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Abstract: Here, we described the synthesis of novel pyrazole-s-triazine derivatives via an easy
one-pot procedure for the reaction of β-dicarbonyl compounds (ethylacetoacetate, 5,5-dimethyl-1,3-
cyclohexadione or 1,3-cyclohexadionone) with N,N-dimethylformamide dimethylacetal, followed
by addition of 2-hydrazinyl-4,6-disubstituted-s-triazine either in ethanol-acetic acid or neat acetic
acid to afford a novel pyrazole and pyrazole-fused cycloalkanone systems. The synthetic protocol
proved to be efficient, with a shorter reaction time and high chemical yield with broad substrates.
The new pyrazolyl-s-triazine derivatives were tested against the following cell lines: MCF-7 (breast
cancer); MDA-MB-231 (triple-negative breast cancer); U-87 MG (glioblastoma); A549 (non-small cell
lung cancer); PANC-1 (pancreatic cancer); and human dermal fibroblasts (HDFs). The cell viability
assay revealed that most of the s-triazine compounds induced cytotoxicity in all the cell lines tested.
However, compounds 7d, 7f and 7c, which all have a piperidine or morpholine moiety with one
aniline ring or two aniline rings in their structures, were the most effective. Compounds 7f and 7d
showed potent EGFR inhibitory activity with IC50 values of 59.24 and 70.3 nM, respectively, compared
to Tamoxifen (IC50 value of 69.1 nM). Compound 7c exhibited moderate activity, with IC50 values of
81.6 nM. Interestingly, hybrids 7d and 7f exerted remarkable PI3K/AKT/mTOR inhibitory activity
with 0.66/0.82/0.80 and 0.35/0.56/0.66-fold, respectively, by inhibiting their concentrations to 4.39,
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37.3, and 69.3 ng/mL in the 7d-treatment, and to 2.39, 25.34 and 57.6 ng/mL in the 7f-treatment
compared to the untreated control.

Keywords: one-pot synthesis; DMF-DMA; pyrazolyl-s-triazine; anticancer profile; EGFR/PI3K/AKT/mTOR;
apoptosis

1. Introduction

Pyrazole derivatives are a highly relevant class of heterocyclic compounds as they are
vital substructures in a variety of compounds with important biological properties [1–5].
They have a wide spectrum of activities, including antimicrobial [6–8], anti-inflammatory [9],
antiparasitic [10], antidepressant [11], antiviral [12], antifungal [13], and antitumor [14,15]
activity. Moreover, the pyrazole nucleus is the core unit in numerous FDA-approved phar-
maceutical drugs such as celecobix (Celebrex) [16], sildenafil (Viagra) [17], and rimonabant
(Acomplia) [18].

Given the excellent bioactivity and wide range of applications of pyrazole deriva-
tives, many studies have addressed their synthesis and bioactivities [19,20]. Furthermore,
the methodology for the synthesis of these derivatives has been summarized in several
reviews [7,21–23].

Enaminediones are widely used to generate polysubstituted pyrazoles [20,24–26].
To innovate pharmaceutically relevant pyrazoles, the research community has been at-
tracted to the capacity of enaminediones and 1,2- and 1,3-dinucleophiles to construct
diverse heterocycles [2–5].

On the other hand, many s-triazine (1,3,5-triazine) derivatives show a wide range
of biological activity [27–33]. Thus, the synthesis and evaluation of s-triazine derivatives
coupled with a pyrazolyl ring is a key endeavor in the field. s-triazines with the pyra-
zolyl fragment in their structure can be synthesized by cyclotrimerization of aromatic
nitriles [34] or from cyanuric chloride by substitution of the first or second chlorine atom
by the aromatic amines containing the pyrazolyl fragment [35]. Ayyangar et al. prepared
s-triazinylpyrazoles by reacting hydrazinyl-s-triazines with 3-iminobutyronitrile and ace-
toacetic ester [36]. Later, Mikhaylichenko et al. reported the synthesis of 1,3,5-triazine
pyrazole derivatives using quaternary amine salts [37].

Recently, we described the synthesis of pyrazole-s-triazine derivatives by direct re-
action with β-diketone, using triethylamine as a catalyst or using HClO4 in an aqueous
medium [38,39]. In the present work, we describe a one-pot method for the synthesis of
pyrazole and fused pyrazole-s-triazine derivatives in the presence of acetic acid via the
formation of the enaminedione derivatives of β-diketone.

