version for each α value, a single SVD is performed, a transfor-
mation (rotation) is applied to the data, and different values of
α are plugged into equation 14 to compute the regression co-
efficients. This approach comprises a subset of the operations
taken in FRR. Therefore, it represents a lower bound in terms of
computational requirements.

Through systematic exploration of different problem sizes,
we find that FRR performs quite favorably. FRR differs from
the rotation-based approach only slightly with respect to ex-
ecution time scaling in the number of data points (Fig. 3A,
left column), in the number of parameters (Fig. 3A, right col-
umn), and in f, the number of hyperparameter values consid-
ered (Fig. 3A, third column ). The naive matrix-inversion ap-
proach is faster than both SVD-based approaches (FRR and
rotation-based) for f < 20 but rapidly becomes much more costly
for values >20. This approach also scales rather poorly for
p > 5,000.

In terms of memory consumption, the mean and maximum
memory usage are similar for FRR and the naive and rotation-
based SRR solutions. These results suggest that for each of these
approaches, the matrix inversion (for the naive implementa-
tion of SRR) or the SVD (for FRR and the rotation-based SRR)
represents the main computational bottleneck. Importantly, de-
spite the fact that FRR uses additional gridding and interpolation

steps, it does not perform substantially worse than either of the
other approaches.

Application of FRR to real-world data

To demonstrate the practical utility of FRR, we explore its appli-
cation in a specific scientific use-case. Data from an fMRI exper-
iment were analyzed with FRR, and the results of this analysis
were compared to an SRR approach where α values are selected
using a log-spaced heuristic. Different parts of the brain process
different types of information, and a large swath of the cerebral
cortex is known to respond to visual stimulation. Experiments
that combine fMRI with computational analysis provide detailed
information about the responses of different parts of the brain
[18]. In the experiments analyzed here, a series of images are
shown (Fig. 4A) and the blood oxygenation level–dependent
(BOLD) signal is recorded in a sampling grid of voxels through-
out the brain . In the cerebral cortex, each voxel contains hun-
dreds of thousands of neurons. If these neurons respond vigor-
ously to the visual stimulus presented, the metabolic demand
for oxygen in that part of cortex will drive a transient increase
in oxygenated blood in that region, and the BOLD response will
increase. Thus, a model of the BOLD response tells us about the
selective responses of neurons in each voxel in cortex.

Because neurons in parts of the cerebral cortex that respond
to visual stimuli are known to be particularly sensitive to local
contrast, we model responses with respect to the standard devi-
ation of luminance in each region of the image, rather than the
luminance values themselves (Fig. 4B). In the model, Y contains
brain responses where each target (column) represents the re-
sponses in a single voxel. Each row contains the response of all
voxels to a particular image. The design matrix X contains the
local contrast in every region of the image, for every image. This
means that the coefficients β represent weights on the stimulus
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Figure 3 Computational efficiency. We benchmarked different methods for performing ridge regression: (1) a naive implementation of standard ridge regression

(involving log-spaced α values) in which matrix inversion is performed for each α value, (2) an implementation of standard ridge regression in which solutions are
computed in a rotated space based on singular value decomposition of the design matrix, and (3) the FRR method. Starting from a base case (d = 5,000, p = 5,000, f = 20,
b = 1,000; parameter settings marked by vertical lines), we systematically manipulated d, p, f, and t (columns 1–4, respectively). (A) Execution time. The execution time
of each method is shown in seconds. (B) Memory usage. The maximum memory usage of each method is shown as a solid line, whereas the time-averaged memory

usage is shown as a dotted line. Overall, FRR is fast and has relatively modest memory requirements.

image and indicate each voxel’s spatial selectivity—i.e., the part
of the image to which the voxel responds [19]. Therefore, one
way to visualize β̂ is to organize it according to the 2D layout of
the image (Fig. 4C and D, bottom 2 rows).

Using FRR, we fit the model to voxel responses, and find ro-
bust model performance in the posterior part of the brain where
visual cortex resides (left part of the horizontal slice presented
in the top row of Fig. 4C). The performance of the model can
be observed in either the cross-validated R2 values (Fig. 4C, top
row, left and middle panels) or the value of γ corresponding to
the best cross-validated R2 (top row, right panel). The γ values
corresponding to best performance provide additional informa-
tion about the differences between different targets, and an ad-
ditional interpretation of the data. For example, we can focus
on the two voxels highlighted in the middle panel of the top row
in Fig. 4C. One voxel, whose characteristics are further broken
down in Fig. 4D, has lower cross-validated R2 = 4% and requires
stronger relative regularization (γ = 0.15). The spatial selectiv-
ity of this voxel’s responses becomes very noisy at large γ val-
ues and in these values R2 approaches 0. On the other hand, the
voxel in Fig. 4E has a higher best γ = 0.35 and a higher cross-
validated R2 = 13%. Moreover, this voxel appears more robust
with higher values of γ producing less spatially noisy results.
The map of R2 and γ illustrated in Fig. 4C also shows that these
trends hold more generally: voxels with more accurate models
require less relative regularization. This demonstrates the addi-
tional interpretable information provided by the best γ values in

individual targets and by inspecting spatial maps of these best
γ values.

