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ABSTRACT: Pure and Ni−Fe-codoped Zn1 − 2xNixFexO (x = 0.01, 0.02, 0.03, and
0.04) nanoparticles were effectively synthesized using a sol−gel autocombustion
procedure. The structural, optical, morphological, and magnetic properties were
determined by using X-ray diffraction (XRD), ultraviolet−visible (UV−vis),
scanning electron microscopy, and vibrating sample magnetometer techniques.
The XRD confirmed the purity of the hexagonal wurtzite crystal structure. XRD
analysis further indicated that Fe and Ni successfully substituted the lattice site of Zn
and generated a single-phase Zn1−2xNixFexO magnetic oxide. In addition, a
significant morphological change was observed with an increase in the dopant
concentration by using high-resolution scanning electron microscopy. The UV−vis
spectroscopy analysis indicated the redshift in the optical band gap with increasing
dopant concentration signifying a progressive decrease in the optical band gap. The
vibrating sample magnetometer analysis revealed that the doped samples exhibited
ferromagnetic properties at room temperature with an increase in the dopant
concentration. Dopant concentration was confirmed by using energy-dispersive X-ray spectroscopy. The current results provide a
vital method to improve the magnetic properties of ZnO nanoparticles, which may get significant attention from researchers in the
field of magnetic semiconductors.

1. INTRODUCTION
Due to exceptional physical and chemical properties, nanoma-
terials have recently received substantial attention in various
fields of fundamental and applied research. Among other
nanomaterials, ZnO has specifically received momentous
attention for a couple of years due to its unique characteristics.
Major properties that distinguish ZnO among others are the
wide and direct band gap of 3.39 eV and its piezoelectricity.1

Due to these remarkable properties, it has several applications
in different fields such as optoelectronics,1 electromechanical
devices,2 light-emitting diodes,3 photocatalysis,4 piezoelectric-
ity,5 nanogenerators,6 solar cells,7 smart windows,8 transistors,9

gas sensors,10 and much more.1−3 It is a multifunctional
semiconductor that can also be used as a magnetic storage
device or optical/electrical switching device.1,6−10 ZnO is low
cost, abundant, biosafe, and biocompatible, thereby it is used in
various medical applications.11 Interestingly, the optical and
electrical properties of ZnO can be easily tuned by transition
metal doping and specifically by varying the dopant
concentrations. As a result, doped ZnO nanoparticles (NPs)
have gained huge interest in the past decade.4−12 Significantly
improved magnetic, electrical, optical, and structural properties
have been reported by many researchers.9−12 Fabrication of

transition metal-doped ZnO can be achieved by several
different techniques,1−5 microemulsion process,7−10 micro-
wave hydrothermal process,12 sol−gel synthesis,13 precipitation
method,14 chemical vapor,15 solvothermal synthesis,12,13

chemical method,1,13 and autocombustion method.13 The
autocombustion method, however, is a short, time-saving, and
homogeneous method.

It is well established from previous research that NPs of
ZnO have diamagnetic properties,1,16 which is also confirmed
by our results. Diluted magnetic semiconductors involve
incorporating transition metal ions into the host lattice of
semiconductors.17 Due to their potential to be turned into a
new class of spintronic devices such as logic devices,18 spin-
valve transistors,19 and spin light-emitting diodes,20 and due to
room temperature ferromagnetic behavior, diluted magnetic
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semiconductors have gained a lot of interest in recent years.21

Predictions were made by theoretical studies that the transition
metal-doped ZnO is the most suitable kind of candidate for
room temperature ferromagnetism22−26 since 3d transition
metals (Co, Ni, Fe, Mn, Cu, V, etc.)-doped semiconductor-
based magnetic semiconductors reveal ferromagnetic behavior
above room temperature as well.23 The room temperature
ferromagnetism was discovered in Fe-doped ZnO nanocrystals
made using the sol−gel process, and it was determined that
this is how ferromagnetism is thought to have originated rather
than through secondary phases like iron oxides.24 Weak room
temperature ferromagnetism was found in coprecipitation-
produced Fe-doped ZnO nanorods.25 The ZnO:Ni grown
through a simple coprecipitation technique was also found to
have room temperature ferromagnetism behavior.26 Codoping
in ZnO with the transition metals showed ferromagnetism.27

Laiho et al. observed the intrinsic ferromagnetism in Fe- and
Mg-codoped ZnO.28 Similarly, room temperature ferromag-
netic 2% Ni-doped ZnO rods were synthesized by high pulsed
magnetic field-assisted hydrothermal method.29 Wu et al.
utilized the hydrothermal approach to fabricate the codoped
ZnO nanorods, and it was observed that Ni−Fe-codoped ZnO
has higher room temperature ferromagnetism as compared to
single-element-doped ZnO.30 From these investigations, it was
observed that the fabrication technique plays a vital role in the
room temperature ferromagnetic behavior of ZnO, and
codoping (Ni−Fe) can be an effective way to improve the
ferromagnetic ordering in ZnO systems.

