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Abstract
Purpose  This work attempts to decode the discriminative information in dopamine transporter (DAT) imaging using deep 
learning for the differential diagnosis of parkinsonism.
Methods  This study involved 1017 subjects who underwent DAT PET imaging ([11C]CFT) including 43 healthy subjects 
and 974 parkinsonian patients with idiopathic Parkinson’s disease (IPD), multiple system atrophy (MSA) or progressive 
supranuclear palsy (PSP). We developed a 3D deep convolutional neural network to learn distinguishable DAT features for 
the differential diagnosis of parkinsonism. A full-gradient saliency map approach was employed to investigate the functional 
basis related to the decision mechanism of the network. Furthermore, deep-learning-guided radiomics features and quan-
titative analysis were compared with their conventional counterparts to further interpret the performance of deep learning.
Results  The proposed network achieved area under the curve of 0.953 (sensitivity 87.7%, specificity 93.2%), 0.948 (sensitiv-
ity 93.7%, specificity 97.5%), and 0.900 (sensitivity 81.5%, specificity 93.7%) in the cross-validation, together with sensi-
tivity of 90.7%, 84.1%, 78.6% and specificity of 88.4%, 97.5% 93.3% in the blind test for the differential diagnosis of IPD, 
MSA and PSP, respectively. The saliency map demonstrated the most contributed areas determining the diagnosis located 
at parkinsonism-related regions, e.g., putamen, caudate and midbrain. The deep-learning-guided binding ratios showed 
significant differences among IPD, MSA and PSP groups (P < 0.001), while the conventional putamen and caudate binding 
ratios had no significant difference between IPD and MSA (P = 0.24 and P = 0.30). Furthermore, compared to conventional 
radiomics features, there existed average above 78.1% more deep-learning-guided radiomics features that had significant 
differences among IPD, MSA and PSP.
Conclusion  This study suggested the developed deep neural network can decode in-depth information from DAT and showed 
potential to assist the differential diagnosis of parkinsonism. The functional regions supporting the diagnosis decision were 
generally consistent with known parkinsonian pathology but provided more specific guidance for feature selection and 
quantitative analysis.

Keywords  Parkinson’s disease · Dopamine transporter imaging · Atypical parkinsonian syndrome · Differential diagnosis · 
Deep neural network

Introduction

The accurately and timely differential diagnosis of parkin-
sonian disorders remains challenging due to overlapping 
symptoms, especially in the early stage, between patients 
with idiopathic Parkinson’s disease (IPD) and atypical par-
kinsonian syndromes (APS), e.g., multiple system atrophy 
(MSA) and progressive supranuclear palsy (PSP) [1]. Patho-
logical examination results show that approximately 20–30% 
of patients with MSA or PSP are initially misdiagnosed as 
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IPD in clinical practice [1]. Therefore, developing an accu-
rate computer-aided diagnosis method for differential diag-
nosis of parkinsonian disorders is of great value to avoid 
unnecessary testing and inappropriate medicines and thus 
leads to better therapeutic strategies.

The dopamine transporter (DAT) imaging such as [11C]
CFT positron emission tomography (PET) and [123I]FP-CIT 
single-photon emission computed tomography (SPECT) 
(DaTscan) can reflect the subject’s dopaminergic degenera-
tion and therefore is a powerful diagnostic tool [2]. Nowa-
days, striatal DAT quantification together with visual analy-
sis is utilized as a standard practice in clinical studies [3]. 
However, according to current knowledge, DAT imaging 
has not been confirmed to be suitable for the reliable dif-
ferentiation of IPD and APS subtypes based on conventional 
quantitative analyses such as the DAT binding ratio (BR) 
quantification [4–6]. These conventional quantitative analy-
ses normally focus on specific brain regions including puta-
men and caudate, and each region is represented by its mean 
counts, hence underutilizing the global information of entire 
DAT scans, especially the distribution of the uptakes within 
each region as well as correlations of different brain regions.