Discussion

The main theoretical contribution of this work is a novel ap-
proach to hyperparameter specification in ridge regression. In-
stead of the standard approach in which a heuristic range of val-
ues for hyperparameter α are evaluated for their accuracy, the
FRR approach focuses on achieving specific fractions for the L2-
norms of the solutions relative to the L2-norm of the unregular-
ized solution. In a sense, this is exactly in line with the original
spirit of ridge regression, which places a penalty on the L2-norm
of the solution. The main practical contribution of this work is
the design and implementation of an efficient algorithm to solve
FRR and validation of this algorithm on simulated and empirical
data. Note that the FRR algorithm can be viewed as a method for
finding appropriate α values that are adapted to the data such
that they span the range of possible regularization strengths.
Thus, it is fundamentally still a method that solves the SRR prob-
lem.

We emphasize that in theory, FRR and SRR are not expected
to give different solutions to the linear regression problem. How-
ever, in practice, the solutions may very well differ and this will
depend on the heuristic set of α values used in the SRR approach.
Fractional ridge regression provides a method to automatically
ensure proper setting of α values. Note that in the examples of
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Figure 4 Demonstration on real-world data. (A) Visual fMRI experiment. Functional MRI measurements of brain activity were collected from a human participant while

s/he viewed a series of natural images. (B) Model of brain activity. Images were converted to grayscale and gridded, and then the standard deviation of luminance
values within each grid element was calculated. This produced measures of local contrast. Brain responses at every voxel were modeled using a weighted sum of
local contrast. (C) Results obtained using FRR. Cross-validated performance (variance explained) achieved by the model is shown for an axial brain slice (middle).
These results are thresholded at 5% and superimposed on an image of brain anatomy for reference (left). The fraction (γ ) corresponding to the best cross-validation

performance is also shown (right). (D) Detailed results for 1 voxel (see green squares in panel C). The main plots that depict training and testing performance and
L2-norm are in the same format as Fig. 1. The inset illustrates coefficient solutions for different regularization levels. The blue box highlights the regularization level
producing highest cross-validation performance. (E) Detailed results for a second voxel. Same format as panel D.
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SRR that we presented (e.g., Figs 2 and 4), well-selected heuristic
ranges of α values were used. This is done deliberately because
poor ranges of α values would have resulted in examples that
are not very informative for this article. However, in everyday
practice, a user of the SRR approach might inadvertently use an
inappropriate range of α values and obtain poor results. Overall,
we suggest that FRR can serve as a default approach to solving
ridge regression.

The benefits of FRR

(1) Theoretically motivated and principled. The results demon-
strate that the theoretical motivation described in the Meth-
ods holds in practice. Our implementation of FRR produces
ridge regression solutions that have predictable and tune-
able fractional L2-norm.

(2) Statistically efficient. Each fraction level returned by FRR
produces β values that are distinctly different. This avoids
the common pitfall in the log-spaced approach whereby
computation is wasted on several values of α that all over-
regularize or under-regularize. When used with a range of
γ values from 0 to 1, the solution that minimizes cross-
validation error is guaranteed to exist within this range (al-
though it may lie in between two of the obtained solutions).

(3) Computationally efficient. We show that our implementa-
tion of FRR requires memory and computational time that
are comparable to a naive ridge regression approach and
to an approach that uses SVD but relies on preset α val-
ues. SVD-based approaches (including FRR) scale linearly in
f, with compute-time scaling better than naive RR in the f
> 20 regime. In practice, we have found that f = 20 evenly
distributed values between 0 and 1 provide sufficient cover-
age for many problems. But the linear scaling implies that
sampling more finely would not be limiting in cases where
additional precision is needed.

(4) Interpretable. FRR uses γ values that represent scaling rel-
ative to the L2-norm of the OLS solution. This allows FRR
results to be compared across different targets within a
dataset. This is exemplified in the results from an fMRI
experiment that are interpreted in light of both cross-
validated R2 and the optimal γ that leads to the best cross-
validated R2. Moreover, regularization in different datasets
and for different models (e.g., different settings of X) can be
compared to each other as being stronger or weaker. The op-
timal regularization level can be informative regarding the
signal-to-noise ratio of a particular target or about the level
of collinearity of the design matrix (which both influence
the optimal level of regularization). FRR increases the in-
terpretability of ridge regression because instead of an un-
scaled, relatively inscrutable value of α, we receive a scaled,
relatively interpretable value. Based on a recently proposed
framework for interpretability in machine learning methods
[20], we believe that this kind of advance improves the de-
scriptive accuracy of ridge regression.