In the present contribution, the synthesis of Ni- and Fe-
codoped zinc oxide was achieved using the autocombustion
method because of its simplicity and cost-effectiveness. The
effect of doping on different properties of transition metal-
doped zinc oxide is investigated. It was observed that the
behavior of doped NPs can be tuned from diamagnetism to
paramagnetism by increasing the doping concentrations.
Current research work demonstrates that the autocombustion
method is an active method to get good-quality magnetic
materials in a very short period.

2. EXPERIMENTAL DETAILS
In this work, Zn1−2xNixFexO (x = 0.01, 0.02, 0.03, and 0.04)
NPs were synthesized by a simple and low-temperature
autocombustion procedure. Pure ZnO NPs were synthesized
using the autocombustion method as discussed in our previous
article.15 In brief, Zn(NO3)2·6H2O and glycine were mixed in
distilled water, and the whole mixture was transferred on a hot
plate (Robus Technology RT-550) at 300 °C under constant
stirring (fixed at 550 rpm) for one and half hours.
Subsequently, the solution was converted into a gel. After a
few minutes, combustion was started and a large amount of
volatile gases evolved during the combustion, and an off-white
color powder of ZnO was obtained. Then, samples were dried
and ground in an agate mortar to get fine particles.
2.1. Fabrication of Ni−Fe-Codoped ZnO NPs. Fe- and

Ni-doped ZnO NPs were fabricated by taking the appropriate
amount of zinc nitrate Zn(NO3)2·6H2O, glycine, iron nitrate
Fe(NO3)2·6H2O, and nickel nitrate Ni(NO3)2·6H2O. These
materials were measured by a highly sensitive electronic
balance (AFD AK-300H). These materials were mixed in
distilled water (100 mL) and placed on the magnetic stirrer
plate. The mixed solution was then transferred to a hot plate,
which was adjusted at 300°C for 1.5 h. After 1 h, a dark color
gel was obtained, and after 1.5 h, combustion was initiated.

During the combustion process, gases escaped and fine powder
was collected at the bottom. To remove the volatile gases from
the samples, all the samples were calcined in the Muffle furnace
at 500 °C for 3 h. The experimental procedure used in this
article is also discussed in our previous work.15 It is pertinent
to mention that an agate mortar was utilized to get finely
ground powder of doped and undoped NPs. The resulting
samples were characterized by various instrumental techniques
such as X-ray diffraction (XRD), scanning electron microscopy
(SEM), Fourier transform infrared spectroscopy (FTIR), and
vibrating sample magnetometer (VSM). The crystal structure,
crystalline quality, and average crystallite size of the particles
were determined by XRD (Bruker B8 advance) using graphite-
filtered CuKα radiation (λ = 1.54056 Å). The surface
morphology was investigated by using a scanning electron
microscope (JSM-5910). Determination of energy band gap
and absorption coefficient was performed by diffuse reflectance
UV−vis (PerkinElmer UV/vis/NIR spectrometer Lambda
950), and the presence of functional groups was detected
through FTIR of powder samples. The magnetic measure-
ments were performed on a VSM (Lake Shore 7407) operated
under an applied field of 10k Oe to study the magnetic
properties of the samples.

3. RESULTS AND DISCUSSION
3.1. XRD Analysis. The powder samples were charac-

terized by XRD and the diffraction patterns of pure ZnO and
Zn1−2xNixFexO (x = 0.01, 0.02, 0.03, and 0.04) are shown in
Figure 1.

