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Abstract: Background: Although several studies have been launched towards the prediction of
risk factors for mortality and admission in the intensive care unit (ICU) in COVID-19, none of
them focuses on the development of explainable AI models to define an ICU scoring index using
dynamically associated biological markers. Methods: We propose a multimodal approach which
combines explainable AI models with dynamic modeling methods to shed light into the clinical
features of COVID-19. Dynamic Bayesian networks were used to seek associations among cytokines
across four time intervals after hospitalization. Explainable gradient boosting trees were trained to
predict the risk for ICU admission and mortality towards the development of an ICU scoring index.
Results: Our results highlight LDH, IL-6, IL-8, Cr, number of monocytes, lymphocyte count, TNF
as risk predictors for ICU admission and survival along with LDH, age, CRP, Cr, WBC, lymphocyte
count for mortality in the ICU, with prediction accuracy 0.79 and 0.81, respectively. These risk factors
were combined with dynamically associated biological markers to develop an ICU scoring index
with accuracy 0.9. Conclusions: to our knowledge, this is the first multimodal and explainable AI
model which quantifies the risk of intensive care with accuracy up to 0.9 across multiple timepoints.

Keywords: COVID-19; artificial intelligence; dynamic modeling; risk predictors; ICU scoring index

1. Introduction

The most severe pandemic of our time known as coronavirus disease 2019 (COVID-19),
is consistently yielding grievous impacts in the global healthcare system. COVID-19 is
caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) which
was officially confirmed in January 2020 after the initial COVID-19 outbreak that took
place in November 2019. Recent studies have shown that SARS-CoV-2 shares genetic
similarities with its predecessor, the SARS-CoV [1], where genome sequence analysis has
indicated that SARS-CoV-2 belongs to the Betacoronavirus genus, which includes the SARS-
CoV, and the Middle East respiratory syndrome coronavirus (MERS-CoV) [2]. However,
phylogenetic tree analysis has shown that SARS-CoV-2 is more related to Bat SARS-like
coronaviruses, such as SARS-CoV and less related to MERS-CoV [3]. The uniqueness of
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SARS-CoV-2 lies on the fact that, unlike SARS and MERS patients, COVID-19 patients
can be asymptomatic [4]. Moreover, the proliferation rate of SARS-CoV-2 is estimated to
range between 2 and 2.5 times higher than SARS and MERS, a fact that strengthens its
pandemic-causing potential. Furthermore, numerous variants of SARS-CoV-2 have been
described so far, including more than five notable mutations [5]. COVID-19 is a highly
transmittable disease, with an estimated global number of 195 million cases and 4.2 million
reported deaths so far [6]. Common symptoms of COVID-19 include fever, dry cough,
fatigue, and loss of taste and smell, among others [7], where the infection occurs mainly
through respiratory droplets from coughing and sneezing, as well as, through contaminated
surfaces [8]. Most importantly though, COVID-19 has yielded disastrous effects in the
healthcare system due to the increased need for intensive care units (ICU) and ventilators.

The clinical unmet needs and open issues in COVID-19 include: (i) the development
of explainable AI models for COVID-19 patients for ICU admission, and (ii) the detection
of risk factors for COVID-19 onset and progression, among others. Towards this direc-
tion, several studies have been reported in the literature which utilize both statistical and
artificial intelligence (AI) methods for the analysis of COVID-19 data. In [9,10], multivari-
ate logistic regression was applied across 244 and 663 patients, respectively, to identify
independent risk factors for COVID-19 mortality upon a conventional univariate analysis
which highlighted disease severity, gender, white blood cell count and age as risk factors.
Similar outcomes regarding the age and the C reactive protein (CRP) were reported in [11]
through a multivariable Cox survival analysis. Multivariate analysis was also applied in
a large retrospective study with 4404 patients [12] to identify predictors of ICU care and
mechanical ventilation, as well as, in [13] to predict ICU admission across 4997 patients,
highlighting procalcitonin, pulse oxygen saturation, smoking history, and lymphocyte
count as significant predictors. In [14], gradient boosting trees (GBT) were trained on 1270
COVID-19 patients from Wuhan to detect prominent features for COVID-19 mortality,
including disease severity, age, CRP, and lactate dehydrogenase (LDH), among others, with
increased performance. In [15], the random forest (RF) algorithm was applied on clinical
data from 214 patients with confirmed COVID-19 non-severe type and 148 with severe
type yielding increased accuracy, as well as clinical (e.g., age, hypertension, cardiovascular
disease, gender, diabetes) and laboratory (e.g., absolute neutrophil count, IL-6, and LDH)
risk factors. In [16], artificial neural networks (ANNs) and bagging methods were trained
across 162 hospitalized patients yielding APACHE II as a prominent risk factor with favor-
able sensitivity and specificity scores. In [17,18] both multivariate and machine learning
algorithms, such as, the decision trees, RF, GBT and ANNs were applied to predict ICU
admission and mortality across 635 patients [17] and 516 patients [18] yielding favorable
predictive performance.

None of the above studies, however, have assessed the interpretability and explain-
ability of risk predictors for ICU admission and/or mortality of hospitalized COVID-19
patients nor have explored dynamic associations among biological data across multiple
time intervals through a multimodal study which utilizes risk predictors to define an ICU
scoring index. In addition, the AI model validation in [13,14] was based on random splits
of the data which introduce biases in performance evaluation, while the bagging methods
in [14,15] introduce biases during the combination of multiple prediction outcomes which
obscure the performance of the models. Finally, the application of conventional multivariate
analysis (i.e., regression analysis) in [9–13] hamper the detection of risk predictors for ICU
admission and mortality with increased statistical power due to assumptions and biases
that are introduced in the analysis (e.g., the independence of the input factors).

In this work, we describe a multimodal AI approach based on an anonymized dataset
of 324 hospitalized patients who have been diagnosed with COVID-19, in Greece, that
includes laboratory and clinical information, as well as biological information across
four time intervals. The pipeline utilizes explainable and interpretable AI models along
with dynamic modeling methods to support decision making for ICU admission and/or
mortality and shed light into the pathogenesis and clinical features of COVID-19. Data
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curation is first applied to overcome data incompatibilities and inconsistencies. Subgroup
analysis is performed by dividing the curated data into four subclasses of interest based on
the ICU admission and/or mortality. Gradient boosting trees (GBT) are trained on each
subgroup to develop explainable AI models using concepts from coalition game theory to
detect risk predictors for ICU admission and mortality, as well as, to evaluate the predictors
across four time intervals. Our results highlight the importance of LDH, IL-6, IL-8, Cr,
number of monocytes, lymphocyte count, and TNF as risk predictors for ICU admission
and survival, as well as LDH, age, CRP, Cr, WBC, and lymphocyte count for mortality after
ICU admission. These predictors were combined with those from the dynamic analysis of
the biological data using dynamic Bayesian networks (DBNs) to formulate an ICU scoring
index based on APACHE II [19], where the DBNs revealed notable dependencies between
TNF and IL-6. To our knowledge, this is the first study that explores the interpretability of
AI models and risk predictors for ICU admission and mortality of hospitalized COVID-19
patients with dynamically associated biological markers.

