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Transcriptional Regulation of an Evolutionary Conserved
Intergenic Region of CDT2-INTS7
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Background. In the mammalian genome, a substantial number of gene pairs (approximately 10%) are arranged head-to-head
on opposite strands within 1,000 base pairs, and separated by a bidirectional promoter(s) that generally drives the co-
expression of both genes and results in functional coupling. The significance of unique genomic configuration remains elusive.
Methodology / Principal Findings. Here we report on the identification of an intergenic region of non-homologous genes,
CDT2, a regulator of DNA replication, and an integrator complex subunit 7 (INTS7), an interactor of the largest subunit of RNA
polymerase Il. The CDT2-INTS7 intergenic region is 246 and 245 base pairs long in human and mouse respectively and is
evolutionary well-conserved among several mammalian species. By measuring the luciferase activity in A549 cells, the
intergenic human sequence was shown to be able to drive the reporter gene expression in either direction and notably, among
transcription factors E2F, E2F1~E2F4, but not E2F5 and E2F6, this sequence clearly up-regulated the reporter gene expression
exclusively in the direction of the CDT2 gene. In contrast, B-Myb, c-Myb, and p53 down-regulated the reporter gene expression
in the transcriptional direction of the INTS7 gene. Overexpression of E2F1 by adenoviral-mediated gene transfer resulted in an
increased CDT2, but not INTS7, mRNA level. Real-time polymerase transcription (RT-PCR) analyses of the expression pattern for
CDT2 and INTS7 mRNA in human adult and fetal tissues and cell lines revealed that transcription of these two genes are
asymmetrically regulated. Moreover, the abundance of mRNA between mouse and rat tissues was similar, but these patterns
were quite different from the results obtained from human tissues. Conclusions/Significance. These findings add a unique
example and help to understand the mechanistic insights into the regulation of gene expression through an evolutionary
conserved intergenic region of the mammalian genome.
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INTRODUCTION

CDT2, a WD40 domain-containing protein, was first shown to
have an important role in DNA replication in both the mitosis and
the meiosis of fission yeast [1]. Similar to fission yeast, the
mammalian homologue of Drosophila CD'T2 was found to associate
with the Cullin-4 (Cul4) ubiquitin ligase containing the Cul4
scaffold and DDBI1 adaptor protein [2]. In Xenopus, CDT2 is
recruited to the replication forks via CDT1 and PCNA, where
CDT1 ubiquitation occurs [3]. Loss of human CDT?2 is known to
result in suppression of CDT1 proteolysis in response to DNA
damage and causes rereplication and checkpoint activation [3,4].
CDT2 and PCNA were found to interact physically with a p53
tumor suppressor and its regulator MDM?2, and those associations
are involved in CDT'1 degradation after DNA damage [5]. These
reports strongly suggest that CDT?2 is a conserved component of
the Cul4-DDB1 E3 that is essential to destroy CDT1 and ensure
proper cell cycle regulation and timing of DNA replication.
Even before the beginning of the planning of this study, we have
been interested in the transcriptional regulation of CD'T2 by the E2F
transcription factors. Because CDT2 is tightly involved in the
nitiation of DNA replication and cell cycle regulation, and probably
deregulated CDT2 expression could promote carcinogenesis
accompanying genomic instability, these considerations strongly
support the possibility that CDT?2 could be a plausible transcrip-
tional target of E2Fs. During the characterization of the putative
promoter region of human CDT2, we noticed that the integrator
complex subunit 7 (INTS7) gene is arranged in a head-to-head
orientation to the CD'T2 gene and separated by a small intergenic
sequence. INTS7 has been identified as one of twelve novel subunits,
which directly interacted with the C-terminal domain of the RNA
polymerase II largest subunit, and was shown to be evolutionarily
conserved in metazoans [6]. Recent genome-wide analyses of the
mammalian genome revealed that many genes tend to be located in
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the close vicinity of, and approximately 10% of genes constitute
neighboring paired genes to each other; arranged in an adjacent
head-to-head orientation resulted in the sharing of regulatory
sequence elements [7,8].