(5) Automatic. Machine learning algorithms focus on auto-
mated inferences, but many machine learning algorithms
still require substantial manual tuning. For example, if the
range of α values used is not sufficient, users of ridge regres-
sion may be forced to explore other values. This is imprac-
tical in cases in which thousands of targets are analyzed
and multiple models are evaluated. Thus, FRR contributes
to the growing field of methods that aim to automate ma-
chine learning [21, 22]. These methods all aim to remove the
burden of manual inspection and tuning of machine learn-

ing. A major benefit of FRR is therefore practical in nature:
Because FRR spans the dynamic range of effects that ridge
regression can provide, using FRR guarantees that the time
taken to explore hyperparameter values is well spent. More-
over, the user does not have to spend time speculating what
α values might be appropriate for a given problem (e.g., is 104

high enough?).
(6) Implemented in usable open-source software. We provide

code that is well documented, thoroughly tested, and easy
to use (see project home page: https://nrdg.github.io/fracr
idge/). The software is available in two popular statistical
programming languages: MATLAB and Python. The Python
implementation provides an object-oriented interface that
complies with the popular Scikit-Learn library [12, 13].

Using FRR in practice

To select the level of regularization to apply in practice, users
of FRR will likely use cross-validation. An open question is how
to aggregate the results of FRR over multiple cross-validation
splits. This is a general issue for any analysis that uses cross-
validation to set hyperparameters. Nevertheless, here we pro-
vide some ideas for how users can apply FRR in practice: (i) one
could determine the optimal fraction using cross-validation on
a single training/testing split (e.g., 80/20) and obtain a single
model solution and a corresponding optimal fraction; (ii) one
could determine the optimal fraction using cross-validation on
a single training/testing split and then adopt that fraction for
solving the regression on the full dataset, with the understand-
ing that this may yield a slightly over-regularized solution; or
(iii) one could determine the optimal fraction in different cross-
validation splits of the data (e.g., n-fold cross-validation) and
then average the determined fraction across the splits and aver-
age the estimated regression weights across the splits.

FRR is naturally integrated into a cross-validation framework
where solutions reflecting different fractional lengths are ob-
tained for a given set of data and evaluated for their predictive
performance on held-out data. In the Python version of our soft-
ware, this is implemented through an object that automatically
performs a grid search to find the best value of γ among user-
provided values. An alternative to performing cross-validation
is the technique of generalized cross-validation (GCV). In GCV,
for a given α value, matrix operations are used to efficiently es-
timate cross-validation performance without actually having to
perform cross-validation [23]. It might be possible to combine
the insights of FRR (e.g., the identification of interpretable and
appropriate α values) with GCV.

Limitations

One limitation of FRR is that a heuristic approach is used within
the algorithm to generate the grid of α values used for interpo-
lation (see Methods for details). Nonetheless, the interpolation
results are quite accurate, and costly computations are carried
out only for final desired α values. Another limitation is that the
α value that corresponds to a specific γ may be different for dif-
ferent targets and models. If there are theoretical reasons to re-
tain the same α across targets and models, the FRR approach is
not appropriate. But this would rarely be the case because α val-
ues are usually not directly interpretable. Alternatively, FRR can
be used to estimate values of α on one sample of the data (or for
one model) and these values of α can then be used in all of the
data (or all models).

https://nrdg.github.io/fracridge/
https://github.com/nrdg/fracridge
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Finally, the FRR approach is limited to ridge regression and
does not generalize easily to other regularization approaches.
The Lasso [24] provides regression solutions that balance least-
squares minimization with the L1-norm of the coefficients
rather than the L2-norm of the coefficients. The Lasso ap-
proach has several benefits, including results that are sparser
and potentially easier to interpret. Similarly, Elastic Net [25] uses
both L1- and L2-regularization, potentially offering more accu-
rate solutions. But because the computational implementation
of these approaches differs quite substantially from ridge re-
gression, the approach presented in this article does not eas-
ily translate to these methods. Moreover, while these meth-
ods allow regularization with a non-negativity constraint on the
coefficients, this constraint is not easily incorporated into L2-
regularization. On the other hand, a major challenge that arises
in L1-regularization is computational time: most algorithms op-
erate on one target at a time and incur substantial computa-
tional costs, and scaling such algorithms to the thousands of
targets in large-scale datasets may be difficult.

Future extensions

An important extension of the present work would be an im-
plementation of these ideas in additional statistical program-
ming languages, such as the R programming language, which is
popular for use in statistical analysis of data from many differ-
ent domains. One of the most important tools for regularized
regression is the GLMNET software package, which was origi-
nally implemented in the R programming language [26] and has
implementations in MATLAB [27] and Python [28]. The software
also provides tools for analysis and visualization of coefficient
paths and of the effects of regularization on cross-validated er-
ror. The R GLMNET vignette [29] demonstrates the use of these
tools. In addition to identifying the α value that minimizes cross-
validation error, GLMNET also identifies the α that gives the most
regularized model such that the cross-validated error is within
one standard error of the minimum cross-validated error. This
approach acknowledges that there is some error in selecting α

and chooses to err on the side of a more parsimonious model
[5]. Future extensions of FRR could implement this heuristic.

Availability of Source Code and Requirements
� Project name: Fractional Ridge Regression
� Project home page: http://github.com/nrdg/fracridge
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