The paper is structured as follows. Section 2 offers a comprehensive view on the
methods which were utilized in the current study, including: (i) methods for outlier
detection, de-duplication, and imputation, (ii) supervised machine learning methods for
AI modeling and ICU scoring, (iii) explainable methods for the detection of risk factors,
and (iv) association analysis methods for the dynamic modeling of the biological data. The
results of the subgroup and the overall analysis are presented in Section 3, including the
explainability of the AI models, as well as the induced decision trees and the dynamic
associations in four time intervals. The outcomes are discussed in Section 4 and future
work in Section 5.

2. Materials and Methods
2.1. Dataset Description

Anonymized patient data were collected from 324 hospitalized patients with average
age 60.65 (±14.44) who were diagnosed with COVID-19 from the 21st Department of Pul-
monary Medicine, National and Kapodistrian University of Athens, in “Sotiria” Hospital
for the diseases of the chest, as described in [20]. According to Appendix A Table A1, the
data include demographic information, comorbidities, laboratory tests (e.g., C-reactive pro-
tein), therapies (corticosteroids and antiviral agents) as well as cytokines and interleukins
measurements at four time intervals. Patient records having at least one missing value
in the admission ICU date or in mortality were ignored from the analysis (110 patients).
Thus, the final population included 214 patients with average age 60.93 (±15.38). Patients
were categorized into four groups based on their admission in the ICU and/or mortality,
where Group A included those who survived without ICU admission (131 patients, average
age 55.99 (±15.1)), Group B included patients who were not admitted to the ICU but died
(4 patients, average age 81 (±6.52)), Group C included those who were admitted to the ICU
and survived (43 patients, average age 63.79 (±11.62)), and Group D included patients who
were admitted to the ICU and died (36 patients, average age 73.81 (±9.62)).

2.2. Multimodal Data Analysis

The proposed pipeline is depicted in Figure 1. Data curation is first applied on
the anonymized patient data to remove outliers, duplicated fields and handle missing
values. The curated data are then separated into four subgroups of interest as described in
Section 2.1. Gradient boosting trees (GBT) [21] are trained on the curated data from each
group to develop AI models towards the classification of COVID-19 patients according
to the ICU admission and mortality. Shapley additive explanation analysis [22,23] from
coalition game theory is applied to identify prominent features for ICU admission and
mortality. Time series analysis is utilized through the application of dynamic Bayesian
networks (DBNs) to model the biological data (e.g., cytokines) in four different time
intervals from all patients during their hospitalization. The most important features from
the DBN analysis were combined with those from the explanation analysis to define an ICU



Diagnostics 2022, 12, 56 4 of 28

scoring index by recursively seeking subsets of features that maximize the performance of
the AI models in terms of classification accuracy. The method is applied only on the groups
that involve patient admission in the ICU (i.e., Groups C and D) using the APACHE-II
score as a standard score. The outcomes of the analysis include high-quality COVID-19
data, explainable AI models and risk factors for ICU admission and mortality, dynamically
associated biological markers, and an ICU scoring index.
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2.2.1. Data Curation

A data curation pipeline presented in [24] was applied to enhance the quality of
the data by removing outliers and further inconsistencies which imply recording errors.
Gaussian elliptic curves [25] were used to isolate outliers by fitting multivariate gaussian
distributions with different topologies (mean and standard deviation values) on the high-
dimensional distributions of the input data. The features were classified according to their
level of completeness into three categories, namely the “good” (no missing values and/or
inconsistencies), the “fair” (≤30% missing values) and the “bad” features (>30% missing
values), where the “bad” features were discarded from the analysis.

Cytokines (IL-1b, IL-6, IL-8, TNF) were grouped into four time intervals, of three days
each, starting from Day 0 (i.e., hospital admission) till Day 11, where Time Interval 1 (INT1)
corresponds to the average cytokine measures from Days 0 to 2, Time Interval 2 (INT2) from
Days 3 to 5, Time Interval 3 (INT3) from Days 6 to 8 and Time Interval 4 (INT4) from Days 9
to 11. The kNN (k-nearest neighbors) approach [26] was used to impute the missing values
only in the case of fair features to enhance the applicability and statistical power of the data.
According to the kNN approach, the missing values of a given sample are imputed using
the mean value from the non-missing k-nearest neighbors within the training subset, where
the Euclidean distance is used to estimate the distance of a sample from its neighbors.

2.2.2. Classification, AI Modeling and Explainability Analysis
2.2.2.1. Problem Definition and Classification

The gradient boosting trees (GBT) classifier [21] was trained on the curated clinical
data from each group (i.e., Groups A, C and D) to solve three binary classification problems,
including: (i) patients in Group A, who were not admitted to the ICU and survived
(outcome = 1 and 0 otherwise), (ii) patients in Group C, who were not admitted to the ICU
but died (outcome = 1 and 0 otherwise), and (iii) patients in Group D, who were admitted to
the ICU and died (outcome = 1, and 0 otherwise). Of note, patients in Group B were ignored
from the analysis due to the small population size of the target group (4 patients). In each
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group, the training procedure was repeated four times using the available time-series data
(IL-1b, IL-6, IL-8, TNF) in a sequential manner across the time intervals to evaluate the
prediction performance of the classifier.

In this work, the GBT uses a boosting ensemble strategy which combines a set of weak
regression tree learners into a much stronger one. On each boosting round, the algorithm
minimizes the gradient of a logarithmic loss function to optimize the overall performance
of the classifier. At step i, GBT seeks a weak tree learner, say fi(d), which minimizes the
following cost function:

Fi(d) = Fi−1(d) + argmin f

(
n

∑
j=1

L
(
ỹj, Fi−1

(
dj
)
+ fi

(
dj
)))

, (1)

where L(y, F(d)) is the error loss function, e.g., the mean squared error (MSE), n is the
number of samples and ỹ is the predicted value at step i.

A stratified 10-fold cross-validation procedure was used to evaluate the performance
of the AI models in terms of accuracy, sensitivity, specificity, and area under the receiver
operating characteristic (ROC) curve (AUC). Moreover, decision trees were trained on the
whole data using an optimized version of the classification and regression trees (CART)
algorithm [27] to induce interpretable rules and thus shed light into the backbone of the
decision-making process using Python 3.7.6.

2.2.2.2. AI Model Explainability and Interpretability

The Shapley additive explanations (SHAP) method [22,23] is used to quantify the
contribution of each feature to the classification outcome in each group under investigation,
where the explanation model, g, is defined as in:

g(z) = ϕo +
M

∑
j=1

ϕjzj, (2)

where z ∈ {0, 1}N is a coalition vector, M is the coalition length, and ϕj is the Shapley value
for the feature xj. The latter is defined as in [22,23]:

ϕj(v) = ∑
T⊆x\{xj}

|T|!(n− |T| − 1)!
n!

(
v
(
T ∪

{
xj
})
− v(T)

)
, (3)

where T is a subset of a set of n-input clinical features, say {x1, x2, . . . , xn}, v(T) is a vector
of the classification outcomes given the features in T, and v

(
T ∪

{
xj
})

is a vector of the
classification outcomes given the features in T marginalized over the features which are
not included in T.

According to (2) all possible sets of feature values need to be evaluated to calculate
the exact Shapley value. An approximation to (2) was given in [28], using Monte-Carlo
sampling, as in:

ϕj(v) =
1
n

n

∑
i=1

(
f
(
xj
)
− g
(
xj
))

, (4)

where f
(

xj
)

is the classification outcome for x using a set of randomly selected features
from z, excluding feature xj, and g

(
xj
)

is the same as f
(
xj
)

where xj is not excluded. The
Shapley values provide contrastive explanations of the classification outcomes which can
be utilized to reveal local interpretations for the given clinical features. These explanations
are based on the classification outcomes from specific training and testing instances.