The deep neural network has been demonstrated to be 
able to decode in-depth features automatically and effec-
tively from the data [7–11], which has the potential to 
discover more comprehensive information and update its 
parameters specifically for the differential diagnosis of par-
kinsonism. Moreover, deep learning may assist the conven-
tional quantitative analysis or radiomics analysis [12–14]. 
The potential of deep learning has been revealed in the 
analysis of DAT imaging [15–18]. Choi et al. introduced 
the deep learning method to refine the imaging diagnosis of 
Parkinson's disease based on the FP-CIT SPECT scans[16]. 
Wenzel et al. reported that the deep neural network can be 
trained to be robust to variable image characteristics for the 
classification of the FP-CIT SPECT [17]. Currently, these 
works mainly focused on the differentiation between PD and 
healthy controls but did not evaluate the potential of deep 
learning to solve a more challenging task, i.e., the differ-
ential diagnosis of IPD from APS. Utilizing unsupervised 
dimension reduction method and hierarchical clustering, 
Suh et al. divided FP-CIT PET scans into multiple groups 
and then evaluated the correlation between certain clusters 
and specific Parkinson symptoms, which depicted the het-
erogenous dopaminergic neurodegeneration patterns in par-
kinsonian [19]. However, it cannot directly characterize the 
probabilities of each parkinsonian syndrome and provide a 
diagnosis prediction when given an unseen scan.

In this study, we leveraged deep learning to extract 
informative imaging signatures from [11C]CFT PET scans 
to support the differential diagnosis of parkinsonian syn-
dromes. A 3D deep residual convolutional neural network 
(termed as DAT-Net) was proposed, which can get access 

to the entire DAT image and involve the uptake distribution, 
content and context information among different regions. A 
large multi-cohort dataset of DAT imaging was collected to 
develop the DAT-Net and then to evaluate its performance. 
Furthermore, we investigated the decision mechanism of 
the deep learning network based on the state-of-the-art full-
gradient saliency map method [20], which provides a view 
to understand the deep neural network and reveal the func-
tional abnormal regions of patients with different syndromes 
indicated on the [11C]CFT PET scans.

Material and Method

Study Protocol

The study profile and detailed information of involved sub-
jects are given in Fig. 1 and Supplementary Table 1. This 
study involved 1017 subjects including 43 healthy subjects 
as normal control (NC) and 974 parkinsonian (IPD, MSA or 
PSP) patients. All participants were enrolled from Huashan 
Parkinsonian PET Imaging (HPPI) Database, an oriental 
multimodal imaging database established to benchmark 
the imaging-based AI development for parkinsonism. The 
involved patients were routinely assessed by movement dis-
orders specialists and underwent [11C]CFT PET imaging 
in Huashan Hospital (Shanghai, China). Before PET imag-
ing, the routine MRI examination was performed for all the 
patients and those with structural brain abnormalities such 
as ischemia, white matter changes, mass lesions and hemor-
rhage was excluded from this study. The involved 43 healthy 
control subjects underwent the same clinical screening pro-
cedures, and the exclusion criteria included: (1) a history 
of neurological or psychiatric illness; (2) prior exposure 
to neuroleptic agents or drug addiction; (3) an abnormal 
neurological or MRI examination; (4) having used drugs 
with DAT blocking components. The clinical diagnoses of 
patients were made by the movement disorders specialists 
based on their return visits (at least once) after PET exami-
nation according to the latest clinical criteria [21–23]. All 
patients were divided into three cohorts termed as “clinically 
possible,” “clinically definite” and “clinically confirmative” 
diagnoses, where clinically definite diagnoses represent 
diagnoses by the clinical experts after return visit but with-
out a formal clinical follow-up and clinically confirmative 
diagnoses represent diagnoses resulting from at least one 
formal clinical follow-up over two years after PET imaging. 
In this study, the pre-training cohort includes patients with a 
clinically possible diagnosis of IPD, MSA or PSP, the train-
ing cohort involves patients with a clinically definite diagno-
sis as well as NC, and the blind-test cohort is composed of 
the patients with a clinically confirmative diagnosis.
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Image Acquisition and Reconstruction