The search for new compounds with therapeutic efficacy is a major focus in medicinal
chemistry. However, the latent progress of resistance or tolerance to these compounds over
time, particularly in the context of the treatment of diseases such as cancer, severely limits
their medical use. Many representative examples reported for cancer treatment, either
approved for human use or in late-stage clinical trials, contain the 1,3,5-triazine (s-triazine)
moiety. In 1990, the US FDA approved Hexalen (Altretamine) (Figure 1, compound I),
as an example of targeted therapy for ovarian cancer [40]. First authorized in 2017 by
the US-FDA, Enasidenib (Idhifa, compound II) is another commercial drug based on
the s-triazine scaffold and it is used to treat IDH2-positive acute leukemia [41]. Indeed,
Gedatolisib was reported as first-in-class to treat breast cancer via the PI3K/mTOR inhibitor
(Figure 1, compound III) [42]. Several molecules have been reported to be tethered to the
s-triazine motif, such as targeted EGFR-TK inhibitors IV [43] and V [44], VI ZSTK474
(as PI3K/MEK dual inhibitors) [45], and Bimiralisib (PQR309) (compound VII) [46–48].
Moreover, VIII [49] also shows anti-cancer efficacy as a dual inhibitor of PI3K/mTOR
Figure 1). More recently, compound IX possessed EGFR/PI3K/AKT/mTOR signaling
cascades inhibitor [50] (Figure 1).
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Figure 1. Selected s-triazine as an anticancer agent targeting the EGFR/PI3K/AKT/mTOR cascades
and our designed compounds.

In the framework of our ongoing project based on the use of s-triazine as a scaffold
for the development of novel agents for cancer treatment [38,39], we tested a new series
of pyrazolyl-s-triazine derivatives against MCF-7, MDA-MB-231, U-87 MG, A549, PANC-
1, and HDF cell lines. To better understand the potential mechanism of action of these
compounds in human cancer cells, we also conducted an EGFR enzymatic assay and
evaluated the PI3K/AKT/mTOR downstream signaling pathway. Finally, a molecular
docking study targeting the EGFR/PI3K/AKT/mTOR cascades was conducted.
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2. Materials and Methods
2.1. Chemistry
2.1.1. Materials and Methods

All reagents and solvents were purchased from commercial suppliers and used without
further purification. The reaction was followed up and checks of the purity were done using
TLC on silica gel-protected aluminum sheets (Type 60 GF254, Merck, Darmstadt, Germany).
Melting points were recorded on a Mel-Temp Apparatus (Sigma-Aldrich Chemie GmbH,
Taufkirchen, Germany) in an open capillary and are uncorrected. Fourier transform infrared
spectroscopy (FTIR) was conducted on a Shimadzu 8201 PC FTIR spectrophotometer
(Shimadzu, Ltd., Kyoto, Japan). 1H NMR and 13C NMR spectra were recorded on a JEOL
400 MHz spectrometer (JEOL, Ltd., Tokyo, Japan), and chemical shift (δ) values were
expressed in ppm. Elemental analyses were performed on a Perkin–Elmer 2400 elemental
analyzer (PerkinElmer, Inc., Waltham, MA, USA). High resolution mass spectrometry
(HRMS) was performed using a Bruker ESI-QTOF mass spectrometer (Bruker, Billerica,
MA, USA) in positive-ion mode.

General Procedure for the Synthesis of 2-Hydrazino-6-Substituted s-Triazine
Derivatives, 3a–l

A solution of amine (20 mmol) in acetone (50 mL) was added dropwise over 15 min to
a solution of cyanuric chloride 1 (20 mmol) in acetone (50 mL) at 0–5 ◦C. After complete
addition, an aqueous solution of NaHCO3, (22 mmol equiv.) in water (50 mL) was added
dropwise (10 min) at the same temperature. The reaction mixture was then stirred at
0–5 ◦C for 2 h. After completion of the reaction and disappearance of the starting materials
(TLC, ethyl acetate/hexane 2:8), the second nucleophile (20 mmol) in acetone (50 mL) was
added at the same temperature, followed by addition of an aqueous solution of NaHCO3
(22 mmol equiv.) in water (50 mL). The reaction mixture was stirred at 0 ◦C for 1 h and
then at rt overnight. Excess distilled water was added and the precipitates of products 2a–l
(Scheme 1) were collected by filtration, washed with water (2 × 20 mL), and dried at rt to
afford the desired products in good yield.