In this work, the Shapley values are used instead of conventional scoring measures
such as the information gain and the Gini index to preserve the properties of efficiency,
symmetry, and additivity which are the fundamental properties during the evaluation of
any feature importance score [23].
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2.2.3. Time-Series Analysis Using Dynamic Bayesian Networks (DBNs)

In this study, dynamic Bayesian networks (DBNs) were used to model the biological
data (i.e., cytokines) obtained in the four time intervals from all patients during their
hospitalization [29]. To perform this, conditional probability dependencies were computed
between the set of cytokines, say X = {x1, . . . xn}, over the available time intervals. During
the structure learning process, a set of conditional probability distributions (CPDs) [30] is
computed, since each cytokine is a unique joint probability given the rest. The Bayesian
network (BN) is defined as a pair B =(G, Θ), where the first component G is an annotated
directed acyclic graph and the second one Θ represents the parameters that quantify the
network. Given G and Θ, the BN, B, defines a unique joint probability distribution over X
given by:

PB(x1, . . . xn) = Πn
i=1PB(xi|pa(xi)), (5)

where pa(xi) denotes the parents of xi, in G.
The DBN model is characterized by the joint distribution over all possible trajectories

of a process [31] and consists of a DAG that specifies the distribution over initial states
(variables at the first time slice) and a transition network for modeling the relationships of
cytokines over the different time points (i.e., transition probabilities). Given a DBN model,
the joint distribution over the cytokines X[0]∪X[1] is:

PB(x[0], . . . , x[T]) = PB0(x[0])ΠT−1
t=o PB→(x[t + 1]|x[t]). (6)

The key assumption when modeling a dynamic process with a DBN based on the
calculation of CPDs, is that temporal dependencies among the cytokines remain stable
across discrete time slices. To unwind the structure and parameters of the DBN model in this
study the bnstruct R package [32] was used. The training data included the four cytokines
(IL1b, IL6, IL8, TNF) that were measured at four time points. To infer the DBN model we
firstly characterized the structure of the network (i.e., the graph topology for yielding the
dependencies among the nodes) and subsequently we identified the parameters of each
CPD (i.e., the joint distribution of each node given the values of its parents).

2.2.4. ICU Scoring Index

A recursive ICU scoring index approach was developed to detect combinations of
features with the highest accuracy using the APACHE-II score as a standard feature in
Groups C and D. The problem is then defined as follows: For each possible set of features,
say {x, y, z}, where x is a standard feature (in this case the APACHE-II), seek the features
y, z, so that the input set {x, y, z} maximizes the performance of the AI models in terms
of accuracy. The extracted combination is considered as an ICU scoring index which
complements the APACHE-II score. The candidate features which are included in the
recursive ICU approach are those with the highest importance in the DBN analysis (in
terms of high degree of connectivity), as well as, in the Shapley explanation analysis (as
described in Section 2.2.2.2).

3. Results
3.1. Data Curation

The initial dataset included 110 features with 324 instances. Out of 324 features, 36
were discrete, 57 were continuous and 17 features had unknown data type (i.e., mixed data
types). The total number of missing values was 54.53%. After the end of the first stage
of the data curation process (Stage I, Figure 2), the total number of features was 57 with
214 instances. Out of 57 features, 20 were discrete and 37 were continuous with a total of
35.38% missing values (Stage II, Figure 2). In the final stage (Stage III, Figure 2), the k-NN
approach was applied for data imputation only on features with an acceptable percentage
of missing values (≤40%) to increase the completeness of the data before the application of
the classification models. In addition, highly associated features with the target feature,
such as, the days in the ICU and the hospitalization time were removed from the analysis.
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3.2. Subgroup Performance Evaluation of the Classification Models

The performance evaluation results on Groups A, C and D are summarized in Table 1
while the ROC curves for the Time Interval 1 are depicted in Figure 3. Due to the increased
class imbalance in Groups C (43 targets over 171 controls) and D (36 targets over 178 con-
trols), random downsampling with replacement was applied to yield equally numbered
patients across the corresponding control and target groups [24]. More specifically, the
downsampled controls were matched according to age and gender, where the downsam-
pling ratio was set to 1:1. The overall process was repeated ten times to avoid biases during
the downsampling stage. A stratified 10-fold cross validation process was applied on each
round and the performance evaluation results were averaged. According to Figure 3, the
classification performance was favorable in all groups (in terms of the true positive rate
versus the false positive rate), where the AUC score was 0.87, 0.79, and 0.88, for Groups A,
C, and D, respectively.

According to Table 1, the performance of the GBT classifier was favorable, specifically
in Groups A and D. The performance of the AI model in Group A yielded an AUC 0.84
in time interval INT1, 0.84 in time intervals INT1-INT2, 0.83 in time intervals INT1-INT3,
and 0.81 in time intervals INT1-INT4 towards the classification of the patients who were
not admitted in the ICU and survived. The AI model in Group C was able to classify the
patients who were admitted in the ICU and survived with an AUC 0.77 in INT1, 0.76 in
INT1-INT2, 0.81 in INT1-INT3, and 0.8 in INT1-INT4.
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Table 1. Performance evaluation results across sequential time intervals for Groups A, C, and D.
Group B was ignored due to the small number of patients (INT1: Days 0 to 2, INT2: Days 3 to 5, INT3:
6 to 8 and INT4: Days 9 to 11).

INT1
Groups Accuracy Sensitivity Specificity AUC

Group A * 0.77 0.77 0.71 0.84
Group C ** 0.73 0.73 0.75 0.77
Group D ** 0.77 0.77 0.78 0.83

INT1-INT2
Groups Accuracy Sensitivity Specificity AUC

Group A * 0.79 0.79 0.71 0.84
Group C ** 0.72 0.72 0.72 0.76
Group D ** 0.77 0.77 0.77 0.84

INT1-INT3
Groups Accuracy Sensitivity Specificity AUC

Group A * 0.77 0.77 0.70 0.83
Group C ** 0.78 0.77 0.80 0.81
Group D ** 0.79 0.78 0.81 0.86

INT1-INT4
Groups Accuracy Sensitivity Specificity AUC

Group A * 0.77 0.77 0.69 0.82
Group C ** 0.77 0.77 0.77 0.80
Group D ** 0.81 0.80 0.82 0.85

* A stratified 10-fold cross validation procedure was used. ** Random downsampling with replacement was
applied to match the control group with the target group due to the increased class imbalance (Section 2.1).

Diagnostics 2022, 12, x FOR PEER REVIEW 8 of 30 
 

 

positive rate versus the false positive rate), where the AUC score was 0.87, 0.79, and 0.88, 
for Groups A, C, and D, respectively. 

According to Table 1, the performance of the GBT classifier was favorable, specifi-
cally in Groups A and D. The performance of the AI model in Group A yielded an AUC 
0.84 in time interval INT1, 0.84 in time intervals INT1-INT2, 0.83 in time intervals INT1-
INT3, and 0.81 in time intervals INT1-INT4 towards the classification of the patients who 
were not admitted in the ICU and survived. The AI model in Group C was able to classify 
the patients who were admitted in the ICU and survived with an AUC 0.77 in INT1, 0.76 
in INT1-INT2, 0.81 in INT1-INT3, and 0.8 in INT1-INT4. 

