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Abstract
Asthma, a chronic inflammatory airway disease, is typified by high levels of TH2-cytokines

and excessive generation of reactive nitrogen and oxygen species, which contribute to

bronchial epithelial injury and airway remodeling. While immune function plays a major role

in the pathogenesis of the disease, accumulating evidence suggests that altered cellular

metabolism is a key determinant in the predisposition and disease progression of asthma.

Further, several studies demonstrate altered mitochondrial function in asthmatic airways

and suggest that these changes may be systemic. However, it is unknown whether sys-

temic metabolic changes can be detected in circulating cells in asthmatic patients. Platelets

are easily accessible blood cells that are known to propagate airway inflammation in

asthma. Here we perform a bioenergetic screen of platelets from asthmatic and healthy indi-

viduals and demonstrate that asthmatic platelets show a decreased reliance on glycolytic

processes and have increased tricarboxylic acid cycle activity. These data demonstrate a

systemic alteration in asthma and are consistent with prior reports suggesting that oxidative

phosphorylation is more efficient asthmatic individuals. The implications for this potential

metabolic shift will be discussed in the context of increased oxidative stress and hypoxic

adaptation of asthmatic patients. Further, these data suggest that platelets are potentially a

good model for the monitoring of bioenergetic changes in asthma.

Introduction
Asthma is defined as chronic airway inflammation characterized by increased TH2-cytokines,
such as IL-4 and IL-13, and excessive generation of nitric oxide (NO) and reactive oxygen spe-
cies (ROS) that ultimately results in bronchial epithelial injury and airway remodeling [1,2].
While a number of factors contribute to the pathogenesis of asthma, accumulating evidence
suggests that altered cellular metabolism may play an important role. For example, a strong
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link has been established between asthma and metabolic syndrome [3–5] and significant meta-
bolic changes have been observed in patients with asthma [6].

On a cellular level, mitochondrial function is central in regulating metabolism. Mitochon-
drial oxidative phosphorylation utilizes substrate to generate ATP more efficiently than glycol-
ysis. Notably, both NO and TH2 cytokines have been demonstrated to regulate both oxidative
phosphorylation and glycolysis [7–9]. Beyond ATP production, mitochondrial metabolism
contributes to cellular homeostasis through the production of reactive oxygen species (ROS)
which has been shown to be crucial in immune responses and pathologic inflammation
[10,11,12]. Consistent with a role for the altered metabolism in asthma pathogenesis, changes
in mitochondrial appearance and function have been identified in airway cells in the ovalbu-
min (OVA) allergen-murine experimental asthma model [13,14], and linked to asthmatic fea-
tures such as airway hyper-responsiveness and mechanistically to TH2-driven inflammation
[15]. Further, In humans, mitochondrial numbers and oxygen consumption rate in airway
smooth muscle cells from asthmatic individuals are greater than cells from healthy controls,
although the mechanisms have not been identified [16]. Interestingly, dietary studies suggest
that asthmatic individuals may have systemic changes in cellular bioenergetics [6,17–20]. For
example, Picado et al showed that individuals with mild asthma are metabolically more effi-
cient as compared to healthy controls as measured by body mass index over the time period of
careful regulation of dietary energy intake [6].

Despite the recognition that metabolism is potentially altered systemically in asthma, it is
unknown whether a change in bioenergetic function can be detected in circulating cells of asth-
matic patients. Platelets contain several fully functional mitochondria and are metabolically
active with ATP production greater than muscle [21]. Resting platelets also use glycolysis as a
source of energy [22], with much of the resultant pyruvate directed to lactate production.
Recent studies have shown that glycolysis and oxidative phosphorylation are tightly linked in
the platelet [23,24]. Further, activated platelets have been found in the bronchial lavage fluid of
asthmatic patients [25,26] and associated with airway hyper-responsiveness[27]. Platelets are
also known to contribute to airway inflammation and remodeling through the secretion of
cytokines [28,29] and mitogens[30–32] and by their direct interaction and activation of eosino-
phils [29,33–35].