The chloro derivatives 2a–l were reacted with excess hydrazine hydrate (80%) for 6–8 h
following the reported method [32,33,50] to afford the desired products 3a–l (Scheme 1) as
white solids, which were used directly in the next step.

The spectral data for compounds 2a–l were previously reported by our group [32,33,50]
and agreed with the reported data.

General Procedure for the Synthesis of 5a–i

A solution of ethylacetoacetate 4 (1.0 mmol) and N,N-dimethylformamide dimethylac-
etal (1.2 mmol) was stirred for 5 min at rt and then 2,4-disubstituted-s-triazine derivatives
3a–i (Scheme 1) (1.0 mmol) in ethanol-AcOH (2:1; 10 mL) were slowly added to the mixture.
The reaction mixture was refluxed for 6–8 h. The progress of reactions was monitored by
TLC (methanol-CHCl3; 1:9 or ethylacetate-hexane; 1:1). After completion of the reaction,
the solvent was evaporated under reduced pressure, and water (20 mL) was added to the
residue, then extracted with ethylacetate (2 × 10 mL). The organic layer was successively
washed with sodium carbonate solution and water and then dried with MgSO4. Evapora-
tion of the solvent afforded target pyrazole derivatives 5a–i (Schemes 2–4). The products
were recrystallized from DCM-Petroleum ether 40–60.

1. Ethyl 1-(4,6-dimorpholino-1,3,5-triazin-2-yl)-5-methyl-1H-pyrazole-4-carboxylate, 5a

Pale yellow solid in 81% yield, mp 158–159 ◦C. 1H NMR (400 MHz, CDCl3, ppm) δ
1.34 (t, 3H, J = 7.2 Hz, CH3), 2.92 (s, 3H, CH3), 3.71. (brs, 8H, CH2-N-CH2), 3.82 (brs, 8H,
CH2-O-CH2), 4.31 (q, 2H, J = 7.2 Hz, CH2), 8.03 (s, 1H, CH-pyrazole); 13C NMR (101 MHz,
CDCl3, ppm) δ 14.1, 14.3, 43.9, 60.2, 66.7, 114.7, 143.0, 146.9, 163.5, 165.2. Anal. Calc.
for C18H25N7O4 (403.44) C, 53.59; H, 6.25; N, 24.30. Found C, 53.35; H, 6.16; N, 24.52.
HRMS-ESI (m/z) calculated for [M + H]+ 404.44; found: 404.2034.
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2. Ethyl 1-(4,6-di(piperidin-1-yl)-1,3,5-triazin-2-yl)-5-methyl-1H-pyrazole-4-carboxylate, 5b

Light brown solid in 80% yield, mp 134–136 ◦C. 1H NMR (400 MHz, CDCl3, ppm) δ
1.32 (t, 3H, J = 7.2 Hz, CH3), 1.57 (brs, 8H, 4CH2), 1.64 (brs, 4H, 2CH2), 2.92 (s, 3H, CH3),
3.76 (brs, 4H, CH2-N-CH2), 4.29 (q, 2H, J = 7.2 Hz, CH2), 8.05 (s, 1H, CH pyrazole); 13C NMR
(100 MHz, CDCl3, ppm) δ 13.9, 14.2, 24.7, 25.7, 44.5, 59.9, 114.3, 142.5, 146.7, 163.4, 163.6,
164.8. Anal. Calc. for C20H29N7O2 (399.50) C, 60.13; H, 7.32; N, 24.54. Found C, 60.34; H,
7.44; N, 24.71. HRMS-ESI (m/z) calculated for [M + H]+ 400.50; found: 400.2452.

3. Ethyl 5-methyl-1-(4-morpholino-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)-1H-pyrazole-4-
carboxylate, 5c

Light brown solid in 84% yield, mp 119–120 ◦C. 1H NMR (400 MHz, CDCl3, ppm) δ
1.33 (t, 3H, J = 7.2 Hz, CH3), 1.50–1.65 (m, 6H, 3CH2), 2.91 (s, 3H, CH3), 3.69–3.77 (m, 12H,
6CH2), 4.26 (q, 2H, J = 7.6 Hz, CH2), 8.00 (s, 1H, CH- pyrazole); 13C NMR (101 MHz, CDCl3,
ppm) δ 14.0, 14.3, 24.6, 25.7, 43.7, 44.6, 60.0, 66.8, 114.4, 142.7, 146.7, 163.5, 164.6, 165.5. Anal.
Calc. for C19H27N7O3 (401.47) C, 56.84; H, 6.78; N, 24.42. Found C, 56.66; H, 6.62; N, 24.67.
HRMS-ESI (m/z) calculated for [M + H]+ 402.47; found: 402.2255.