 
Figure 3. ROC curves of the GBT classifier on Groups A, C, and D in Time Interval 1. 

Table 1. Performance evaluation results across sequential time intervals for Groups A, C, and D. 
Group B was ignored due to the small number of patients (INT1: Days 0 to 2, INT2: Days 3 to 5, 
INT3: 6 to 8 and INT4: Days 9 to 11). 

INT1 
Groups Accuracy Sensitivity Specificity AUC 

Group A * 0.77 0.77 0.71 0.84 
Group C ** 0.73 0.73 0.75 0.77 
Group D ** 0.77 0.77 0.78 0.83 

INT1-INT2 
Groups Accuracy Sensitivity Specificity AUC 

Group A * 0.79 0.79 0.71 0.84 
Group C ** 0.72 0.72 0.72 0.76 
Group D** 0.77 0.77 0.77 0.84 

INT1-INT3 
Groups Accuracy Sensitivity Specificity AUC 

Group A * 0.77 0.77 0.70 0.83 
Group C ** 0.78 0.77 0.80 0.81 
Group D ** 0.79 0.78 0.81 0.86 

INT1-INT4 
Groups Accuracy Sensitivity Specificity AUC 

Group A * 0.77 0.77 0.69 0.82 
Group C ** 0.77 0.77 0.77 0.80 
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Finally, the AI model in Group D classified the patients who were not admitted in the
ICU and died with an AUC 0.84 in Time Interval 1, 0.84 in INT1-INT2, 0.83 in INT1-INT3,
and 0.81 in INT1-INT4. It should be noted that the missing values in INT3 and INT4
affected the performance of the AI models against those trained in INT1.

3.3. Explainability and Interpretability of the AI Models
3.3.1. Shapley Explanation Values from the Subgroup Analysis

The mean absolute Shapley values which quantify the average impact of each feature
on the model’s output magnitude are depicted in Figure 4 (on the left subpanel) along with
the Shapley values that quantify the impact of the corresponding feature on the model
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output (on the right subpanel). Since the objective function of the GBT classifier is set to the
logistic loss, the Shapley values correspond to the log-odds. Thus, features that significantly
affect the model’s output from the base value (i.e., the average model output) to higher
log-odds are depicted in red whereas features that affect the average model’s output to
lower log-odds are depicted in blue.
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The average absolute Shapley values for Group A are depicted in Figure 4A in a
descending order (on the left subpanel) along with the Shapley values (on the right)
which quantify the positive or negative impact of the 10 most prominent features on the
model’s output. According to Figure 4A, WBC had the highest contribution to the decision-
making process by affecting the model’s output to higher log-odds for low white blood
cell (WBC) values along with lactate dehydrogenase (LDH), age, C-reactive protein (CRP),
aspartate aminotransferase (AST), number of platelets (PLT), and IL-6. Other features
include the number of lymphocytes which affect the model’s output to higher log-odds but
for higher values.

Regarding Group C, (Figure 4B) creatinine (Cr) and LDH had the highest contribution
in the classification outcome, along with the IL-8, number of monocytes (MONO), oxygen
type and TNF, where on one hand both low and high values of these features affect the
model’s output to higher log-odds but on the other hand small LDH, IL-6, number of
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lymphocytes (LYM), WBC values affect the model’s output to lower log-odds. Finally,
according to Figure 4C, LDH had the highest impact during decision-making in Group D,
along with age, CRP, Cr, and WBC, among others, where large values for age and WBC
affect the model’s output to higher log-odds but for higher values.

According to Figure A1, the overall importance in Group A using the cytokines from
INT2 is preserved, where the LDH, WBC, age, and CRP continue to appear as prominent,
as well as IL-6 but on INT2. Regarding Group B, the features LDH, IL-8, MONO, Cr and
LYM have the highest contribution to the model’s output. As far as Group D is concerned,
the contribution of LDH, age, CRP, and Cr is also dominant. According to Figure A2, the
overall importance in Groups A and B using the cytokines from INT1-INT3 is preserved.
Regarding Group D, the contribution of LDH, IL-6 in INT3 and IL-8 in INT2 and INT3
appear to be important affecting the model’s output to higher log-odds but for higher
values. Finally, according to Figure A3, the overall importance in Groups A and B using
the cytokines from all time intervals is preserved with updates in the ranking order. As for
Group D, the contribution of the LDH, IL-6 in INT3 and INT4 and IL-8 in INT2 and INT3
appear to be important.

To better understand the similarities among the Shapley values of each prominent
feature, heatmaps were also derived (Figure 5), where the horizontal axis depicts the
instances in ascending order, the vertical axis depicts the features ranked in descending
order based on their classification importance, and the color coding corresponds to the
Shapley explanation value levels across the instances in the whole dataset. Hierarchical
clustering was then applied based on the explanation similarity of the most prominent
features to identify activation patterns among the patients.
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According to Figure 5, the instances that exhibit increased explanation values using
the cytokines from INT1, include the WBC, LDH, and oxygen type, which implies that these
features can be used to derive homogeneous clusters and are in concordance with the feature
importance plots in Figure 4. A similar pattern is observed in Group C for LDH along
with IL-8, oxygen type, and TNF which are also reported in Figure 4. Regarding Group
D, the LDH is an important factor for hierarchical clustering, along with the age which
exhibits strong explanation similarities with the outcome. A similar behavior regarding
the contribution of the prominent features from the Shapley explanation analysis to the
patterns across the derived hierarchical clusters is observed in the case where the cytokine
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measurements from INT1-INT2 (Figure A4), INT1-INT3 (Figure A5), and INT1- INT4
(Figure A6) are used.

3.3.2. Induced Decision Trees

Decision trees were induced to further enhance the interpretability of the groupwise
AI models by capturing the decision pathways which are involved in the decision-making
process (Figure 6). Towards this direction, the CART algorithm [26] was applied on the
baseline and cytokine data from each individual group and across sequential time intervals
to identify critical thresholds for the prominent features, i.e., the features which are highly
involved in the decision-making process, excluding Group B due to the small number of
patients (Section 2.1).
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According to Figure 6, the decision-making process in Group A, using the baseline
data and the cytokines from INT1, is based on WBC since it is the root of the induced
decision tree. The threshold 7.58 in WBC indicates a critical value that determines whether
the decision will be based on CRP in case it is less than (or equal to) 7.58, where additional
emphasis is given on Cr (with a critical threshold at 1.5; values less than or equal to 1.5
are classified as positive) and PLT (with a critical threshold at 243.5; instances with values
larger than 243.5 are classified as positive). Otherwise, the decision-making process follows
the right pathway which is based on the lymphocyte count with a critical threshold at
1.405, where in the case that this is lower than or equal to 1.405 the decision is based on
AST (values less than or equal to 22 are classified as positive) or on age (values less than or
equal to 82.5 are classified as positive) in the case where the lymphocyte count is higher
than 1.405. It is interesting that in the case where CRP is less than (or equal to) 3.637 and
Cr is less than (or equal to) 1.5, the instance is classified as positive (i.e., no admission in
the ICU and survival). When CRP is larger than 3.637 and PLT is higher than 243.5, the
instance is also classified as positive. In the case where WBC is higher than 7.56 the instance
is classified as positive either when LYM is lower than (or equal to) 1.405 and AST is less
than (or equal to) 22 or when LYM is higher than 1.404 and the age is less than (or equal
to) 82.5.
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As far as Group C is concerned (Figure 6), the decision-making process is based on
LDH. The threshold 278 in LDH indicates a critical value that determines whether the
decision will be based on IL-8 in Time Interval 1 with a threshold at 6.355, where emphasis
is given on MONO (values less than or equal to 0.635 are classified as positive) in the case
where IL-8 is less than or equal to 6.355 or again on MONO (values less than or equal to
0.305 are classified as positive) otherwise. Otherwise, the decision-making process follows
the right pathway where emphasis is given on LYM with a critical threshold at 1.094 where
in the case it is lower than 1.094 emphasis is given on IL6 at INT1 (values larger than 9.447
are classified as positive) otherwise on WBC (values less than or equal to 5.418 are classified
as positive). It is interesting that in the case where LDH is less than (or equal to) 278 and
IL-8 is less than (or equal to) 6.355, and MONO is less than (or equal to) 0.635 the instance
is classified as positive (i.e., admission in the ICU and survival). The same occurs in the
case where IL6 is larger than 6.355 and MONO is less than 0.305. However, when LDH is
larger than 278 and LYM is larger than 1.094 and WBC is larger than 5.418 the instance is
classified as positive. The same occurs when LYM is less than (or equal to) 1.094 and IL-6 is
larger than 9.447.