We have recently validated a method to measure mitochondrial function in circulating
human platelets [36]. Here, we utilize this method to test the hypothesis that asthmatic individ-
uals have systemic changes in cellular energy pathways that are detectable in circulating plate-
lets. Our data reveal that platelets from asthmatic individuals rely less on glycolysis and have
increased tricarboxylic acid (TCA) cycle enzymatic activity. The implications of these altered
pathways on asthma pathogenesis as well as the potential use of platelets to monitor asthma
pathogenesis clinically will be discussed.

Materials and Methods

Population
All studies were approved by the Cleveland Clinic Institutional Review Board (IRB#10–1049).
All studies were performed in accordance with the principles outlined in the Declaration of
Helsinki and written informed consent was obtained from all subjects. Asthma was verified
based on positive methacholine challenge and/or reversible airway obstruction. Healthy con-
trols lacked cardiopulmonary symptoms and had normal spirometry and negative methacho-
line challenge. Spirometry was performed with an automated spirometer.
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Human Platelet Isolation
Platelets were isolated by differential centrifugation from human venous blood collected in cit-
rate containing tubes as previously described [36]. Briefly, whole blood was centrifuged (150×
g, 10 min) in the presence of Prostaglandin I2 (PGI2)(1 μg/ml)(Sigma-Aldrich, St. Louis, MO)
to obtain platelet rich plasma. Platelets were subsequently pelleted from the platelet rich plasma
by centrifugation at 1500× g for 10 min. The platelet pellets were washed with Erythrocyte
Lysis Buffer (Qiagen, Valencia, CA) and PGI2. The final samples were re-suspended in modi-
fied Tyrode’s buffer (20 mMHepes, 128 mM NaCl, 12 mM bicarbonate, 0.4 mM NaH2PO4, 5
mM Glucose, 1 mMMgCl2, 2.8 mM KCl, pH 7.4) prior to study.

Measurement of TCA cycle activity in Platelets
Aconitase activity was measured in isolated platelets (50 μg) lysed by three cycles of freeze/
thaw by spectrophotometrically measuring the formation of NADPH at 340 nm in the pres-
ence of isocitrate/isocitrate dehydrogenase. Succinate dehydrogenase activity was measured by
monitoring the rate of ubiquinol reduction coupled to the colorimetric dye dichlorophenolin-
dophenol at 600nm. Citrate synthase activity was measured by monitoring the rate of conver-
sion of acetyl CoA and oxaloacetate to citrate spectrophotometrically at 412nm by coupling
CoA production with the colorimetric indicator dithionitrobenzoic acid.

Western blot Analyses
Whole cell lysates prepared as previously described [37]. Rabbit anti-Aconitase polyclonal Ab
(Santa Cruz Biotechnology), and mouse anti- Complex III-2 (Molecular Probes, Inc., Eugene,
OR) and β-actin monoclonal Ab (Sigma-Aldrich, St. Louis, MO) were used in western
analyses.

Ultrastructural analyses
Samples were prepared as previously described [38]. Briefly, samples were fixed at 4°C for
more than 1 h in 0.1 M sodium cacodylate buffer, pH 7.4, containing 2.5% glutaraldehyde and
4% formaldehyde. Samples were embedded in Eponate12 kit, polymerized at 70°C for 48 h,
trimmed, sectioned at 70 − 90 nm, poststained in saturated uranyl acetate and lead citrate, and
examined with a transmission electron microscope (Philips CM12).

Measurement of Oxygen Consumption Rate (OCR) and Extracellular
Acidification Rate (ECAR) in Platelets
OCR and ECAR were measured in isolated platelets using the Seahorse Extracellular Flux
(XF24) Analyzer (Seahorse Bioscience Inc. North Billerica, MA) as previously described [36].
Isolated platelets were diluted in unbuffered Dulbecco’s Modified Eagle’s Media (DMEM; at
37°C) to 50 ×106 cells/ml and 500 μl of sample loaded per well in standard XF24 plates.
DMEM contained 25mM glucose, 2mM glutamine and 1mM pyruvate. Plates were centrifuged
to create an unactivated cell monolayer. Once in the XF24, the cells were consecutively treated
with oligomycin A (2.5 μM), FCCP (carbonyl cyanide-ρ-trifluoromethoxyphenylhydrazone)
(0.7 μM), 2-deoxyglucose (2-DG)(100 μM) and Rotenone (2 μM). Three measurements of
OCR and ECAR were made after addition of the agents and a mix step. Cell number was con-
firmed at the end of the experiment by crystal violet staining. All measurements were normal-
ized to cell number.