All patients stopped taking anti-parkinsonian medications 
(if used) at least 12 h before PET imaging and received 
an intravenous injection of the [11C]CFT (370 MBq). A 
15-min three-dimensional emission scan was acquired one 
hour after the injection using the Biograph™ 64 HD PET/
CT (Siemens Healthcare, Erlangen, Germany). The low-
dose computed tomography was employed for the attenua-
tion correction before the emission scan. PET images were 
then reconstructed using the three-dimensional ordered 
subset expectation maximization algorithm after the cor-
rections for scatter, dead time and random coincidences. 
After that, the SPM5 software (Wellcome Department of 
Imaging Neuroscience, Institute of Neurology, London, 
UK), implemented in Matlab 7.4.0 (Mathworks Inc, Sher-
born, MA), was utilized to spatially normalize these PET 
images into the Montreal Neurological Institute (MNI) 
brain space as previously described in [24, 25]. Individual 
MRI scans were not used for image preprocessing since 
these scans were performed in the routine clinical workup 
but not acquired according to a standardized protocol 
[25]. Finally, a three-dimensional Gaussian filter (10 mm 

full width at half maximum (FWHM)) was involved to 
smoothen the normalized PET images.

Deep Neural Network and its Interpretation

The schema of the developed artificial intelligence (AI) 
method for the differential diagnosis of parkinsonism is illus-
trated in Fig. 2. Firstly, a DAT-Net was designed and trained 
for the AI-based diagnosis. Then, the saliency map was lev-
eraged for the interpretation of the derived deep learning 
model, where the assigned importance score to each voxel 
indicates its contribution to the decision making of the neu-
ral network. Furthermore, a proposed deep-learning-based 
binding ratio (DL-BR) and deep-learning-guided radiomics 
(DL-radiomics) were analyzed for further understanding the 
mechanism of the AI-based method.

The architecture of the DAT-Net is shown in Fig. 2; it 
begins with a 5 × 5 × 5 convolution layer (stride 2) and a 
max pooling layer (stride 2) for down-sampling the input 
PET image. Then, there are four repeated encoder stacks 
with 3D convolutional layers (3 × 3 × 3) inside and a global 
average pooling layer to embed the input into a latent low-
dimensional feature space. Finally, a fully connected layer 

Fig. 1   Study profile (the demographic and clinical data of included 
parkinsonian patients (N = 974) is given in Supplementary Table 1). 
IPD: idiopathic Parkinson's disease, MSA: multiple system atrophy, 
PSP: progressive supranuclear palsy, clinically definite diagnoses: 

diagnoses by the clinical experts after return visit but without a for-
mal clinical follow-up, clinically confirmative diagnoses: diagnoses 
resulting from at least one formal clinical follow-up over two years 
after PET imaging
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Fig. 2   The schema of the developed DAT-Net for the differential diagno-
sis of parkinsonism. Step 1: the process of the AI-based diagnosis; Step 
2: the interpretation of the derived AI Model via saliency map, where the 
assigned importance score to each voxel indicates its contribution in the 

decision making of the neural network. Step 3: the deep-learning-based 
binding ratio (DL-BR), where the mean counts within the most salient 
regions of the obtained deep neural network were regarded as the specific 
binding instead of using the putamen and caudate
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and a softmax activation are utilized to conduct the diagno-
sis based on the learnt features. The skip-connection strategy 
was utilized in the designed network aiming at alleviating 
the vanishing gradient problem and simplifying the optimi-
zation [26]. The network was trained with the Adam opti-
mizer with the learning rate of 10–4 under the supervision 
of the categorical cross-entropy loss. The early-stop strategy 
was leveraged with patience of 20 to prevent over-fitting. 
The pre-training cohort was firstly used to train the DAT-
Net preliminarily, and the trained model was then fine-tuned 
on the training cohort. The performance of the developed 
model was evaluated with cross-validation (six-fold) on the 
training cohort and then independently tested on the blind-
test cohort.

To make the DAT-Net explainable, we utilized full-gradi-
ent method [20] to calculate the saliency maps for assisting 
the interpretation of the implicit decision-making mecha-
nism of the network. The full-gradient saliency map has the 
advantage of compressively assigning importance scores to 
both the input features and individual neurons in a network. 
The saliency scores in the map indicate the contribution of 
groups of pixels to the prediction results. (More method-
ology details such as the detailed network architecture are 
given in the supplementary material.)