4. Ethyl 5-methyl-1-(4-morpholino-6-(phenylamino)-1,3,5-triazin-2-yl)-1H-pyrazole-4-
carboxylate, 5d

Beige solid in 85% yield, mp 135–137 ◦C; 1H NMR (400 MHz, CDCl3, ppm) δ 1.33 (t,
3H, J = 7.2 Hz, CH3), 2.97 (s, 3H, CH3), 3.76 (brs, 4H, CH2-N-CH2), 3.85 (brs, 4H, CH2-O-
CH2), 4.31 (q, 2H, J = 7.2 Hz, CH2), 7.09 (t, 1H, J = 7.2 Hz, Ar-H), 7.33 (t, 2H, J = 7.2 Hz,
Ar-H), 7.34 (brs, 1H, NH), 7.62 (t, 2H, J = 7.2Hz, Ar-H), 8.09 (s, 1H, CH- pyrazole); 13C NMR
(101 MHz, CDCl3, ppm) δ 14.3, 44.2, 66.5, 99.9, 117.4, 120.8, 128.9, 138.2, 143.1, 147.2, 155.9,
163.4, 164.2. Anal. Calc. for C20H23N7O3 (409.45) C, 58.67; H, 5.66; N, 23.95. Found C, 58.90;
H, 5.81; N, 24.19. HRMS-ESI (m/z) calculated for [M + H]+ 410.45; found: 410.2265.

5. Ethyl 5-methyl-1-(4-(phenylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)-1H-pyrazole-
4-carboxylate, 5e

Beige solid in 86% yield, 117–119 ◦C; 1H NMR (400 MHz, CDCl3, ppm) δ 1.39 (t, 3H,
J = 7.2 Hz, CH3), 1.67 (brs,6H, 3CH2), 2.90 (s, 3H, CH3), 3.8 (brs, 4H, CH2-N-CH2), 4.31 (q,
2H, J = 7.2 Hz, CH2), 7.09 (t, 1H, J = 7.2 Hz, Ar-H), 7.33 (t, 2H, J = 7.2 Hz, Ar-H), 7.34 (brs,
1H, NH), 7.62 (t, 2H, J = 7.2Hz, Ar-H), 7.87 (brs, 1H, NH), 8.03 (s, 1H, CH-pyrazole); 13C NMR
(101 MHz, CDCl3, ppm) δ 14.3, 24.5, 25.7, 45.1, 60.2, 114.9, 120.2, 128.8, 138.2, 143.1, 147.2,
163.4, 164.2. Anal. Calc. for C21H25N7O2 (407.48): C, 61.90; H, 6.18; N, 24.06. Found C,
61.75; H, 6.23; N, 24.28. HRMS-ESI (m/z) calculated for [M + H]+ 408.48; found:408.3255.

6. Ethyl 1-(4-((4-chlorophenyl)amino)-6-morpholino-1,3,5-triazin-2-yl)-5-methyl-1H-
pyrazole-4-carboxylate, 5f

Pale yellow solid in 87% yield, mp 190–191 ◦C. 1H NMR (400 MHz, CDCl3, ppm) δ
1.35 (t, 3H, J = 7.2 Hz, CH3), 2.96 (s, 3H, CH3), 3.76 (t, 4H, J = 3.6 Hz, CH2-N-CH2), 3.85 (t,
4H, J = 4.4Hz, CH2-O-CH2), 4.28 (q, 2H, J = 7.2 Hz, CH2), 7.26 (d, 2H, J = 8.8 Hz, Ar-H), 7.47
(d, 2H, J = 8.8 Hz, Ar-H), 7.58 (brs, 1H, NH), 8.03 (s, 1H, CH-pyrazole); 13C NMR (101 MHz,
CDCl3, ppm) δ 14.3, 44.2, 60.2, 66.5, 115.1, 121.6, 128.9, 136.7, 143.2, 147.2, 163.3, 164.5, 165.2.
Anal. Calc. for C20H22ClN7O3 (443.15) C, 54.12; H, 5.00; Cl, 7.99; N, 22.09. Found C, 54.30;
H, 5.13; N, 22.31. HRMS-ESI (m/z) calculated for [M + H]+ 444.15; found: 444.1551.