Proton leak was quantified as the rate of respiration in the presence of oligomycin A minus
the rate in the presence of rotenone. ATP-linked respiration was the difference of basal
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respiration and oligomycin A rate. Non-mitochondrial oxygen consumption is the rate in the
presence of rotenone.

ATP Content
Measurement of ATP levels in platelets was measured by using a luciferase-based luminescence
assay kit (PerkinElmer, Waltham, MA) and measuring the linear rate of luminescence over 5
minutes as previously described [36]. ATP content was normalized to 106 platelets.

Statistical Analyses
Data are shown as mean ± SE. All statistical comparisons are performed using the Student’s t-
test, paired t-test or one-way ANOVA as appropriate. The level of significance for P was chosen
at 0.05. All data were analyzed with statistical program JMP Pro 10 (SAS Institute, Cary, NC).

Results

Platelets from subjects with asthma show no change in mitochondrial
number or morphology
To investigate platelet metabolism in asthma, a study population including 13 healthy controls
and 12 individuals with asthma was utilized (Table 1). The asthmatics had airway reactivity to
methacholine, but all asthmatic subjects were non-severe, as defined by criteria of the Ameri-
can Thoracic Society [39]. This was demonstrated by assessment of airflow by measurement of
forced expiratory volume in 1 second (FEV1)% predicted and the ratio of FEV1 to forced vital
capacity (FVC) (Fig 1). These data demonstrate that although asthmatics had significantly
lower airflow compared to control subjects, the airflow limitation was generally mild to moder-
ate [FEV1% predicted: 99 ± 3 (controls) vs 81 ± 5 (asthma), P = 0.01; FEV1/FVC: 0.82 ± 0.02
(controls) vs 0.73 ± 0.03 (asthma), P = 0.03]. Asthmatics were well controlled for at least the
prior 6 weeks or longer, and withheld medications prior to day of testing. The number of sub-
jects assessed for each experiment is provided with each result.

Electron microscopy of platelets from healthy and asthmatic individuals showed no overt
differences in mitochondrial number or morphology (Fig 2A and 2B). Quantification of the
number of mitochondria in each platelet demonstrated that there was no difference between
the two groups (2.85 ± 0.40 vs 2.59 ± 0.38; asthma vs control; n = 10 platelets each from n = 4
subjects in each group). This was confirmed by measurement of mitochondrial DNA content

Table 1. Features of Study Participants.

Characteristics Controls (n = 13) Asthma (n = 12) P*

Mean age, yr 39 ± 3 35 ± 3 0.4

Gender, M/F 8/5 6/6 0.5

Ethnicity, C/AA/other 10/2/1 6/5/1 0.3

Heart rate (beats/min) 69 ± 5 70 ± 3 0.8

FEV1% predicted 99 ± 3 81 ± 5 0.01

FEV1/FVC 0.82 ± 0.02 0.73 ± 0.03 0.03

% Atopy 45 100 0.004

Definition of abbreviations: M, male; F, female; C, Caucasian; AA, African Amirican; FEV1, Forced expiratory volume in 1 second; FVC, Forced vital

capacity;

*P value, asthma vs. controls.

doi:10.1371/journal.pone.0132007.t001
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Fig 1. Asthmatics show airflow obstruction compared to healthy controls. Airflow obstruction as
measured by (A) FEV1% predicted and (B) FEV1/FVC in asthmatic individuals compared with healthy control
subjects. #p<0.05.

doi:10.1371/journal.pone.0132007.g001
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in 7 different subjects in each group, which showed no significant changes in mitochondrial
DNA copy number between groups (Fig 2C).