Binding Ratio Analysis

The binding ratio (BR) was utilized as a conventional 
method to analyze patients’ DAT images which is defined 
as BR = (Cspecific − Cnonspecific)∕Cnonspecific , where C denotes 
the PET counts. The mean counts of occipital cortex were 
employed as the non-specific binding Cnonspecific , and the 
mean counts of bilateral putamen and caudate were regarded 
as the specific binding Cspecific[25]. We also studied the accu-
racy of the binding ratio with referring to the mean counts 
of the most salient regions in saliency maps of the obtained 
deep neural network as the Cspecific (denoted as DL-BR). We 
utilized the top 70% salient regions to prevent the influence 
of the possible noise. (Detailed information can be found in 
supplementary material.)

Radiomics Features Analysis

The radiomics features were extracted with the pyradiomics 
library [27] (version v3.0.1) implemented with the python. 
Radiomics features such as the first-order statistics, 3D 
shape-based features and gray-level co-occurrence matrix 
were extracted from the putamen and caudate regions for 
analysis. We further evaluated radiomics features extracted 
from the most salient regions of the obtained deep neural 
network, which was denoted as the deep-learning-guided 
radiomics (DL-radiomics) features.

Combination of DAT imaging scans 
with demographic and clinical features

Demographic profiles (age, gender, symptom duration) and 
clinical assessment data (unified Parkinson's disease rat-
ing scale (UPDRS), Hoehn and Yahr stage) were collected, 
where the latter were acquired under an antiparkinsonian 
medication withdrawal > 12 h (if used). We applied the 
Extreme Gradient Boosting (XGBoost) [28], which is a 
decision-tree-based ensemble machine learning algorithm, 
to evaluate the performance of integrating information of 
both DAT scans and demographic/clinical features (multiple 
modalities) for the diagnosis of parkinsonism. The obtained 
DAT-Net-derived signatures (predicted possibilities of IPD, 
MSA, PSP) and demographic information/clinical data were 
jointly employed by the XGBoost to perform the multi-
modality diagnosis. The XGBoost was trained on the train-
ing cohort, and the multi-modality diagnostic performance 
was then evaluated on the blind-test cohort.

Statistics Analysis

This work calculated the area under the curve (AUC) and 
plotted the receiver operating characteristic (ROC) curves 
by the scikit-learn library in python. The Youden’s index 
was applied to estimate the optimal cutoff points of the 
ROC curves. The DeLong’s method (1988) was utilized 
to calculate the confidence intervals (CIs), and the confi-
dence level of CIs in this work was 95%. The Chi-square 
test was employed to evaluate the performance difference, 
the Mann–Whitney U test was used to compare the radiom-
ics features between two groups, and a two-sided p-value 
of less than 0.05 was considered significant. The sensitiv-
ity, specificity, positive predictive value (PPV) and negative 
predictive value (NPV) were employed to demonstrate the 
diagnostic performance of the DAT-Net.

Results

Performance of the DAT‑Net in cross‑validation

The proposed DAT-Net obtained over or equal to the AUC 
of 0.900 for differential diagnosis of IPD, MSA, PSP and 
NC in the cross-validation phase (Fig. 3 and Supplemen-
tary Table 2). The obtained AUCs on the patients with long 
symptom durations (> 2 years) were higher than those with 
short symptom durations (≤ 2 years) for IPD and PSP, while 
for MSA, the DAT-Net achieved better AUC on patients with 
short symptom durations. The overall sensitivity of the dif-
ferential diagnosis of IPD, MSA and PSP ranged from 81.5% 
to 93.7%, while the specificity ranged from 93.2% to 97.5% 
(Supplementary Table 2 overall). Generally, the performance 
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of DAT-Net between patients with long symptom duration 
and patients with short symptom duration was comparable 
(P = 0.75 Chi-square test). When evaluating the performance 
of distinguishing parkinsonian patients with IPD or APS 
from NC, we found that the DAT-Net was a strong predictor 
with AUC of 0.998, the sensitivity of 100.0%, specificity of 
98.9%, PPV of 93.5% and NPV of 100.0% (Supplementary 
Table 2).