The XRD patterns showed good matching with the
hexagonal P63mc structure of ZnO index (JCPDS) No. 01-
1136. It is clear from the XRD pattern that all the characteristic
diffraction peaks for (100), (002), (101), (102), (110), (200),
(103), (112), and (201) planes confirmed the formation of the
hexagonal wurtzite structure.12,13,30 No impurities or secondary
phases of any materials were observed. It is also clear from
Figure 1 that the position of the most significant peak (101)
shifts toward a higher angle and intensity decreases with an
increase in the dopant concentration. The crystallinity of
wurtzite zinc oxide is reduced by the addition of Ni and Fe
dopant atoms. A decrease in the lattice parameter is another
indication of the successful substitution of both the Ni and Fe
atoms at the Zn site. In addition, Figure 2 shows that by
increasing the doping concentration of Ni and Fe in ZnO, the

Figure 1. XRD patterns of all pure and doped ZnO NPs calcined at
500 °C.
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(101) peak shifts toward the higher angle and intensity was
reduced, which shows a reduction in the crystallinity of doped
ZnO NPs. Variation in crystallite size by doping Ni and Fe at
different concentrations is shown in Figure 2b.

It was observed that the crystallite size increased with an
increase in the dopant concentrations. As the wurtzite ZnO has
many native defects due to the lattice structure that contains
large voids, it can easily be filled by several atoms. In Figure 2a,
a shoulder peak at the right side may also be observed in doped
samples, which confirms the secondary phases of iron oxide
(Fe2O3) in the rhombohedral crystalline phase of hematite
(standard card PDF 01-087-1165). In the previous studies, the
same behavior of secondary phase presence was observed, and
it is believed that the formation of secondary phase in the final
product may be related to the large quantities of gases formed
during combustion explosions.31−33

Figure 2b and Table 1 show that the crystallite size
specifically increases from 37 to 43 nm with an increase in Ni−
Fe concentration from 0 to 4%. The average crystallite size was
calculated using Scherer’s formula. The inclusion of Fe into
Zn1−2xNixO (x = 0.01, 0.02, 0.03, and 0.04) diminishes the
intensity of all the peaks and shifts the peak position which
may be due to the disorder or defects generated by the
addition of Fe2+ ions in Zn−Ni−O sites. It is well-known that
the radius of Fe2+ ions is larger than that of Zn2+ and Fe3+
individually.30,31 Table 1 shows that crystallite size was
enhanced by simultaneous doping of Fe into Zn−Ni−O due
to the replacement of Fe2+ instead of Zn2+, and similar
behavior was also observed by many authors.13,17,22,26,29−34

The lattice parameters (a = b) of Zn1−2xNixFexO (x = 0.01,
0.02, 0.03, and 0.04) measured from XRD data varied from
3.2413 to 3.2357 Å and parameter c from 5.1903 to 5.1813 Å.
These values are slightly less than that of zinc oxide having
lattice parameters a = b = 3.2478 and c = 5.2034 Å. The
decrease in lattice parameters revealed that the doping of Ni
and Fe in ZnO does not change the wurtzite crystal structure
of zinc oxide, causing a reduction in peak intensity. It also
reveals the successful substitution of Ni and Fe at the Zn sites.
The results indicate that all Fe and Ni ions are incorporated
into the lattice of the host ZnO crystal.21

3.2. Morphological Studies Using SEM. The morphol-
ogies of pure and doped ZnO samples were studied by using a
scanning electron microscope operated at 15 kV. Figure 3a
shows the morphology of pure ZnO samples at ×30,000
magnification. The SEM images of pure and doped zinc oxide
samples calcined at 500 °C revealed that grains are almost
hexagonal in shape, and agglomeration of particles has
occurred. SEM micrographs of Zn0.98Ni0.01Fe0.01O,
Zn0.96Ni0.02Fe0.02O, Zn 0.94Ni0.03Fe0.03O, and Zn0.92Ni0.04Fe0.04O
samples at ×30,000 magnifications are also shown in Figure
3b−e. These results showed that the particle size of hexagonal
nanostructures increased with doping concentration. SEM
images were taken for all of the samples at the same
magnification, and it was observed that grains are almost
hexagonal in shape, and agglomeration of the particles is
observed, which may be due to the higher flame temperature of
glycine. Results obtained using SEM images also support the
XRD results.

To confirm the concentration of prepared samples,
compositional analysis was carried out using the energy-
dispersive X-ray spectroscopy (EDX) technique. Figure 4a−d
represents the EDX spectra of Zn0.98 Ni0.01 Fe0.01O,
Zn0.968Ni0.02Fe0.02O, Zn0.94Ni0.03Fe0.03O, and Zn0.92Ni0.04Fe0.04O
NPs. EDX spectra confirmed the elemental composition of the
prepared samples. For Zn, sharp EDX peaks arise around 1.1
and 8.9 keV, for Fe at 0.5, 6.5, and 8.9 keV, and for Ni peaks at
1, 7.4, and around 8 keV. It can be seen that samples consist of
oxygen and zinc mostly. No extra impurity element occurrence

Figure 2. (a) Shift and reduction in the intensity of (101) peak with
increasing dopant concentration and (b) change in crystallite size with
increasing dopant concentration.