Regarding Group D (Figure 6), the decision-making process is once more based on the
LDH. The threshold 357 in LDH indicates a critical value which determines whether the
decision will be based on CRP (with a critical threshold at 18.465; values larger than 18.465
are classified as positive) in the case where the LDH is less than (or equal to) 357, where
emphasis is given on Cr (values larger than 1.341 are classified as positive). Otherwise, the
decision-making process follows the right pathway where the decision is based on age with
a critical threshold at 63.5 years, where in the case it is larger than 63.5 emphasis is given on
PLT (values larger than 319.15 are classified as positive) or on Cr (values larger than 1.093
are classified as positive) otherwise. The acronyms of the features which participate in the
decision-making process (Figure 7) are described in Table A1.

The decision trees for the time intervals INT1-INT2 (Days 0 to 5), INT1-INT3 (Days
0 to 8), and INT1-INT4 (Days 0 to 11) are depicted in Figures A7–A9, respectively. In the
case where LDH is less than (or equal to) 357 and CRP is larger than 18.465 the instance is
classified as positive (i.e., admission in the ICU and death). The same occurs when CRP is
larger than 18.465 and Cr is higher than 1.341. On the other hand, when LDH is larger than
357 the instance is classified as positive either when age is larger than 63.5 years and PLT is
less than (or equal to) 319.5 or when age is larger than 63.5 years and Cr is larger than 1.093.
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3.4. DBN Modeling Analysis

The DBN model obtained on the training data encodes the probabilistic relationships
among the four cytokines in discrete time points as a DAG of 16 nodes and 30 edges
(Figure 7). Figure 7A illustrates the inferred DBN model for the four interleukins. Figure 7B
additionally presents the three measures of centrality, such as the (i) out-degree, (ii) in-
degree, and (iii) betweenness within our graph [33].

The node degree corresponds to the number of connections for each node, whereas the
node’s importance over information flow refer to the betweenness measure. The scaling of
the graph was performed according to the raw coefficients. It should be mentioned that
some of the inferred dependencies were expected when considering the ICU status of a
patient who has been diagnosed with COVID-19 and has or has not died subsequently.

IL-6 protein exhibits high degree of connectivity especially within the last time points
in the DBN model while the betweenness centrality is also high for this variable in the
last time point. We can also observe that potential connectivity appears between the
interleukins IL-6 and IL-8 over time, as well as, between TNF cytokine and IL-6 interleukin.
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3.5. ICU Scoring Index Analysis

The recursive method described in Section 2.2.4 yielded the set of features {APACHE
II, IL1b_days_0_2, IL8_days_0_2} as the one with the best performance in Group C (0.77 ac-
curacy) using only the cytokines from INT1 (the accuracy was 0.76 using only APACHE-II
score). According to Table 2, the set of features {APACHE II, IL6_days_0_2, IL1b_days_3_5},
{APACHE II, IL6_days_3_5, TNF_days_3_5}, and {APACHE II, TNF_days_3_5, TNF_days_6_8}
achieved the best performance with accuracy scores 0.78, 0.79 and 0.81 in INT1-INT2,
INT1-INT3, and INT1-INT4, respectively. As far as Group D is concerned, the set of features
{APACHE II, IL1b_days_0_2, IL6_days_0_2} achieved the best performance with accuracy
0.8 (the accuracy was 0.77 using only the APACHE-II score). Regarding the rest of the
time intervals, the set of features {APACHE II, IL6_days_0_2, IL6_days_3_5}, {APACHE II,
IL6_days_0_2, TNF_days_0_2}, and {APACHE II, IL8_days_3_5, IL1b_days_6_8} achieved
the best performance with accuracy scores 0.855, 0.869 and 0.902, in INT1-INT2, INT1-INT3,
and INT1-INT4, respectively. This implies that APACHE-II can be combined with IL-8, as
well as, with IL-6, TNF and IL-1b to yield a scoring index which could serve as a primary
indicator of the severity of the disease during the admission of patients with SARS-CoV-2
in the ICU.

Table 2. Set of features with the highest accuracy for ICU scoring.

Group C
Time intervals Set of features Accuracy

- {APACHE II} 0.76
INT1 {APACHE II, IL1b_days_0_2, IL8_days_0_2} 0.77

INT1-INT2 {APACHE II, IL6_days_0_2, IL1b_days_3_5} 0.78
INT1-INT3 {APACHE II, IL6_days_3_5, TNF_days_3_5} 0.79
INT1-INT4 {APACHE II, TNF_days_3_5, TNF_days_6_8} 0.81

Group D
Time intervals Set of features Accuracy

- {APACHE II} 0.77
INT1 {APACHE II, IL1b_days_0_2, IL6_days_0_2} 0.80

INT1-INT2 {APACHE II, IL6_days_0_2, IL6_days_3_5} 0.85
INT1-INT3 {APACHE II, IL6_days_0_2, TNF_days_0_2} 0.87
INT1-INT4 {APACHE II, IL8_days_3_5, IL1b_days_6_8} 0.90

4. Discussion

In this work, we developed a multimodal data analytics pipeline which utilizes
explainable and interpretable AI models along with dynamic modeling methods on curated
clinical data to understand the pathogenesis and risk factors of COVID-19 regarding ICU
admission and mortality. The extracted risk factors for ICU admission and/or mortality
were combined with the APACHE-II score, which has been reported in [34,35] as one of the
most contributory variables for the risk prediction of COVID-19, to develop an ICU scoring
index with accuracy 0.9 based on IL-6, IL-8, IL-1b and TNF and thus quantify the severity
of the disease. Our results highlight the importance of LDH, age, CRP, WBC, IL-6, IL-8, Cr,
number of monocytes, lymphocyte count, and TNF as risk predictors for ICU admission
(and survival) and mortality in the ICU, among others (the acronyms are described in
detail in Table A1). A similar picture is observed in the case of time intervals INT1-INT2,
INT1-INT3, and INT1-INT4 with updates in the ranking order.