Performance of the DAT‑Net in the blind test

The effectiveness of the DAT-Net was further evaluated on 
the blind-test cohort. As demonstrated in Fig. 4, the deep 
neural network resulted in a sensitivity of 90.7% and speci-
ficity of 88.4% for differential diagnosis of IPD, with 84.1% 
and 97.5% for MSA as well as 78.6% and 93.3% for PSP, 
respectively (Supplementary Table 3). The performance 
was significantly higher than transitional BR quantification 
(P < 0.0001 Chi-square test, Fig. 4). The obtained overall 

performance in the blind test was comparable to cross-vali-
dation (P = 0.60 Chi-square test).

For the 96 patients in the blind test with both initial and 
repeated scans, we also evaluated the performance of the 
network referring to the initial (baseline) and repeated (fol-
low-up) scans separately (Fig. 4 and Supplementary Table 
3). Comparing the performance of follow-up with baseline, 
the overall diagnosis accuracy at follow-up is slightly supe-
rior with 92.7% vs 89.6% (P = 0.45, Chi-square test).

Interpretation of the DAT‑Net

The saliency map, for the interpretation of deep neural net-
works, assigns an importance score to each voxel in the input 
image to indicate its contribution to the decision making 
of the neural network. We demonstrated the average sali-
ency maps of patients with IPD, MSA or PSP in the training 
cohort (fused with template MRI). In general, the saliency 
maps illustrated that the most contributed regions determin-
ing the diagnosis of IPD, MSA and PSP are highly related 

Fig. 3   The performance of the proposed DAT-Net in the cross-
validation and blind test (more details are given in Supplementary 
Table 2 and Table 3). In the cross-validation, short symptom duration 
represents patients with symptom duration ≤ 2 years and long symp-

tom duration means patients with symptom duration > 2 years. In the 
blind-test phase, overall represents the results of all the tested 280 
patients, baseline and follow-up denote the results of 96 patients that 
have both initial and repeated scans
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to several parkinsonism-related regions such as putamen, 
caudate and midbrain (Fig. 5). 

Deep‑learning‑guided Binding Ratio Analysis

The conventional and deep-learning-based binding ratios of 
the DAT images are analyzed in this section. Figure 6(A)  
illustrates the conventional putamen and caudate binding 
ratios (BRs). Figure  6(B)  demonstrates deep-learning-
based binding ratio (DL-BR), where the mean counts 
within the most salient regions of the obtained deep neural 
network were regarded as the specific binding instead of 
using the putamen and caudate. Figure 6(C) shows the 
region-specific DL-BR, where the most saliency regions 
of the network located in the putamen and caudate were 
leveraged as the reference regions to calculate the specific 
binding. Figure 6(A)  indicates that there was no significant 
difference of putamen and caudate BRs between IPD and 
MSA groups (putamen: P = 0.24, caudate: P = 0.30), but 
significant differences could be found between both IPD 
vs PSP and MSA vs PSP groups (P < 0.0001), respectively. 
However, the DL-BRs demonstrated significant differences 

among the three comparison groups (IPD vs MSA: 
P < 0.0001, IPD vs PSP: P < 0.0001 and MSA vs PSP: 
P < 0.001 (Fig. 6(B)). For region-specific DL-BRs, we 
found the same conclusion as DL-BRs except that there 
was no significant difference between the IPD group and 
PSP group in putamen DL-BR (P = 0.42, Fig. 6(C)).