Table 1. Estimation of the Crystallite Size, Unit Cell Volume, Lattice Parameters, Full Width at Half-Maximum, and
Corresponding Angles for Pure and Doped ZnO

sample angle (2θ)° full width at half-maximum (deg) a = b (Å) c (Å) unit cell volume (Å) crystallite size (nm)

ZnO 36.17 0.2162 3.2478 5.2034 47.55 37
Zn0.98Ni0.01Fe0.01O 36.30 0.1993 3.2413 5.1903 47.34 40
Zn0.96Ni0.02Fe0.02O 36.34 0.1935 3.2367 5.1844 47.22 41
Zn0.94Ni0.03Fe0.03O 36.36 0.1899 3.2357 5.1813 47.17 42
Zn0.92Ni0.04Fe0.04O 36.38 0.1834 3.2352 5.1813 47.16 43
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was seen. The actual weight percentages of dopant elements
were confirmed by using EDS results.
3.3. Optical Characteristics. Undoped, Ni- and Fe-

codoped ZnO NPs prepared by the sol−gel autocombustion
technique were used for the optical studies. The optical
properties of the synthesized sample were measured by using
diffuse reflectance spectroscopy (DRS) between the wave-
lengths of 250 and 800 nm. The diffuse reflectance spectra of
all synthesized samples (at room temperature) are shown in
Figure 5. The DRS of pure ZnO shows a sharp fall in

Figure 3. SEM micrographs of (a) pure ZnO, (b) Zn0.98Ni0.01Fe0.01O,
(c) Zn0.96Ni0.02Fe0.02O, (d) Zn0.94Ni0.03Fe0.03O, and (e)
Zn0.92Ni0.04Fe0.04O at ×30,000 magnification.

Figure 4. EDX spectra of (a) Zn0.98Ni0.01Fe0.01O, (b) Zn0.96Ni0.02Fe0.02O, (c) Zn0.94Ni0.03Fe0.03O, and (d) Zn0.92Ni0.04Fe0.04O NPs.

Figure 5. Diffuse reflectance spectra of pure and Ni−Fe-codoped
ZnO samples.
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reflectance, corresponding to the absorption edge with
maximum transparency in the visible region. All doped samples
demonstrate a reduction in percent reflectance than pure ZnO
showing overwhelming band gap excitations in the visible
region.22−24

The significance of this effect is more visible after the
application of the Kubelka−Munk function. From diffuse
reflectance spectroscopy, the absorbance is calculated using the
Kubelka−Munk equation

F R R
R

( )
1

2

2
=

(1)

where F(R) is the Kubelka−Munk function, and R is the
reflectance. The optical band gap was calculated from DRS by
plotting hν along the x-axis and [F(R)hν ] 2 along the y-axis.
The linear region of these plots was extrapolated to (F(R)hν)2
= 0 to obtain the values of the direct band gaps.35 The
variation in band gaps of NPs with the doping concentration
may be due to different crystal defects in ZnO crystal.36,37

Figure 6a shows the energy band gap of the pure ZnO sample

and codoped sample calcined at 500 °C. It can be observed
that the energy band gap (Eg) of pure ZnO is 3.204 eV, and a
decrease in the band gap with increasing dopant concentration
was observed which is attributed to the defect chemistry
variation in the doped sample.36

Table 2 shows the values of band gap (Eg) of pure and
codoped ZnO NPs using the Tauc plot. The values of band

gaps progressively decreased from 3.20 to 3.13 eV with
increasing doping concentrations of Ni and Fe. Figure 6b
shows the variation of the band gap with dopant concentration,
which is in good agreement with the result reported by many
authors.38,39 According to Wu et al., the sp-d spin-exchange
interactions between the band electrons and the localized d
electrons of the transition metal ions substituting the cation,
generally result in a decrease in the band gap in transition
metal-doped II−VI semiconductors.39

Accordingly, in our synthesized samples, when we add Ni
and Fe in ZnO, the s-d and p-d exchange interactions between
the localized d electrons of Fe and Ni and the band electrons
of ZnO may change the energy band structure, which results in
the reduction of the band gap. The reduction of the band gap
toward the visible range is expected to be helpful for
applications in photocatalysis reactions and solar cell devices
due to the absorption of more solar energy in the visible
spectrum.