The unique genomic configuration of CDT?2 and INTS7, though
presumed as having a different genomic function, prompted us to
mvestigate whether the CDT2-INTS7 intergenic region could act as
a bidirectional promoter, capable of coordinating the expression
patterns of the two genes. In the present study we investigated
whether the region shared by the two genes could possibly regulate
bi-directional transcription, and that E2F's could play a critical role
solely in the regulation of CDT2. In addition, we planned to
elucidate if the tissue and developmental expression patterns differed
between CDT?2 and INTS7, and also differed between human and
rodent. If proved, our data might thus provide the first evidence that
two genes, involved in DNA replication and transcription,
respectively, could share a bidirectional promoter but have different
regulatory mechanisms.
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RESULTS
In silico and molecular analyses of the mammalian
CDT2-INTS7 intergenic region

Sequence alignment of mammalian CDT2 and INTS7 intergenic
region derived from human, chimpanzee, canine, feline, bovine,
mouse, and rat sequences showed that the two genes had head-to-
head orientation with high sequence identity (Fig. 1A, sequence
identity marked by asterisks). The nucleotide length of the
intergenic region was 246, 245, and 181 base pairs for human,
mouse, and canine, respectively (Fig. 1A, bent arrows denote the
transcriptional start sites of CDT2 and INTS7). In silico analyses
with Transfac software (threshold >85) revealed that the region
surrounding the CDT2-INTS7 intergenic region contained four
putative E2F consensus sites (denoted E2F A~D) (Fig. 1A, dotted
boxes). In addition, Spl (threshold 91), NF-Y (threshold 90),
CREB (threshold 100), and Myb (threshold 88) consensus sites
were identified at the vicinity of the transcriptional start site of the
CDT?2 gene (Fig. 1A). Among four putative human E2F consensus

CDT2-INTS7 Intergenic Region

sequences, E2F A and B were seen to locate downstream of the
transcriptional start site of human INTS7, while E2F C and D
clustered in proximity just upstream of the transcriptional start site
of human CDT2 (Fig. 1A). Sequence comparison of four putative
E2F consensus sequences among seven mammalian species
revealed that E2F A and C were relatively well conserved during
evolution, while E2F B and D were variable (Fig. 1B).

We first verified the promoter activity of the entire human, mouse,
and canine intergenic regions, then we checked our hypothesis
whether E2F1 could regulate CDT2 expression. For this purpose, we
analyzed the promoter activity of the —363/+1, —335/+32, and
—312/+54 intergenic region of human, mouse, and canine
sequences, respectively (Fig. 2A, in which the transcription start site
of CDT2 is designated as +1), by using firefly luciferase as the
reporter gene. This region was PCR-amplified from genomic DNA.
The fragment was then ligated in the CDT2 direction into the
promoterless pGL3-Basic vector upstream of the luciferase coding
region. Transient transfection assays in A549 cells revealed that the
cloned genomic fragment was sufficient for the expression of the
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Figure 1. /n silico analysis of the CDT2-INTS7 intergenic region. (A) Nucleotide sequence of the intergenic region of CDT2 and INTS7 genes. The
sequences of seven mammalian genes are aligned and conserved nucleotides are marked with asterisks under the alignment. The bent arrows
indicate the transcription start sites and direction of human genes (5'-CGATA— and 5'-AGCGC— for CDT2 and INTS7, respectively), canine genes, (5'-
TCAGT— and 5’-AACAG— for CDT2 and INTS7, respectively), and mouse genes (5'-GGCGG— and 5’-CGCGG— for CDT2 and INTS7, respectively). The
bent arrows positioned on the sequences are for CDT2. The bent arrows positioned under the sequences are for INTS7. Transfac software (threshold
>80) predicts four E2F consensus sites (E2F A~D, marked with dotted boxes), and Sp1 (5'-GAGGCGGGGA), NF-Y (5'-AAGCCAATCAG), CREB (5'-
TGACGTCA), and Myb (5'-CCAAACTGAC) transcription factor-binding sites (marked by arrows with dotted lines). (B) Computer predicted threshold
(Transfac software) of E2F A~D were summarized for seven mammalian genes.