The proposed method focuses on the detection of explainable risk predictors for ICU
admission and/or mortality based on high quality clinical and biological data (Figure 2),
as well as, to the identification of an ICU scoring index which complements the APACHE-
II score compared to the workflows that are presented in [17,18] and focus only on the
extraction of risk factors. Furthermore, the proposed approach avoids the application of
conventional multivariate regression analysis such as in [9–13] since these types of methods
are based on statistical assumptions regarding the independence of the input factors and
thus reduce the statistical power of the outcomes. In addition, the AI model validation
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process is not based on random splits of the data as in [13,14] nor on the application
of bagging methods as in [14,15,17] which introduce biases during the assembly stage
and the performance evaluation of the AI models. The identified risk factors for ICU
admission and mortality in the ICU are in line with those presented in the literature
(Table 3), including the LDH, CRP, IL-6, IL-8, lymphocyte count, and WBC, among others.
To further highlight the prediction performance of the proposed AI model we compared it
against four other machine learning schemas, including the logistic regression (LR), the
support vector machines (SVM), the AdaBoost and the naïve Bayes (NB). The prediction
performance results are summarized in Table A2. According to Table A2, the GBT had the
best performance in all cases and for all groups under investigation.

Table 3. Comparison with existing state-of-the-art studies.

Study Dataset Method Outcomes

[9]

Electronic medical
records with symptoms,

signs, and laboratory
findings from 244

hospitalized COVID-19
patients in China.

Multivariate logistic
regression analysis was

used to identify risk
factors for mortality.

Risk factors for
mortality: disease

severity, gender, white
blood cell count and age
as risk factors, C reactive

protein (CRP).

[10]
Clinical and laboratory

data from 663 COVID-19
patients in China.

Multivariate logistic
regression analysis to

model the disease
severity.

Risk factors for disease
severity: sex, disease

severity, expectoration,
muscle ache, and

decreased albumin.

[11]
Clinical data from 3894

COVID-19 patients
in Italy.

Machine learning
(random forest) and Cox

survival analysis were
used to identify risk

factors for mortality in
the hospital.

Risk factors for
mortality: impaired renal

function, elevated
C-reactive protein, and

advanced age.

[12]
Medical records from

4404 COVID-19 patients
in China.

Exploratory multivariate
analysis was applied to

identify predictors of ICU
care and mechanical

ventilation.

Risk factors for ICU
admission and death:

lower oxygen saturations,
high respiratory rates.

[13]

Electronic medical
records from 4997

COVID-19 patients in
the U.S.

Multivariate logistic
regression was applied to

predict ICU admission
and death.

Risk factors for ICU
admission: lactate

dehydrogenase,
procalcitonin, pulse
oxygen saturation,
smoking history,

lymphocyte count. Risk
factors for mortality:

heart failure,
procalcitonin, lactate

dehydrogenase, chronic
obstructive pulmonary
disease, pulse oxygen

saturation, heart
rate, age.

[14]
Clinical and laboratory

data from 1270 COVID-19
patients in the U.S.

Multi-tree extreme
gradient boosting

(XGBoost) was used to
detect prominent features
for COVID-19 mortality.

Risk factors for
mortality: disease

severity, age, levels of
high-sensitivity

C-reactive protein
(hs-CRP), lactate

dehydrogenase (LDH),
ferritin, and

interleukin-10 (IL-10).
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Table 3. Cont.

Study Dataset Method Outcomes

[15]
Clinical and laboratory

data from 214 COVID-19
patients in China.

Random forest (RF)
algorithm to differentiate

severe and no severe
COVID-19 clinical types

based on multiple
medical features and

provide reliable
predictions of the clinical

type of the disease.

Risk factors for disease
severity: age,
hypertension,

cardiovascular disease,
gender, diabetes, absolute

neutrophil count,
IL-6, LDH.

[16]

Clinical and laboratory
data from 162

hospitalized COVID-19
patients in Israel.

Artificial neural networks
(ANNs) and bagging

methods to predict the
risk for critical

COVID-19.

Risk factors: white blood
cell count, time from

symptoms to admission,
oxygen saturation and

blood lymphocytes count,
APACHE II.

[17]
Clinical and laboratory

data from 635 COVID-19
patients in the U.S.

Multivariate and machine
learning algorithms, such
as, the decision trees, RF,

GBT and ANNs were
applied to predict risk

factors for ICU admission
and mortality.

Risk factors for
mortality: age,

procalcitonin, C-creative
protein, lactate

dehydrogenase, D-dimer,
and lymphocytes. Risk

factors for ICU
admission: procalcitonin,

lactate dehydrogenase,
C-creative protein, pulse

oxygen saturation,
temperature, and ferritin.

[18]
Clinical and laboratory

data from 516 COVID-19
patients in China.

To produce models of
mortality or criticality

(mortality or ICU
admission) in a

development cohort
using machine learning

algorithms (e.g., XGBoost,
Random Forests).

Risk factors for
mortality: age, diastolic
pressure, O2 Sat, BMI,
AST, creatinine, CRP,

ferritin, platelet, RDW,
WBC. Risk factors for
criticality: age, O2 Sat,
ALT, AST, creatinine,
CRP, ferritin, platelet,

RDW, WBC,
neutrophil/lymphocyte

ratio.

Proposed

Clinical and biological
data across four time

points from 324
COVID-19 patients

in Greece.

A multimodal data
analytics pipeline which
utilizes explainable and
interpretable AI models

along with dynamic
modeling methods to
identify risk factors of

COVID-19 regarding ICU
admission and mortality

and develop an ICU
scoring index.

Risk factors for
mortality: LDH, IL-6,
IL-8, Cr, number of

monocytes, lymphocyte
count, and TNF. Risk

factors for ICU
admission and survival:
LDH, age, CRP, Cr, WBC,

lymphocyte count for
mortality in the ICU.

These risk factors were
combined with

dynamically associated
biological markers to

develop an ICU scoring
index with accuracy 0.9.

The classification performance of the AI model in Group A regarding the patients who
were not admitted in the ICU and survived was favorable (Table 1, Figure 3), where the
classification performance in time intervals INT3 and INT4 was less than INT1 since patients
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in Group A did not remain in the hospital for many days and thus most of the cytokine
measures in the future time intervals were missing. Regarding Group C, the performance
of the AI model in INT2 was lower than INT1 due to the higher percentage of missing
cytokines in INT2 (Table 1, Figure 3). The same occurred in INT4 when compared against
INT3. The AI model in Group D was not affected by the missing cytokine measurements,
as in the previous groups, since the number of patients who were submitted in the ICU
and died was small and easily separable thus the impact of the missing cytokines in future
time intervals was irrelevant in this case.

Regarding the findings of the explainability analysis from Section 3.3.1 (Figures 4 and 5),
the importance of LDH has been confirmed in [35–40] as an independent risk factor for
the severity and mortality of COVID-19. In addition, IL-6 has been linked to severity and
duration of hospitalization in [20]. Furthermore, IL-6 has been identified in [41] as a disease
severity predictor for COVID-19 and in [42] as a key factor, among numerous cytokines
and chemokines, the treatment of which can reduce mortality in COVID-19 patients. The
importance of IL-8 has been highlighted in [43] along with other circulating cytokines,
including IP-10 (CXCL10), MCP1 (CCL2), and RANTES (CCL5). CRP levels have been
positively associated with the severity of COVID-19 in [44–48], where the elevated levels of
CRP and IL-6 have been proposed as predictors for mechanical ventilation in COVID-19 [47].
Age is a major predictor of mortality especially in older patients and has been considered
as a key factor for the definition of various scoring systems for COVID-19 [48,49]. The
importance of IL-6 and IL-8 has been also stated in [50] in which the profiling of serum
cytokines IL-6 and IL-8 have been identified as disease severity predictors for COVID-19.
Increased cytokine levels, including TNF and IL-6 have been also reported in [20,51] as
risk factors for severity and mortality in COVID-19. Creatinine has been identified as an
independent risk factor for predicting adverse outcomes in COVID-19 patients [52] but has
been reported only on a few case studies in the literature. The diagnostic and predictive
role of the lymphocyte-to-monocyte ratio, the neutrophil-to-lymphocyte ratio, and the
platelet-to-lymphocyte ratio in COVID-19 patients has been reported in [53].