Figure 7a shows the variation of band gap energy with the
crystallite size, and it was observed that the energy band gap
showed a decreasing trend with the increase in the crystallite
size of codoped ZnO NPs, a similar trend that has also been
reported by various authors.34,36−38 It is believed that the
number of atoms that form the crystallite size increases. This as
a result renders the valence and conduction electrons more
attractive to the ion core of the particles and hence results in a
reduction of the band gap of the particles.39,40 The relationship
between the band gap and the refractive index of the material is
of high interest because such evaluations lead to multiple
applications. Band gap and refractive index of semiconductors
represent two key physical perspectives that illustrate their
electronic and optical properties. In 1950, Moss presented a
basic relationship between these two properties41

n E 95 eV4
g = (2)

The refractive index in semiconductors is the measure of its
transparency to incident spectral radiations. The threshold for
the absorption of a photon in a semiconductor is determined
by the energy gap. This information is very useful for a wide
range of audiences because pre-knowledge of band gap and
refractive index is required for devices such as photonic
crystals, detectors, and waveguides. Figure 7b shows that with
an increase in the band gap, refractive index and polarizability
decreased, which was observed by many authors.38−40,42,43 It is
also observed that with increasing doping concentrations of Ni
and Fe, the band gap decreased and the refractive index
increased from 2.334 to 2.347.
3.4. Fourier Transform Infrared Spectroscopy. FTIR is

one of the most extensively used techniques for detecting
functional groups in pure compounds and mixtures. The FTIR
spectra of pure and doped ZnO NPs prepared using the sol−
gel combustion method and calcined at 500 °C have been
studied. Similar absorption bands were observed in the doped

Figure 6. (a) Tauc plots of [F(R)hν]2 vs energy for all the samples.
(b) Variation of band gap with doping concentration.

Table 2. Values of Energy Band Gap (Eg) of Pure and
Codoped ZnO NPs

sample band gap (eV)

ZnO 3.20
Zn0.98Ni0.01Fe0.01O 3.19
Zn0.96Ni0.02Fe0.02O 3.18
Zn0.94Ni0.03Fe0.03O 3.15
Zn0.92Ni0.04Fe0.04O 3.13
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samples. Therefore, in Figure 8, we present the results of pure
ZnO and Zn0.98Ni0.01Fe0.01O NPs for the comparison of pure
and doped ZnO.

The absorption bands around ∼2900 cm−1 are related to the
C−H mode. The peaks lying from ∼1500 to ∼1700 cm−1

represent the functional group corresponding to the C−O
symmetric and antisymmetric stretching modes. In the spectra,
the main absorption between 700 and 1000 cm−1 represents
the stretching mode of Zn−O in pure ZnO, and it shows
characteristic absorption bands due to the influence of
doping.44 The medium bands below 1000 cm−1 are assigned
to the vibrational frequencies resulting from changes in the
microstructural features caused by the addition of Ni and Fe to
the Zn−O lattice. The results obtained from FT-IR spectra of
pure ZnO and Zn0.98Ni0.01Fe0.01O NPs confirm the formation
of ZnO NPs.
3.5. Magnetic Characterization. The magnetic nature of

transition metal-doped materials was investigated by using the
VSM at room temperature. The magnetization measurements
were performed by cycling the field between ±10,000 Oe.
Figure 9 shows the magnetic hysteresis (M−H) curves of the

pure and Zn0.98Ni0 .01Fe0 .01O, Zn0 .968Ni0 .02Fe0 .02O,
Zn0.94Ni0.03Fe0.03O, and Zn0.92Ni0.04Fe0.04O samples measured
at room temperature.