7. Ethyl 1-(4-((4-chlorophenyl)amino)-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)-5-methyl-1H-
pyrazole-4-carboxylate, 5g

Beige solid in 89% yield, mp 140–142 ◦C; 1H NMR (400 MHz, CDCl3, ppm) δ 1.34 (t,
3H, J = 7.2 Hz, CH3), 1.62 (brs, 4H, 2CH2), 1.69 (brs, 2H, CH2), 2.97 (s, 3H, CH3), 3.80 (brs,
4H, CH2-N-CH2), 4.29 (q, 2H, J = 7.6 Hz, CH2),7.27 (dd, 2H, J = 3.6, 4.0 Hz, Ar-H), 7.38
(brs, 1H, N-H), 7.48 (d, 2H, J = 8.02, Ar-H), 8.03 (s, 1H, CH pyrazole); 13C NMR (101 MHz,
CDCl3, ppm) δ: 14.1, 14.3, 24.5, 25.6, 45.1, 60.2, 114.8, 121.2, 128.3, 128.8, 137.0, 142.9, 147.1,
153.6, 157.6, 162.2, 163.4, 164.6. Anal. Calc. for C21H24ClN7O2 (441.92) C, 57.08; H, 5.47; N,
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22.19. Found C, 57.21; H, 5.60; N, 22.34. HRMS-ESI (m/z) calculated for [M + H]+ 442.92;
found:442.9225.

8. Ethyl 1-(4-((4-methoxyphenyl)amino)-6-morpholino-1,3,5-triazin-2-yl)-5-methyl-1H-
pyrazole-4-carboxylate, 5h

Beige solid in 82% yield, mp158–160 ◦C; 1H NMR (400 MHz, CDCl3, ppm) δ: 1.32 (t,
3H, J = 7.2 Hz, CH3), 2.95 (s, 3H, CH3), 3.75 (m, 4H, CH2-N-CH2), 3.78 (s, 3H, OCH3), 3.82
(brs, 4H, CH2-O-CH2),4.28 (q, 2H, J = 7.6 Hz, CH2), 6.85 (d, 2H, J = 9.2 Hz, Ar-H), 7.43
(d, 2H, J = 8.0 Hz, Ar-H), 8.03 (s, 1H, CH-pyrazole), 8.10 (brs, 1H, NH); 13C NMR (101 MHz,
CDCl3, ppm) δ: 14.1,14.7, 44.0, 55.4, 60.2, 66.51, 113.9, 114.9, 122.2, 142.9, 146.7, 163.5, 165.5,
176.1. Anal. Calc. for C21H25N7O4 (439.48): C, 57.39; H, 5.73; N, 22.31. Found C, 57.55; H,
5.86; N, 22.18. HRMS-ESI (m/z) calculated for [M + H]+ 440.48; found:440.4556.

9. Ethyl 1-(4-((4-methoxyphenyl)amino)-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)-5-methyl-
1H-pyrazole-4-carboxylate, 5i

Beige solid in 84% yield, mp 116–118 ◦C; 1H NMR (400 MHz, CDCl3, ppm) δ 1.35 (t,
3H, J = 7.2 Hz, CH3), 1.62 (brs,4H, 2CH2), 1.67 (brs, 2H, CH2), 2.96 (s, 3H, CH3), 3.77 (brs,
4H, CH2-N-CH2), 3.79 (s, 3H, OCH3), 4.29 (q, 2H, J = 7.2 Hz, CH2), 6.87 (d, 2H, J = 8.6 Hz,
Ar-H), 7.43 (brs, 1H, NH), 7.46 (d, 2H, J = 8.8 Hz, Ar-H), 8.03 (s, 1H, CH-pyrazole); 13C NMR
(101 MHz, CDCl3, ppm) δ: 13.99, 14.04, 24.6, 25.7, 44.9, 55.4, 60.1, 113.9, 114.7, 122.1, 131.5,
142.8, 146.9, 162.0, 163.5, 165.5, 175.7. Anal. Calc. for C22H27N7O3 (437.50): C, 60.40; H,
6.22; N, 22.41. Found: C, 60.57; H, 6.35; N, 22.67. HRMS-ESI (m/z) calculated for [M + H]+

438.50; found:438.2255.