doi:10.1371/journal.pone.0001484.g001
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Figure 2. Promoter analysis of the CDT2-INTS7 intergenic region. (A) The structure of human, mouse, and canine CDT2 and INTS7 genes in the
head-to-head orientation. Translation start codons (represented by ATG) of the CDT2 and INTS7 genes are marked by bold arrows in white.
Transcription start sites are indicated by the bent arrows. The transcription start site of CDT2 is designated as “+1". Positive (negative) numbers are
assigned to nucleotides downstream (upstream) of nucleotide +1. Arrowheads indicate the E2F consensus sites (threshold >85). Arrows with
numbers were the region and direction used for the luciferase (Luc) assay. (B) Luciferase expression of pGL3-human —363/+1, pGL3-mouse —335/
+32, and pGL3-canine —312/+54 constructs in A549 cells are shown as fold induction with respect to the pGL3-Basic vector as 1. The values reported
for transfection experiments are the means=*standard deviation (n=3). (C) Luciferase expression of pGL3-human —363/+1 (hereafter denoted as
ABCD), pGL3-mouse —335/+32, and pGL3-canine —312/+54 constructs in A549 cells were up-regulated by co-expressing the E2F1, and are shown as
fold induction with respect to the pcDNA3 vector as 1. The values reported for transfection experiments are the means=*standard deviation (n=3).

doi:10.1371/journal.pone.0001484.g002

firefly luciferase gene. By comparison with the activity of the pGL3
vector alone normalized as 1, the human, mouse, and canine
genomic fragments increased the luciferase activity by approximately
50-, 300-, and 100-fold, respectively, in the CD'T2 direction (Fig. 2B).
Co-expression of the E2F1 expression vector with the pGL3 vector
series showed that human, mouse, and canine genomic fragments
were responsible for ectopic E2F1 expression by approximately 12-,
3-, and 7-fold, respectively, compared to the activity obtained with
pcDNA3 normalized as 1 (Fig. 2C). Taken together, these results
indicate that the mammalian intergenic region could be a CDT2
promoter and is regulated by E2F1.

Human CDT2-INTS7 intergenic region acts as a

bidirectional promoter

The closeness of the transcription start sites suggested to us that the
CDT2-INTS7 intergenic region could act as a bidirectional
promoter. To check this notion, we cloned the human —363/+1
(hereafter denoted as ABCD because it contains E2I consensus sites
E2F A~D) region into a pGL3-Basic reporter plasmid in the reverse
direction (designated as ABCD Rev). Further, we produced 5" or 3’
half deleted constructs of ABCD (named AB and CD) and ABCD
Rev (named AB Rev and CD Rev) (Fig. 3A). Deletion constructs
were generated by cloning promoter PCR fragments in both
directions upstream of the firefly luciferase gene into the pGL3-Basic
vector. All constructs were checked for their promoter activity in
transient transfection experiments into A549 cells. Promoter activity
of the deletion fragments in either the CD'T2 or the INT'S7 direction
was compared to that of the constructs containing the entire
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bidirectional promoter pGL3-ABCD and pGL3-ABCD Rev.
Promoter activity was demonstrated almost equally except for AB
Rev (Fig. 3B). But the activity of AB Rev (about 20-fold) was not so
low when compared with the activities of other constructs (around
50-fold). Taken together, our results indicate that the CDT2-INTS7
intergenic region acts as a bidirectional promoter regardless of its
orientation, and the functional minimal region was seen to be most
probably inseparable within the intergenic region.

Deletion analyses of the human CDT2 promoter

To check which region of the human CDT2 promoter was
responsible for E2F1-mediated CDT?2 transcription, we made
partial deletion constructs and checked for their promoter activity
In transient transfection experiments (Fig. 4A). From the reporter
assay conducted by the same protocol described above, we were able
to note that pGL3-BCD (E2F A-deleted) decreased the promoter
activity to a level one-half that of pGL3-ABCD, indicating that E2F
B~D could still stand as E2F regulatory elements and E2F A
partially contributed to the E2F-mediated transcription (Fig. 4B).
Deletion of E2F C/D (pGL3-ABSpl, pGL3-AB), E2F A/C/D
(pGL3-B) or E2F D (pGL3-ABC) dramatically abolished the E2F1-
induced promoter activity, suggesting the E2F D site or surrounding
sequences could play a critical role in E2F1l-mediated CDT?2
expression (Fig. 4B). This is supported by the fact that pGL3-CD, in
which E2F A/D is deleted, still exerted 5-fold promoter activity.
These results suggested that E2F consensus sites adjacent to the
transcriptional start site of CDT2 were most important for E2F1-
mediated transcriptional regulation of CDT2.
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Figure 3. The human CDT2-INTS7 intergenic region acts as a bidirectional promoter. (A) Structure of human CDT2 and INTS7 genes in the head-to-
head orientation. Translation start codons (represented by ATG) of CDT2 and INTS7 genes are marked by bold arrows in white. Transcription start sites are
indicated by the bent arrows. The transcription start site of CDT2 is designated as “+1”. Positive (negative) numbers are assigned to nucleotides
downstream (upstream) of nucleotide +1. Arrowheads indicate E2F consensus sites (threshold >85). Arrows with numbers represent the region and
direction used for the luciferase (Luc) assay. (B) Luciferase expression of pGL3 constructs are summarized in (A) in A549 cells and are shown as fold
induction with respect to the pGL3-Basic vector as 1. The values reported for transfection experiments are the means=standard deviation (n=3).