Platelets show less reliance on glycolysis in asthma
To determine whether bioenergetics were altered in platelets isolated from patients with
asthma, oxygen consumption rate was first measured in platelets isolated from both groups.
Basal oxygen consumption rate (OCR) of platelets was similar among groups [OCR pmol O2/
min/106 platelets, control (n = 13) 47.8 ± 2.7, asthma (n = 12) 53.3 ± 6.0, P = 0.4] and respira-
tory rate was significantly decreased by the ATP synthase inhibitor oligomycin to a similar
extent in both groups (Fig 3A). Treatment with rotenone, a pharmacological inhibitor of

Fig 2. Platelets show no change in mitochondrial number andmorphology in asthma. (A-B)
Representative electron micrograph of platelet from (A) healthy control and (B) asthma (scale bars: 1 μm). (C)
Mitochondrial DNA copy number per platelet in platelets from healthy and asthmatic individuals. n = 7 per
group.

doi:10.1371/journal.pone.0132007.g002
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Fig 3. Platelets show less reliance on glycolysis in asthma. (A) Oxygen consumption trace for healthy (open squares) and asthmatic (filled squares).
Basal rate is shown and arrows denote the addition of oligomycin A (oligo), FCCP, 2-deoxyglucose (2DG) and rotenone. (B) Quantification of basal rate,
proton leak, ATP-linked respiration and non-mitochondrial oxygen consumption in platelets from healthy (open bars) and asthmatic (filled bars) subjects
(calculated from traces such as those shown in panel A). (C) Quantification of oxygen consumption rate after the addition of 2-DG in healthy (open bars) and
asthmatic (filled bars) platelets. (D) Changes in OCR as a function of ECAR in healthy (control; open circles) and asthmatic (Asthma; filled squares) platelets
basally and after the addition of 2-DG. Arrows depict the shift after addition of 2-DG. Data are means ± SEM. #p<0.05. n = 12 for asthma, n = 13 for control.

doi:10.1371/journal.pone.0132007.g003
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mitochondrial Complex I, affirmed that the OCR measured was predominantly mitochondrial
with rotenone inhibiting 92±7% and 99.8±4% of oxygen consumption in platelets from asthma
and control subjects respectively (Fig 3A and 3B). Analysis of this data demonstrates that
there was no significant difference in ATP-linked respiration or proton leak between the two
groups (Fig 3B). Notably, in the presence of deoxyglucose (2-DG), a competitive glucose ana-
logue that inhibits glycolysis, oxygen consumption did not decrease in asthma, so that asth-
matics had greater OCR than controls in the absence of glycolysis (Fig 3A and 3C). Fig 3D
demonstrates this relationship between inhibition of glycolysis and the resulting drop in OCR
observed in controls but not asthmatics. These data suggest that while asthmatic platelets are
able to compensate for the inhibition of glycolysis-based ATP production, control platelets are
more reliant on glycolysis, potentially due to substrate limitation.

To determine whether glycolytic rate differed in asthma, we next compared basal glycolysis
in platelets from asthma and healthy controls (Fig 4A and 4B). Evaluation of glycolysis was
based on the measurement of extracellular acidification rate (ECAR), which increases due to
glycolysis-dependent cellular proton production and export, a process that correlates with lac-
tic acid formation. Basal ECAR in platelets from asthmatics (16.0±1.2 mpH/min/106 platelets)
was significantly lower than control platelets (23.5±1.9 mpH/min/106 platelets)(Fig 4A and
4B). ECAR in both groups was inhibited ~99% by 2-DG as expected. Further, when ATP pro-
duction by oxidative phosphorylation was inhibited using oligomycin A, there was a small but
statistically significant increase in glycolytic rate (compared to basal rate) in each subject of
both the healthy control (Fig 4C; P = 0.005) and asthmatic (Fig 4D; P<0.001) groups. Notably,
this oligomycin A-induced increase (calculated by subtracting basal rate from oligomycin rate
for each subject) was significantly greater in platelets from asthmatic than control individuals
(Fig 4E). Thus, the relationship of ECAR/OCR is shifted in asthmatics compared to healthy
controls in the presence of oligomycin (Fig 4F). These data suggest that platelets from asth-
matic individuals show less reliance on glycolysis (and are more oxidative) than those from
control subjects.