Deep‑learning‑guided Radiomics Analysis

We further evaluated the deep-learning-guided radiomics 
features, i.e., radiomics features extracted from the most 
salient regions of the obtained deep neural network and then 
compared them with the conventional radiomics features 
from the putamen and caudate regions. The statistical 
difference of deep-learning-guided and conventional 
radiomics features between different groups (IPD vs MSA, 
IPD vs PSP and MSA vs PSP) is shown in Fig. 7(A-C), and 
it can be found that there were average above 78.1% more 
deep-learning-guided radiomics features with significant 
differences among IPD, MSA and PSP compared to 
conventional radiomics features (Fig. 7(D)). To be specific, 
there existed 93, 79 and 86 DL-radiomic features that have 

Fig. 4   The performance of the DAT-Net for the differential diagnosis 
of the parkinsonian disorders evaluated on the blind-test cohort. The 
performance of the traditional BR quantification is also illustrated for 

comparison. The DAT-Net significantly outperformed BR quantifica-
tion (P < 0.0001, Chi-square test). The detailed numbers are given in 
Supplementary Table 3
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significant differences (P < 0.05) between IPD and MSA, 
IPD and PSP, as well as MSA and PSP, respectively (100 
features in total), while the number of conventional putamen 
radiomics features with significant difference between 
groups was 31, 73, and 41 and the number regarding 
conventional caudate radiomics features was 2, 54 and 14.

Combining the DAT imaging scans 
with demographic and clinical features

We evaluated the performance of combining the DAT 
imaging scans and demographic and clinical features 
(multi-modality) compared to utilizing DAT imaging only 

Fig. 5   Visualization of aver-
age saliency maps of patients 
with idiopathic Parkinson’s 
disease (IPD), multiple system 
atrophy (MSA), progressive 
supranuclear palsy (PSP). These 
maps illustrate the character-
istic regions supporting the 
determination of the DAT-Net. 
The color corresponds to the 
importance score indicating the 
contribution of a region
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Fig. 6   Conventional and deep-learning-based binding ratio analysis 
of the DAT images. (A) Conventional putamen and caudate bind-
ing ratio. (B) Deep-learning-based binding ratio (DL-BR), where 
the mean counts of the most salient regions in saliency maps of 
the obtained deep neural network as the specific binding instead of 

using the putamen and caudate. (C) Region-specific DL-BR, where 
the most saliency regions (referring obtained saliency maps) located 
in the putamen and caudate were leveraged to calculate the specific 
binding
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(single-modality). Generally, the multi-modality procedure 
slightly outperformed the single-modality procedure (over-
all accuracy 89.3% vs 87.9%, P = 0.60). Specifically, the 
results (sensitivity, specificity, PPV, NPV) after leveraging 
multi-modality data were better for the differential diagnosis 
of IPD on overall, baseline subgroup and follow-up sub-
group of patients in blind-test cohort. And the performance 

of multi-modality was equal or superior to that of single 
DAT imaging modality for differentiating IPD, MSA and 
PSP evaluated on follow-up scans (Fig. 8, Supplementary 
Table 4).

In our multi-modality method, we included DAT imag-
ing derived feature, i.e., the prediction possibilities of 
IPD, MSA, PSP, NC obtained by the DAT-Net, as well as 

Fig. 7   Comparison between 
deep-learning-guided radiomics 
(DL-radiomics) and conven-
tional radiomics (from putamen 
and caudate regions). The 
Mann–Whitney U test was used 
to compare the radiomics fea-
tures between two groups, and 
a two-sided p value of less than 
0.05 was considered significant
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demographic and clinical features including age, gender, 
symptom duration, UPDRS, Hoehn and Yahr stage. We 
then evaluated the contribution of the above-mentioned nine 
features, and the results are shown in Fig. 8(E). The most 
important five features were possibilities of MSA, IPD and 
PSP, Hoehn and Yahr stage, as well as symptom duration, 
which indicates that DAT-imaging-derived features contrib-
ute the main part in the decision of multi-modality classifier. 
Besides, the gender feature showed no contribution. (Feature 
importance is equal to zero.)

Discussion

Evaluated on one of the largest available datasets with 
1017 subjects, our preliminary results demonstrated that 
the potential of the [11C]CFT PET scans for differentiating 
IPD and APS subgroups based on the proposed DAT-Net, 
which might benefit from deep learning’s ability for decod-
ing critical information from DAT imaging. In current clini-
cal practice, DAT imaging is considered unsuitable for the 
reliable differentiation of IPD and APS subtypes such as 
MSA and PSP[29, 30]. While the conventional differential 

diagnosis referring to DAT imaging is based on quantitative 
analysis such as the DAT binding ratio (BR) quantification 
[4–6] in specific regions such as putamen and caudate, the 
numerous information of DAT imaging was neglected. In the 
current study, taking advantage of deep-learning method, we 
were able to dig deeper into this classical functional imag-
ing modality and successfully expanded its significance for 
disease diagnosis with DAT-Net, DL-BR and DL-radiomics.