doi:10.1371/journal.pone.0001484.9003

E2F1 exclusively up-regulated promoter activity in the CDT?2
direction and was not responsible for INTS7 expression through
the intergenic region. Spl, NF-YA, and CREB1 diminished both
the pGL3-ABCD and pGL3-ABCD Rev luciferase reporter
activity. Whereas B-Myb, c-Myb, and p53 had no effect on the
luciferase activity from pGL3-ABCD, they caused a significant
decrease in the promoter activity of pGL3-ABCD Rev. To address
which E2F members were crucial for CDT2 expression, pGL3-
ABCD was co-transfected with E2F family members. Our data
indicated that E2F1~E2F4 but not E2F5 and E2F6 could regulate

The human CDT2-INTS7 intergenic region is
asymmetrically regulated by transcription factors

To check the possibility that E2F'1 might regulate the transcription
in the INTS7 orientation, or which orientation of intergenic region
might be regulated by other transcription factors, we used pGL3-
ABCD and pGL3-ABCD Rev and co-expressed them with
expression vectors for E2F1, Spl, NF-YA, CREBI, B-Myb,
c-Myb, or p53. As shown in Fig. 5A, E2F1 increased the promoter
activity of pGL3-ABCD but not pGL3-ABCD Reyv, indicating that
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Figure 4. Deletion analyses of the human CDT2 promoter to identify the E2F responsive site. (A) Structure of the human CDT2 gene and location
of a series of deleted constructs. Translation start codons (represented by ATG) of CDT2 and INTS7 genes are marked by bold arrows in white.
Transcription start sites are indicated by the bent arrows. The transcription start site of CDT2 is designated as “+1". Positive (negative) numbers are
assigned to nucleotides downstream (upstream) of nucleotide +1. Arrowheads indicate E2F consensus sites (threshold >85). Arrows with numbers
represent the region and direction used for the luciferase (Luc) assay. (B) The levels of luciferase expression of human CDT2 deleted promoter
constructs in A549 cells were tested with E2F1 coexpression, and are shown as fold induction with respect to the pcDNA3 vector as 1. The values
reported for transfection experiments are the means*standard deviation (n=3; asterisk, P<<0.05 for pcDNA3 versus E2F1).
doi:10.1371/journal.pone.0001484.g004
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doi:10.1371/journal.pone.0001484.9005

CDT?2 transcription (Fig. 5B). Taken together, some regulatory
elements within CDT2-INTS7 intergenic region could asymmet-
rically regulate the transcription of both genes.

To further address whether CDT2 was regulated by endoge-
nous E2Fs in living cells, we examined the CDT2 mRNA level by
RT-PCR under the condition of adenovirus-mediated E2F1
overexpression. Western blot analysis confirmed the E2F1
overexpression in the Ad-E2F1 infected cells, whereas the Ad-
Control infected cells expressed a little E2F1 protein (Fig. 5C). On
the other hand, the GAPDH protein level was not affected in any
of the infected cells. After 24 hours virus infection, RNA was
recovered and processed for RT-PCR analysis. As shown in
Fig. 5C, Overexpression of E2F1 resulted in the upregulation of
CDT2, but not INTS7 and GAPDH, mRNA.