ATP content in platelets from asthma (87.43 ± 4.61 pmol/106 platelets; n = 7) was not signif-
icantly different from controls (84.37 ± 5.32 pmol/106 platelets; n = 8; P = 0.8). However, ATP
content in the presence of glycolytic inhibition was greater in platelets from asthmatics
(69.12 ± 2.51 pmol/106 platelets; n = 7) than controls (62.71 ± 1.54 pmol/106 platelets,
P = 0.04). These data indicate less glycolytic-reliance for cellular respiration in asthma (Fig
5A).

TCA Cycle enzyme activity is increased in Asthma
The bioenergetics data presented above suggests that lactic acid production was decreased in
asthma. This is potentially due to greater conversion of pyruvate in asthma to form oxaloace-
tate, which enters the TCA cycle to fuel oxidative phosphorylation. Thus, we next assessed the
activity of the TCA cycle enzymes. Measurement of three TCA cycle enzymes, citrate synthase,
aconitase and succinate dehydrogenase, demonstrated that while protein expression was
unchanged, platelets from asthmatics showed significantly increased enzymatic activity (Fig
5B and 5C). These data support the concept of increased TCA cycle enzymatic activity in plate-
lets from asthmatic individuals, fueling oxidative phosphorylation.

Discussion
All cells have metabolic flexibility and the capacity to shift reliance to glycolysis relative to cel-
lular respiration through molecular mechanisms that enable cells to adapt as needed for
changes in nutrient substrates and/or energy demands. Our studies demonstrate that platelets
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Fig 4. Platelets show decreased glycolytic rate in asthma. (A) Extracellular acidification rate (ECAR) trace in asthmatic (filled squares) and healthy
controls (open squares) basally, after the addition of oligomycin A, FCCP and 2-DG. (B) Quantification of ECAR basally, after oligomycin A addition and 2DG
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of asthmatics had increased TCA cycle enzymatic activity and less dependence on glycolysis
and on glucose for cellular respiration, which results in mitochondria with greater capacity for
the aerobic production of ATP.

In this study, we provide evidence that supports a potential shift of cellular energy metabo-
lism from glycolysis to mitochondrial respiration in asthma. There is substantial evidence that
metabolic shifts, in particular to glycolytic pathways, have pathological consequences [38,40–
42]. However, the shift from glycolysis to mitochondrial pathways may also be detrimental
given that the electron transport chain is a significant source of reactive oxygen species. Thus,
the redirection of metabolism toward mitochondrial metabolism could augment oxidative
injury in asthma. Although mitochondria have been linked primarily to adverse consequences
of greater ROS formation in asthma, some studies do suggest greater mitochondrial efficiency
in energy production [6]. For example, individuals with mild asthma are metabolically more
efficient as compared to healthy controls, i.e. body mass index is greater in asthma even with
careful regulation of dietary intake equivalent to healthy individuals [6]. The strong consistent
relationship between asthma and obesity [3] also suggests that asthma is associated with meta-
bolic disease. Likewise, obesity has been identified as a major risk factor for the development of
asthma [3–5]. Here we found similar extracellular acidification rate (ECAR) as controls but
maintenance of oxygen consumption rate (OCR) and ATP production with glycolytic inhibi-
tion in asthmatic platelets. These data support a metabolic flexibility in asthmatic platelets that
allows for ATP production with less reliance on glycolysis.