The induced decision trees (Figure 6) confirm the importance of LDH and WBC counts
in the decision-making process across Groups A, C, and D. Furthermore, the decision trees
have highlighted the importance of CRP [54] and number of lymphocytes [53] as prominent
factors for mortality in COVID-19. The clinical significance of the WBC morphology has
been noted in [55] and its diagnostic and prognostic value in COVID-19 patients has been
highlighted in [56]. The profiling of cytokines has also revealed IL-8 (apart from IL-6) as a
disease severity predictor which is in line with the findings reported in [41,48,57]. Regarding
the number of neutrophils (NEUT), the neutrophil-to-lymphocyte ratio has been found as
an independent risk factor for mortality in hospitalized patients with COVID-19 [58]. The
AST and ALT levels have been also associated with the mortality in COVID-19 patients [59].
In addition, the PLT count is related with the prediction of severe illness in COVID-19 [60].

Critical thresholds of the above risk predictors were identified by the induced decision
trees using the baseline data and the cytokines from INT1 (Figure 6). More specifically, in
Group A, the threshold 7.58 in WBC counts determines whether the decision will be based
on CRP in case it is less than (or equal to) 7.58, where emphasis is given to Cr and PLT or
LYM count, AST and age. Regarding Group C, the threshold 278 in the LDH determines
whether the decision will be based on IL-6, and the number of monocytes in case it is
less than (or equal to) 278 or on LYM, IL-6 and WBC, otherwise. As for Group D, the
threshold 357 in LDH indicates a critical value which determines whether the decision will
be based on CRP and Cr in case it is lower than (or equal to) 257, or on age, Cr and PLT
count otherwise.

To capture an overall picture of the prominent risk factors for ICU admission and
mortality a multiclass problem was also investigated using a random forests classifier
which was trained on the 214 patients to solve a four-class classification problem, where
Class “0” denotes the patients who belong in Group A, Class “1” those in Group B, Class
“2” those in Group C, and Class “3” those in Group D. Feature ranking was measured based
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on the Gini index [26] across the total number of instances. The obtained classification
performance was 0.71. The set of prominent features include the CRP, WBC, LDH, IL-6 in
INT2 and INT3, AST and age, which are in line with the findings in the subgroup analysis,
along with NEUT (number of neutrophils) and ALT (alanine transaminase) which appear
to be important, as well.

According to our results, IL-6 which has been characterized as a prognostic marker,
exhibits high degree of connectivity (in-degree) within our network (Figure 7) which implies
its increased association, in terms of causality, with other biological markers. Hence, in the
clinical practice we can detect all the causal relationships among important nodes for the
progression of the disease. The study of IL-6 in patients with severe COVID-19 pneumonia
revealed its high association with outcomes, such as, death and respiratory failure [61].
These findings are corroborated with the connections depicted in the DBN model and
the centrality measures listed in Figure 7 for this certain predictor. Moreover, functional
associations of this protein should be further investigated towards the improvement of the
risk prediction of severe COVID-19 comorbidities and death. We can also observe that the
proposed model confirms the relationships among IL-6 and IL-1b since they exhibit a high
degree of connectivity and betweenness centrality.

The DBN model yielded notable dependencies between TNF and IL-6 (Figure 7),
which support its robustness and generalizability since the analysis has identified both
as predictors for monitoring COVID-19 patients. Besides its generalizability, the DBN
model identified interesting dependencies between TNF and IL-8 which have not yet been
deeply investigated in the literature. Furthermore, the TNF cytokine presents a high in-
degree in the proposed DAG, revealing its potential and connection with other cytokines
during the disease progression. During the pandemic, anti-TNF therapy has been studied
for its potential as a treatment for COVID-19 besides the anti-IL-6 receptor therapy [62].
According to the results of the COVID-19 Global Rheumatology Alliance registry, anti-TNF
therapy was associated with a lower rate of hospital admission and death. To this end, the
elevation of concentrations in both TNF and IL-6 should be monitored for avoiding further
inflammation in COVID-19 patients and thereby avoid the need for ICU. In the case of
patients with autoimmune diseases, treatments are based on drugs such as anti-TNF agents
and interleukin-6 receptor blockers, thus favoring the onset of infections by blocking the
signal transduction from the cell surface receptors to the nucleus [63].

The ICU scoring index analysis which was conducted in Groups C and D using only
the cytokines that were identified as important from the DBN analysis and the explain-
ability analysis, yielded significant risk predictors for ICU admission and mortality. More
specifically, the proposed method was able to recursively identify the APACHE-II, IL-1b,
and IL-8 as those contributing most to the classification accuracy in Group C and for INT1,
which suggests that these features can be used as disease severity predictors for ICU scoring
and thus can determine the admission of hospitalized patients with COVID-19 in the ICU.
In addition, the APACHE-II, IL-1b, and IL-6 were also highlighted as risk predictors for ICU
admission and mortality in Group D. Regarding the rest of the time interval combinations
in Group C, it is interesting to note that cytokines measured in previous time intervals
continue to remain prominent in future time intervals as well (e.g., IL-6 from INT1 remains
important in INT1-INT2, IL-6 from INT2 preserves its importance in INT1-INT3, and TNF
from INT2 in INT1-INT4). As for Group D, a similar pattern is observed, where IL-6 from
INT1 remains important even when the cytokines from INT1-INT2 and INT1-INT3 are
used, TNF from INT1 remains important when using INT1-INT3, and IL-8 from INT2
remains prominent in the analysis even when using INT1-INT4 along with IL-1b measured
in INT3.

Altogether, our results from the baseline data and cytokines from INT1 highlight
the importance of LDH, IL-6, IL-8, Cr, number of monocytes, lymphocyte count, and
TNF as risk predictors for ICU admission and survival, as well as LDH, age, CRP, Cr,
WBC, and lymphocyte count as risk predictors for mortality after ICU admission, among
others. Based on DBN modeling the prediction of probable and reasonable trajectories was
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provided over time, considering the measurement of the four cytokines in discrete time
points. Moreover, the model revealed the probabilistic relationships among risk factors
of COVID-19 regarding ICU admission and mortality. For instance, we found that IL-6
influences the levels of TNF in the last time point and more dependencies were evidenced
over time between TNF and IL-8. The most important features from the DBN analysis were
finally combined with the risk predictors from Shapley explanation analysis to extend the
clinical impact of the APACHE-II score towards the development of a scoring index based
on IL-6, IL-8, IL-1b and TNF during the admission of hospitalized COVID-19 patients in
the ICU across different time intervals of the disease.