Expression of the CDT2 and INTS7 between human

and rodent is regulated independently

The expression of the CDT2 and INTS7 in human and rodent
tissues has not so far been mvestigated in detail. We investigated
the expression of both genes through RT-PCR of the cDNA
prepared from various human tissues and cell lines. As shown in
Fig. 6A, human CDT?2 was predominantly expressed in the testis,
a tissue containing actively dividing somatic and germ cells, and
slightly in the thymus. CDT2 transcripts were either undetectable
or present at very low levels in most other adult human tissues. In
contrast, human INTS7 was highly expressed in the liver and
pancreas and modestly in all adult tissues examined except for the
spleen. In case of fetal tissues, human CDT?2 was clearly detected
in the fetal liver, spleen, thymus, but only slightly in the lung, and
no detectable expression in brain, heart, skeletal muscle, and
kidney. Human INTS7 expression was not detected in all fetal
tissues examined (Fig. 6A). While CD'T2 was moderately expressed
in HEK293, Dul45, and H1229, expression of INTS7 was
strongly detected in all the cell lines examined except for MCF7
(Fig. 6A). G3PDH expression was equally detected in all samples.
The distinct expression pattern of human CDT2 and human
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INTS7 indicated that the expression of both genes was regulated
independently.

The expression of CDT2 and INTS7 was further analyzed in
rodent tissues. In mouse and rat tissues, the expression pattern of
CDT2 was well conserved. Namely, CDT?2 was highly expressed
in mouse/rat testis, spleen, and lung tissues, and modestly
expressed exclusively in mouse brain, and a weak signal was
observed for the remaining mouse/rat tissues (Fig. 6B and C).
Expression of CDT?2 was highly detected in 7, 11, 15, and 17-day
mouse embryotic tissue (Fig. 6B). INTS7 was constantly detected
in all the rodent samples examined, as was the case for G3PDH
(Fig. 6B and C). Taken together, both genes were expressed
differentially between humans and rodents.

DISCUSSION

In the present study we found that the region shared by the two genes
could possibly regulate bi-directional transcription, and that E2Fs
play a critical role solely in the regulation of CDT?2. In addition, we
were able to show that the tissue and developmental expression
patterns differed between CDT2 and INTS7, and also differed
between human and rodent. For example, human CDT?2 is
predominantly expressed in the testis, while human INTS7 is
ubiquitously expressed in all human tissues examined except for the
spleen. On the other hand, rodent CD'T2 is highly expressed in the
testis, spleen, and lung and rodent INTS7 is expressed also in the
spleen. Our data provided the first evidence that two genes, involved
in DNA replication and transcription, respectively, could share a
bidirectional promoter but have different regulatory mechanism.
Recent genome-wide studies have revealed that the genetic order
in eukaryotic genomes is not completely random, but that genes with
comparable and/or coordinated expression tend to be clustered
together [7,8]. Many genes are unexpectedly coupled by shared
transcribed regions in antisense orientation by bidirectional
promoters [9,10]. The linkage of two genes by bidirectional
promoters has been shown to facilitate control of functionally
related genes [11,12]. More examples still need to be added by
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individual experiments to expand the knowledge about head-to-head
gene pairs to support the computational concepts deduced from the
genome-wide approach. On the basis of this, the CDT2 and INTS7
genes provide a unique example considering that the two genes
contribute to a different phenotype, namely, DNA replication and
transcriptional regulation, respectively, though both phenotypes are
characterized as part of the fundamental process of life. In the
present study, the promoter activity was analyzed in both directions
using expression constructs with luciferase as the reporter gene in
transient transfection assays. Expression levels were comparable in
both directions. The observation that CDT2 and INTS7 share a
bidirectional promoter and that this architecture is conserved along
evolution is very intriguing given that both genes are differentially
regulated by transcription factors.

By assessing the nucleotide level identity for coding region,
human CDT2 and INTS7 show 87 and 86% identity with rodents
(mouse and rat) counterparts, respectively. This raises the
possibility that highly conserved proteins between human and
rodents being similar, the tissue distribution could be the same.
Nevertheless, both genes were expressed differentially between
humans and rodents. Moreover, the mRINA expression patterns of
CDT2 and INTS7 in multiple tissues were inconsistent. Although
the core promoter regions of CDT2 and INTS7 were highly
conserved between human and rodent, species-specific enhancer(s)
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and upstream or downstream regulatory elements of the small
intergenic fragment might be crucial for the expression pattern in
tissues. Our present data suggested that unidirectional regulation
could be achieved by transcriptional factors, at least E2Fs, through
the highly conserved intergenic region of CDT2 and INTS7.