The performance of the DAT-Net was evaluated both in 
the cross-validation stage and blind-test stages. The success 
of the neural network mainly benefited from its capacity 
to access the global information of entire PET scans and 
analyze multiple regions as well as their correlation simul-
taneously, which was different from the traditional method 
that only focused on certain slices and certain regions. The 
relatively comparable performance in these two stages 
showed the robustness of our proposed network between 
different cohorts. The high accuracy on the patients with 
short symptom duration (Fig. 3, Supplementary Table 2) and 
patients at baseline (Fig. 4, Supplementary Table 3) sug-
gested the potential of DAT-Net for early diagnosis. Patients 
with longer symptom durations were supposed to have more 
extensive changes in the brain as disease progression. Our 

Fig. 8   Multi-modality study: the performance and feature impor-
tance when combining the DAT imaging scans with demographic and 
clinical features for the differential diagnosis of parkinsonism based 
on the XGBoost classifier. Four DAT imaging-derived features, i.e., 
prediction possibilities of IPD, MSA, PSP and NC obtained by the 

DAT-Net together with demographic and clinical features including 
age, gender, symptom duration, UPDRS, Hoehn and Yahr stage were 
involved into the model. The detailed numbers are given Supplemen-
tary Table 4
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network obtained comparable performance between patients 
with short symptom duration/at baseline and with long 
symptom duration/at follow-up, which also implied that the 
proposed network was sensitive to brain changes on the DAT 
imaging scans, i.e., even slight changes in the early stage can 
be recognized by the DAT-Net to provide a similar accurate 
diagnosis, compared to that made after referring to more 
significant changes at follow-up (longer symptom duration). 
Besides, our proposed network achieved remarkable perfor-
mance in the differential diagnosis of parkinsonian patients 
(with IPD or APS) from NC, which confirmed the ability of 
DAT imaging for the diagnosis of parkinsonian patients from 
NC due to the significant striatal DAT loss in the image.

The saliency maps suggested that the network paid atten-
tion mainly to putamen, caudate and midbrain, which meant 
that these regions were assigned higher importance scores 
and therefore contributed mainly to the final prediction of 
the network, though the remaining regions also showed con-
tribution. The putamen and caudate, which were regarded as 
the leading corresponding brain regions for disease progres-
sion [31, 32], were the most common included regions in 
the traditional conventional quantitative analysis [33, 34]. 
For the midbrain, as a vital structure in dopamine signaling, 
the heterogeneity of dopamine neurons was considered to 
underpin the variety of clinical symptoms [35]. Moreover, 
[11C]CFT also displays a high affinity for serotonin trans-
porters (SERT) in addition to DAT in the midbrain and pre-
vious studies have shown that midbrain SERT distribution 
is significantly different between PD and MSA-P groups or 
between PD and PSP groups [34, 36], which may be another 
important factor suggesting the DAT-Net to pay attention to 
the tracer binding in midbrain for the differential diagno-
sis. All these previous findings supported that the detected 
regions in the saliency maps were in accordance with the 
key structures of the underlying pathological mechanisms.