The M−H curve of the pure ZnO sample showed
diamagnetic nature of ZnO, which is due to the absence of
intrinsic defects like zinc vacancies and oxygen vacancies,
which is also investigated by many authors that undoped ZnO
is diamagnetic even at very low temperatures.43 The
incorporation of Fe3+ and Ni2+ ions in the ZnO lattice is
confirmed by the transformation of the diamagnetic behavior
of the pure ZnO sample into the ferromagnetic nature of
codoped samples. Room temperature ferromagnetism in doped
ZnO NPs is due to various extrinsic and intrinsic phenomena.
The extrinsic phenomenon occurs due to the formation of
secondary phases or clusters of dopant semiconductor atoms
and exchange interactions may occur under the intrinsic cause
of magnetization.44−46 The relationship between intrinsic
defects due to oxygen or zinc vacancies and magnetism is
also discussed in the literature.46−51 From XRD analysis, it is
also observed that the unit cell volume decreased with the
increase in the doping concentrations as shown in Table 1,

Figure 7. (a) Variation of band gap with crystallite size and (b) variation of refractive index with energy band gap (eV).

Figure 8. FTIR spectra of pure and pure and. Ni−Fe-codoped ZnO
samples.

Figure 9. VSM resul t s of ZnO, Zn0 . 9 8Ni 0 . 0 1Fe0 . 0 1O,
Zn0.968Ni0.02Fe0.02O, Zn0.94Ni0.03Fe0.03O, and Zn0.92Ni0.04Fe0.04O NPs.
The inset shows the zoomed-in view of M−H loops of the samples.
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which can also decrease the distance between dopant ions and
strengthen the ferromagnetic ordering.48,49 It is observed that
magnetization increases with the applied magnetic field. The
room temperature ferromagnetic behavior of doped (transition
metals) NPs is recognized as the various intrinsic (exchange
interaction) and extrinsic (the formation of clusters or
secondary phases) phenomena by many authors.45−51 The
room temperature ferromagnetism in the doped samples is also
attributed to the ferromagnetic coupling between magnetic
ions (Ni2+ and Fe3+) and oxygen vacancy associated with the
bound magnetic polarons model.16 The XRD results showed
the successful addition of dopant ions to the wurtzite ZnO
lattice. Since no secondary phase or clusters are observed in
XRD spectra of Ni- and Fe-codoped ZnO samples, the
observed ferromagnetism is an intrinsic property of synthesized
doped ZnO NPs.

With an increase in doping concentration, the coercivity of
samples was also improved, which represents the magnetic
characteristics of the material. It is obvious from the XRD and
UV−vis assimilation spectra investigation that Fe and Ni are
effectively fused into the ZnO lattice; therefore, we have
included the results of only three samples here. The beginning
of attraction in the specimens is because of the exchange
interactions between the spin-polarized electrons (for example,
the electrons of Ni2+ and Fe2+ particles) and conductive
electrons.42−46 Hence, this can prompt the spin polarization of
the conductive electrons. Therefore, all Ni2+ and Fe2+ ions
display a similar turn bearing, bringing about the ferromag-
netism of the material, after a progressive long-go exchange
interaction.48−52

4. CONCLUSIONS
The present work demonstrates the fabrication and character-
ization of pure and Fe−Ni-codoped ZnO NPs using the sol−
gel autocombustion route. Analysis of the samples was
performed by using different diagnostic techniques. For
instance, XRD confirmed that the hexagonal wurtzite
structured NPs have been successfully fabricated. Due to
lower values of ionic radii of iron and nickel, XRD peaks
showed a redshift. SEM analysis supported the XRD results of
hexagonal-shaped NPs. The crystallite size increased from 37
to 43 nm with an increase in the dopant concentration. The
optical studies showed a decrease in the band gap from 3.20 to
3.13 eV for pure and doped ZnO NPs. Chemical compositions
of the fabricated samples were confirmed using FTIR spectra.
Finally, VSM measurements were performed to study the field-
dependent magnetization. Field-dependent magnetization
analysis was performed to observe the behavior of fabricated
NPs; it was observed that pure ZnO showed diamagnetic,
whereas doped ZnO NPs showed ferromagnetic behavior. By
increasing the dopant concentrations, the magnetization of
synthesized NPs showed an increasing trend. The room
temperature ferromagnetism is attributed to the ferromagnetic
coupling between magnetic ions (Ni2+ and Fe3+) and oxygen
vacancy associated with the bound magnetic polarons model.
Current investigations demonstrated the fact that the
ferromagnetic aspect perceived in the Ni- and Fe-codoped
ZnO NPs is an intrinsic property. This work is useful for
doping numerous transition metals in ZnO with extraordinary
magnetic properties for various applications in spintronics.
Also, further research studies can be carried out to inquire
about electron- and hole-mediated ferromagnetism which

offered valuable clues for the researchers working in the field
of devices such as photonic crystals, detectors, and waveguides.
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