Other than the unique role of CDT?2 as an essential component
of the Cul4-DDB1 complex that controled CDT1 levels, CDT2
has been reportedly necessary for the early G2/M checkpoint to
promote genomic stability in zebra fish [13]. In addition, CDT2
overexpression is known to be associated with the enhanced
metastatic potential of hepatocellular carcinoma [14]. We revealed
that E2Fs specifically up-regulate CD'T2 transcription. Accumu-
lating bodies of evidence suggest that E2F1 controls DNA
replication, DNA repair, apoptosis, development, and is also
mvolved in the regulation of the positive progression of tumors
[15]. The E2F-CDT2 axis might therefore be a promising
molecular clue to elucidate the etiology of carcinogenesis.

In conclusion, we present evidence that CDT2 and INTS7 may
well be tightly linked by a bidirectional promoter in an evolutionary
conserved manner. Within a short intergenic region, E2Fs could
up-regulate gene expression in the direction of the CD'T?2 gene and
B-Myb, c-Myb, and p53 could downregulate gene expression in the
direction of the INTS7 gene. The tissue distribution of mRNA for
CDT?2 and INTS7 was inconsistent with each other. Moreover, the
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presence of similarities between mouse and rat tissue mRNAs were
abundant, but these patterns were quite different from the results
obtained from human tissues. These findings add a unique example
and should help researchers understand the mechanistic insights
into the regulation of gene expression through an evolutionary
conserved intergenic region of the mammalian genome.

MATERIALS AND METHODS

Bioinformatic analyses

CLUSTAL W (1.83) multiple sequence alignment was performed
(http://align.genome.jp/sit-bin/ clustalw). Prediction of the putative
transcriptional factor binding sites was performed using Transfac
software. Genomic sequences used for these analyses were human
(NT_021877.18), chimpanzee (NW_001229613.1), canine (NW_
876323.1), feline (AANGO01612365.1), bovine (NW_001493454.1),
mouse (NT_039189.6), and rat (NW_047402.1). cDNA sequences
used were human (CDT2, NM_016448; INTS7, NM_015434),
canine (CDT2, XM_547399; INTS7, XM_547398), and mouse
(CDT2, NM_029766; INTS7, NM_178632).

Construction of reporter gene plasmids
The CDT2-INTS7 intergenic region was PCR-amplified from
human, mouse (Promega, Madison, WI), and canine (extracted
from boxer) genomic DNA by using a forward primer 5'-
GGGGTACCGTTTGACGCCATGACCCG-3' (human pGL3-
ABCD, mouse, canine, and also used for human pGL3-ABC, -AB,
and -ABSpl) and a reverse primer 5'-GAAGATCTGCCTC-
CAACTCCCGCCACT-3" (human pGL3-ABCD, mouse, canine,
and also used for human pGL3-BCD and -CD). Deletion and
inversion constructs were generated by PCR amplification of
promoter fragments by using as a template the reporter plasmids
pGL3-ABCD. The primers used were as follows; 5'-GAAGATC-
TCCTGGAGTCCAAGAGCTCCT-3" (reverse primer for
pGL3-AB), 5'-GGGGTACCTTCCCGCGGCTGGGAGAAAA-
3" (forward primer for pGL3-CD), 5'-GGGGTACCGACCC-
GAATAGTTACTCGAC-3" (forward primer for pGL3-B and
-BCD), 5'-GAAGATCTCTGACGTCACGCTCTCTGAT-3’
(reverse primer for pGL3-B and -ABSpl), 5'-GAAGATCTTC-
CGCGCCAAACTGACGTCA-3" (reverse primer for pGL3-
ABC), 5'-GGGGTACCGCCTCCAACTCCCGCCACT-3' (for-
ward primer for pGL3-ABCD Rev), 5'-GAAGATCTGTTTGA-
CGCCATGACCCG-3' (reverse primer for pGL3-ABCD Rev),
5'-GGGGTACCCCTGGAGTCCAAGAGCTCCT-3" (forward
primer for pGL3-AB Rev), 5'-GAAGATCTTTCCCGCGGC-
TGGGAGAAAA-3' (reverse primer for pGL3-CD Rev). All the
primer sequences included either Kpnl or BgllI restriction sites.
After enzyme digestion, the fragment was cloned into the Kpnl
and BgllI site upstream of the firefly luciferase reporter gene in the
pGL3-Basic vector (Promega).

pcDNA3 and pcDNAS3-E2F1~E2F6, -Spl, NF-YA, and p53
plasmids were as described previously [16-18]. CREB1I ¢cDNA
(NM_004379) was amplified with primers 5'-CGGGATCCGC-
CGCCATGACCATGGAATCTGGA-3' including BamHI site
and 5'-CCCAAGCTTATCTGATTTGTGGCAGTA-3’ includ-
ing HindIII site, and cloned into the BamHI and HindIII sites of
pCMV-Tag4A (Stratagene, La Jolla, CA). The mouse B-Myb and
human c-Myb expression plasmids were provided through the
generosity of Dr. Roger J. Watson (Imperial College London) and
Dr. Bruno Calabretta (Thomas Jefferson University), respectively.