While the current study focuses on the role of glycolysis in asthmatic platelets, it is impor-
tant to note that fuel sources other than glucose should be considered. The non-essential
amino acid glutamine can be converted to glutamate by glutaminase and shuttled into the TCA
cycle [43]. As glutamine (2mM) was present in the experimental conditions of the current
study, a switch to glutaminolysis in the in the asthmatic platelets cannot be ruled out as a
potential mechanism for the maintenance of oxygen consumption in the presence of glycolytic
inhibition. Notably, while no previous reports exist of increased glutaminolysis in asthma,
studies have documented increased plasma glutamine levels and altered glutaminase activity in
airway epithelial cells of asthmatic patients [44,45]. Further study, modulating substrate avail-
ability, is warranted to determine whether glutamine is a major fuel source in asthmatic
platelets.

These data provide new insights into metabolic origins of asthma. The ability to generate
ATP despite depletion of substrate has conceivable benefits for adaptation and acclimatization
for survival under conditions of food scarcity. Similarly, the ability to extract more oxygen for
ATP production has clear benefit under conditions of hypoxia [46,47]. Life is limited by avail-
ability of oxygen in conditions of critical illness, during extreme exercise of elite athletes, and in
challenging environments with limited inspired oxygen content. The findings in this study sug-
gest that asthmatic individuals would thrive better under conditions of limited oxygen. In fact,
asthmatic patients do very well with long-term residence at high altitude and have symptom-
atic improvement of asthma [48–50]. Intriguingly, the prevalence of asthma among elite ath-
letes is much higher than asthma in the general population, suggesting that the condition of
asthma potentially provides an advantage for aerobic extreme sports [51,52].

treatment in healthy controls (open bars) and asthmatic platelets (filled bars). (C-D) ECAR basally and after oligomycin A addition for platelets from each (C)
healthy control subject and (D) asthmatic individuals. (E) Quantification of the difference in ECAR from basal to oligomycin A addition in healthy (control)
(white bar) and asthmatic individuals (black bar). (F) The change in ECAR as a function of OCR in healthy (open circles) and asthmatic (filled squares)
platelets basally and after the addition of oligomycin A. Arrows show the shift in ECAR/OCR after oligomycin A addition. n = 12 asthma, n = 13 controls;
*p<0.01; #p<0.05.

doi:10.1371/journal.pone.0132007.g004
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Fig 5. Greater TCA Cycle Activity in Asthma. (A) ATP content in control (white bars) and asthmatic (black bars) individuals basally and after inhibition of
glycolysis by 2-DG. (B) Western analyses of aconitase expression in platelets. Asthmatic individials (lanes 4−6) had similar aconitase protein expression in
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Notably, accumulating evidence suggests that circulating platelets play an integral role in
the modulation of airway inflammation [25,28,33,34,53,54]. Platelets express surface IgE recep-
tors[55,56], secrete a number of leukocyte chemotactic mediators[28,29,33,34,53], and secrete
mitogens involved in tissue remodeling [30–32]. Additionally, platelet activation is increased
in asthmatic patients[53,57], circulating platelet aggregates have been identified in humans
after an asthma attack[57,58], bronchoalveolar lavage fluid from asthmatic subjects contain
activated platelet products[25,26] and platelet activation has been associated with bronchial
hyper-responsiveness[27]. Perhaps most importantly, platelets can directly interact with eosin-
ophils, forming circulating complexes that facilitate intercellular signaling, resulting in the
priming and activation of eosinophils [29,33–35]. Complex formation induces the surface
expression of integrins on the eosinophil, priming it for recruitment and adhesion to the
inflamed lung [29,59]. A number of studies now link altered platelet metabolism to augmented
platelet activation and function [36,60,61]. Thus, while more research is required, it is interest-
ing to speculate that platelet metabolism may represent a therapeutic target to decrease the
severity of airway inflammation.

Finally, these data confirm that beyond local airway effects, asthmatic individuals also have
systemic changes in cellular energetics. Notably, these data indicate a capacity for greater oxy-
gen utilization and more efficient energy production from substrate in platelets, similar to what
has previously been reported in the airways. These data support the idea that with further
study, platelet bioenergetics could potentially be utilized as biomarker to monitor the severity
of asthma or bioenergetic alterations that occur with therapy.
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