5. Conclusions

This work focused on the development of a multimodal and explainable AI model to
predict the risk of intensive care and mortality across multiple timepoints with accuracy
0.79 and 0.81, respectively. Modeling COVID-19 progression through DBNs by cytokines’
measurements over time identified notable dependencies among clinical and biological
markers, where most of them are biomarkers of inflammation, including the IL-8, IL-6,
CRP, LDH, and TNF. This implies that patients with critical inflammation levels have a
higher risk for ICU admission and mortality. These biomarkers were combined with the
APACHE-II score to formulate a highly robust ICU scoring index with accuracy up to 0.9.

The limitations of the current study include the small size of the available data and
the increased percentage of missing values from the available cytokine data across the
four time intervals (Days 0 to 2, 3 to 5, 6 to 8, 9 to 11), where Day 0 corresponds to the
admission day in the hospital. Towards this direction, we plan to utilize the proposed
multimodal data analysis pipeline across a larger sample hospitalized COVID-19 patients
in the future and analyze follow-up data across more time points, further enhancing the
statistical power of the outcomes. In addition, we plan to include clinical information in
the timing where the patient started to show symptoms of COVID-19 to the time he/she
presents to the hospital. We also plan to explore the fusion of the available clinical and
laboratory related data with RNA-sequencing (transcriptomic) data and/or imaging-based
features to shed light into the genetic mechanisms and underlying associations of the
existing risk prediction factors of COVID-19 for ICU admission and mortality. We plan
finally to include in our workflow additional measurements for the ratio of arterial oxygen
partial pressure (PaO2) to fractional inspired oxygen (FiO2) across multiple time intervals
and investigate its prediction value towards the selection of targeted therapeutic treatments
for COVID-19.
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Appendix A

Table A1. A summary of the features that participated in the analysis (after data curation).

Feature Description Value Range
Age - [18, 91]

Gender - [0, 2]
Comorbidities (presence) - [0, 1]

Diabetes Type I - [0, 1]
Diabetes Type II - [0, 1]

Dyslipidemia - [0, 1]
Hypertension - [0, 1]
Thyroidism - [0, 1]

COPD Chronic obstructive pulmonary disease [0, 1]
Atrial fibrillation - [0, 1]
Allergic rhinitis - [0, 1]

Asthma - [0, 1]
Others Presence of any other comorbidities [0, 1]

APACHE II - [0, 20]
Vaccination - [0, 1]

Smoking - [0, 2]

LOSYMBHOSP Day interval from the first symptom until the
admission to the hospital [1, 29]

WBC White blood cell count [2.53, 20]
NEUT Neutrophils [0.97, 17.32]
LYM Lymphocytes [0.14, 3.09]

MONO Monocytes [0.04, 1.35]
EOS Eosinophils [0, 0.71]
PLT Platelets [52, 560]
Hb Hemoglobin [8, 73]
Cr Creatinine [0.5, 3.2]

CRP C-reactive protein [0.11, 29]
AST Aspartate Aminotransferase [15, 380]
ALT Alanine Aminotransferase [8, 223]
LDH Lactate Dehydrogenase [38, 1394]

Oxygen type
0: no oxygen, 1: ventilator, 2: oxygen (mask,

nasal canula), 3: none of the above, 4:
non-invasive (CPAP, BIPAP), 5: high flow

[0, 5]

IL1b_days_0_2 Interleukin 1 beta in Time Interval 1—INT1
(averaged across Days 0–2) [0.028, 1.82]

IL6_days_0_2 Interleukin 6 in Time Interval 1—INT1
(averaged across Days 0–2) [0.137, 60.891]

IL8_days_0_2 Interleukin 8 in Time Interval 1—INT1
(averaged across Days 0–2) [0.287, 90.426]

TNF_days_0_2 (or TNFa_days_0_2) Tumor necrosis factor (alpha) in Time Interval
1—INT1 (averaged across Days 0–2) [0.963, 17.23]

IL1b_days_3_5 Interleukin 1 beta in Time Interval 2—INT2
(averaged across Days 3–5) [0.107, 1.58]

IL6_days_3_5 Interleukin 6 in Time Interval 2—INT2
(averaged across Days 3–5) [0.06, 58.841]

IL8_days_3_5 Interleukin 8 in Time Interval—INT2 (averaged
across Days 3–5) [1.635, 111.816]

TNF_days_3_5 (or TNFa_days_3_5) Tumor necrosis factor (alpha) in Time Interval
2—INT2 (averaged across Days 3–5) [1.191, 21.086]

IL1b_days_6_8 Interleukin 1 beta in Time Interval 3—INT3
(averaged across Days 6–8) [0.246, 0.968]

IL6_days_6_8 Interleukin 6 in Time Interval 3—INT3
(averaged across Days 6–8) [0.248, 17.788]

IL8_days_6_8 Interleukin 8 in Time Interval 3—INT3
(averaged across Days 6–8) [2.519, 115.776]

TNF_days_6_8 (or TNFa_days_6_8) Tumor necrosis factor (alpha) in Time Interval
3—INT3 (averaged across Days 6–8) [1.297, 10.018]

IL1b_days_9_11 Interleukin 1 beta in Time Interval 4—INT4
(averaged across Days 9–11) [0.055, 2.291]

IL6_days_9_11 Interleukin 6 in Time Interval 4—INT4
(averaged across Days 9–11) [0.0002, 176.207]

IL8_days_9_11 Interleukin 8 in Time Interval 4—INT4
(averaged across Days 9–11) [0.652, 56.1]

TNF_days_9_11 (or TNFa_days_9_11) Tumor necrosis factor (alpha) in Time Interval
4—INT4 (averaged across Days 9–11) [1.202, 9.408]

Group * 0: Group A, 1: Group B, 2: Group C, 3: Group D [0, 3]
* Group A: patients who were not admitted to the ICU and survived, Group B: patients who were not admitted to
the ICU but died, Group C: patients who were admitted to the ICU but survived, Group D: patients who were
admitted to the ICU and died.



Diagnostics 2022, 12, 56 21 of 28

Table A2. Classification accuracies of different types of classifiers (LR: logistic regression, SVM:
support vector machines, NB: naïve Bayes, AdaBoost: adaptive boosting, GBT: gradient boosting
trees) for Groups A, C, and D across sequential time intervals. Group B was ignored due to the small
number of patients (INT1: Days 0 to 2, INT2: Days 3 to 5, INT3: 6 to 8 and INT4: Days 9 to 11).

INT1
LR SVM NB AdaBoost GBT

Group A * 0.69 0.73 0.63 0.72 0.77
Group C ** 0.65 0.68 0.63 0.63 0.73
Group D ** 0.73 0.76 0.76 0.72 0.77

INT1-INT2
LR SVM NB AdaBoost GBT

Group A * 0.72 0.74 0.66 0.73 0.79
Group C ** 0.65 0.68 0.64 0.65 0.72
Group D ** 0.74 0.76 0.77 0.71 0.77

INT1-INT3
LR SVM NB AdaBoost GBT

Group A * 0.73 0.74 0.66 0.71 0.77
Group C ** 0.67 0.71 0.67 0.68 0.78
Group D ** 0.74 0.78 0.76 0.73 0.79

INT1-INT4
LR SVM NB AdaBoost GBT

Group A * 0.73 0.73 0.71 0.76 0.77
Group C ** 0.69 0.71 0.68 0.69 0.77
Group D ** 0.75 0.79 0.79 0.70 0.81

* A stratified 10-fold cross validation procedure was used. ** Random downsampling with replacement was
applied to match the control group with the target group due to the increased class imbalance (Section 2.1).
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