Luciferase assay of promoter analysis
A549 cells were cultured in Earle’s modified Eagle’s medium
(Invitrogen, Carlsbad, CA) containing 10% fetal bovine serum and
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penicillin/streptomycin (Invitrogen). The cells were cultured in a
water-humidified incubator at 37°C in 5% CO5/95% air. A549
cells (3x10% were transferred into 24-well plates with 500 ul of
regular growth medium/well the day before transfection. Trans-
fections were performed with the Fugene6 reagent as recom-
mended by the manufacturer (Roche, Basel, Switzerland) with a
mixture containing 0.2 ug of each reporter plasmid and 0.6 ng of
pRL-TK (Promega), a plasmid that contains the Renilla luciferase
gene under the cytomegalovirus promoter and is utilized as an
internal control to normalize the effects of the transfection
efficiency. Cells were lysed 24 hours after transfection by applying
100 ul Passive Lysis Buffer of the Dual Luciferase Reporter Assay
Kit (Promega) into each well of the 24-well plate. Five microliters
of cell lysate was used for the luciferase reporter assay with the
same kit according to the manufacturer’s protocol. Light intensity
was quantified in a luminescence microplate reader (Wallac 1420
ARVOsx Multilabel Counter; PerkinElmer, Waltham, MA). The
luciferase activity of the reporter plasmids was normalized to the
Renilla luciferase activity. Each transfection experiment was carried
out at least three times.

RT-PCR analyses

The PCR was carried out in 25 pl of a mix consisting of 1 x buffer,
200 uM dNTPs, 400 nM primers, 1 mM MgSOy,, and 1 unit of
KOD plus DNA polymerase (Toyobo, Osaka, Japan). As a
template, 2.5 ul of cDNA purchased from Clontech (Mountain
View, CA) was used (Human I, II, Fetal, Cell Line, Mouse I, and
Rat I). The reaction consisted of 30 cycles (25 cycles for G3PDH
and 35 cycles for rat CDT2), each cycle consisting of a
denaturation step (94°C for 15 sec), an annealing step (60°C for
30 sec), and an extension step (68°C for 30 sec). PCR conditions
for rat INTS7 was 30 cycles, each cycle consisting of a
denaturation step (94°C for 15 sec) and an annealing/extension
step (68°C for 30 sec). The first cycle was preceded by a
denaturation step of 3 min at 94°C and the last one was followed
by an extension step of 3 min at 68°C. The resulting PCR
fragments were CD'T2 (human, 304 bp; mouse, 480; rat, 500 bp),
INTS7 (human, 380 bp; mouse, 510 bp; rat, 439 bp), and
G3PDH (human, mouse, and rat, 983 bp). The primer sequences
were as follows; human CDT2, 5'-CCATATCCCTGAGGACT-
GTGT-3' and 5'-TTCCCAAAGCCCAACAGTCA-3; human
INTS7, 5'-AGACTGGTCCCAGAACTACC-3" and 5'-CTTG-
ATCTCCTCGTGAGCCG; mouse CDT2, 5'-TCTCTGGGG-
GCTAGCTAAAC-3 and 5'-TCAGCTCAAGGTCACACGGC;
mouse INTS7, 5'-TGCTGCATTGGCACCTCTTA -3" and 5'-
TTAGCAGCCCACTGCACCCA; rat CDT2, 5'-AAAGCCG-
GCCCAGTATCGGC-3" and 5 -AGACTCTCCACTTGGCC-
GTC; rat INTS7, 5'-GCGTTGTTCAGCACGGGTCT-3" and
5'-TGCAGTGTGGTAGCCGCATG.

Adenovirus infection and Western blotting
Preparation of adenoviral vectors, virus infection, and Western
blotting were performed in a basically similar manner as

previously described [19,20].
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