Comparing the performance of the conventional BR and 
our designed DL-BR among IPD, MSA and PSP groups, we 
found the conventional putamen and caudate BR had lim-
ited potential for differential diagnosis, which was consistent 
with existing research results [29, 30]. However, there were 
significant differences among IPD, MSA and PSP groups if 
evaluating with the new designed DL-BR. This result was 
in line with our previous DAT-Net analysis that the neural 
network can access the entire PET scan and then learn the 
specific regions with distinguishable PET information for 
the differential diagnosis of IPD, MSA and PSP. Similarly, 
compared to conventional radiomics features, more DL-
radiomics features showed significant differences between 
different groups (IPD vs MSA, IPD vs PSP and MSA vs 
PSP), which also indicated the advantage of the learned spe-
cific regions by the DAT-Net. Subregional patterns analysis 
of dopamine transporter loss was suggested as a potential 
way to improve the differential diagnosis of parkinsonism 

[37]. The improved performance of the subregions defined 
by deep learning in this study may provide a complementary 
tool to identify more efficient subregional patterns. Further-
more, the neural network can not only locate the diagnosis-
informative regions but also assign weights on each voxel 
within these regions. Therefore, it may be more supportive 
than DL-BR and DL-radiomics in the differential diagno-
sis. To be specific, compared to conventional quantitative 
analysis which assigned the same weight on the uptake 
of each voxel when analyzing certain regions, the neural 
network allowed assigning different automatically learnt 
optimal weights on different voxels (Fig. 5). These weights 
may reflect the inter-correlation among regions, which may 
be dependent on the pathogenesis of different types of par-
kinsonism. While all suffered from dopaminergic dysfunc-
tion, previous studies showed that IPD, MSA and PSP had 
different preferential subregional decreases in striatal DAT 
binding[37] and different speeds of dopaminergic degenera-
tion [38]. Considering the different directions and differ-
ent speeds during the progression of dopamine transporter 
loss, future investigation of these interrelations may assist 
the understanding of the pathway behind the disease. Over-
all, the combination of the diagnosis-informative sub-region 
and the interrelation-determined weights has improved the 
ability of the network in the differential diagnosis of IPD, 
MSA and PSP.

Unsurprisingly, our experiments also illustrated that 
leveraging multi-modality data slightly outperformed only 
utilizing image modality, which might be due to that the 
image-only modality itself already achieved a relative high 
accuracy for differentiation. While the most important three 
features were all extracted from the DAT imaging scans, 
we inferred that the image modality accounted for the main 
contribution of the proposed multi-modality method and 
the demographic and clinical features were beneficial for 
improving the diagnosis performance and robustness.

As a data-driven method, data played a central role in 
the development of neural networks. Sufficient training data 
were helpful for the network to learn features of diversity 
cases and therefore could improve the performance of the 
network and prevent them from over-fitting. Although the 
relatively large dataset in this study allowed for a compre-
hensive understanding of this neural network within IPD and 
APS, the influence of the physical complexity of imaging 
data on such models remained to be further explored. And 
therefore, we would like to evaluate the performance of our 
DAT-Net when addressing scans obtained from different 
devices. Another limitation of the present study was that 
the entire experiment was based on a retrospective cohort 
and multi-center prospective studies were still needed to 
further confirm the protentional of this method in the dif-
ferential diagnosis of parkinsonism based on DAT imag-
ing. Furthermore, we utilized one possible multi-modality 
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fusion method to synthesize multimodal information in this 
work. In the future, other fusion methods such as gating-
based attention-based late fusion [39] will be leveraged to 
further improve the multimodal diagnosis performance. 
Another interesting future work is to evaluate the potential 
of utilizing the pre-trained DAT-Net (trained on [11C]CFT 
PET) for the differential diagnosis of parkinsonism on FP-
CIT SPECT. There exist large gaps of tracer, modality and 
ethnics between the two modalities. The domain-adversarial 
training strategy [40] may have the potential to alleviate the 
influence of the modality gap and further extend the pro-
posed method of this study.

Conclusion

In this paper, we developed a 3D deep residual convolutional 
neural network for the automated differential diagnosis of par-
kinsonism based on the [11C]CFT PET scans. The experiment 
results in the cross-validation phase and the blind test phase 
demonstrated the relatively high accuracy and the generaliza-
tion ability of the proposed method. The saliency maps of the 
deep neural network, which indicated the functional basis and 
distinguishable regions recognized by the network, were consist-
ent with known neuropathological processes in parkinsonism. 
These findings suggest that employing the deep neural network 
in the analysis of DAT scans has the potential to assistant neu-
rologists in making reasonable diagnoses of the parkinsonian 
syndromes at an early stage.
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