General Procedure for the Synthesis of s-Triazine Derivatives 7a–t

A neat mixture of N,N-dimethylformamide dimethyl acetal (1.2 mmol) and 5,5-
dimethyl-1,3-cyclohexadione 6a or 1,3-cyclohexadione 6b (Scheme 5) were mixed together
and stirred for 10 min at rt. The hydrazine derivatives 3a–l (1.0 mmol) in glacial acetic acid
(10 mL) were slowly added to the mixture. The reaction mixture was refluxed for 8–12 h,
and its progress was monitored by TLC (methanol-CHCl3; 1:9 or ethyl acetate-hexane, 1:1.
After completion of the reaction, the mixture was left to cool to rt and then poured into ice-
cold water (50 mL). The aq. solution was extracted with ethyl acetate, washed 10% Na2CO3
solution, and water several times, then dried (Na2SO4) to afford the target products 7a–t
which were recrystallized from ethyl acetate to give the pure products (Scheme 5).

1. 1-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-6,6-dimethyl-1,5,6,7-tetrahydro-4H-indazol-4-
one, 7a

Light brown solid in 80% yield, mp 196–198 ◦C. 1H NMR (400 MHz, CDCl3, ppm)
δ: 1.09 (s, 6H, 2CH3), 2.39 (s, 2H, CH2), 3.2 (s, 2H, CH2), 3.73 (brs, 8H,2 CH2-N-CH2),
3.83 (brs, 8H, 2 CH2-O-CH2), 8.08 (s, 1H, CH-pyrazole); 13C NMR (101 MHz, CDCl3, ppm)
δ: 28.5, 39.8, 43.6, 43.8, 51.8, 66.7, 120.9, 139.6, 151.5, 162.9, 164.6, 165.1, 193.0. Anal. Calc.
for C20H27N7O3 (413.48) C, 58.10; H, 6.58; N, 23.71. Found C, 58.24; H, 6.71; N, 23.53.
HRMS-ESI (m/z) calculated for [M + H]+ 414.48; found: 414.2246.

2. 1-(4,6-Di(piperidin-1-yl)-1,3,5-triazin-2-yl)-6,6-dimethyl-1,5,6,7-tetrahydro-4H-indazol-
4-one, 7b

Off-white solid in 83% yield, mp 176–177 ◦C. 1H NMR (400 MHz, CDCl3, ppm) δ 1.08
(s, 6H, 2CH3), 1.65 (brs, 12H, 6CH2), 2.38 (s, 2H, CH2), 3.22 (brs, 2H, CH2), 3.81 (brs, 8H,
4CH2; CH2-N- CH2), 8.12 (s, 1H, CH-pyrazole); 13C NMR (101 MHz, CDCl3, ppm) δ 24.6,
25.8, 28.5, 35.3, 40.0, 45.0, 51.8, 120.1, 139.6, 151.5, 162.3, 163.7, 193.1 (CO). Anal. Calc. for
C22H31ClN7O (409.54) C, 64.52; H, 7.63; N, 23.94. Found C, C, 64.72; H, 7.81; N, 23.65.
HRMS-ESI (m/z) calculated for [M + H]+ 410.54; found: 410.2664.
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3. 1-(4,6-Bis(phenylamino)-1,3,5-triazin-2-yl)-6,6-dimethyl-1,5,6,7-tetrahydro-4H-indazol-
4-one, 7c

Light brown solid in 80% yield, mp 227–229 ◦C; 1H NMR (400 MHz, CDCl3, ppm) δ
1.09 (brs, 6H, 2CH3), 2.35 (brs, 2H, CH2), 3.06-3.34 (brs, 2H, CH2), 7.16 (brs, 2H, Ar-H), 7.33
(brs, 4H, Ar-H), 7.56 (brs, 4H, Ar-H), 8.07 (s, 1H, CH-pyrazole), 8.19 (brs, 1H, NH); 13CNMR
(101 MHz, CDCl3, ppm) δ 28.5, 35.2, 39.6, 51.7, 114.0, 121.1, 123.4, 124.2, 129.2, 140.2, 152.3,
163.3, 175.2, 192.8 (CO). Anal. Calc. for C24H23N7O (425.50): C, 67.75; H, 5.45; N, 23.04.
Found: C, C, 67.98; H, 5.67; N, 23.30. HRMS-ESI (m/z) calculated for [M + H]+ 426.50;
found: 426.2039.

4. 6,6-Dimethyl-1-(4-morpholino-6-(phenylamino)-1,3,5-triazin-2-yl)-1,5,6,7-tetrahydro-
4H-indazol-4-one, 7d

Off-white solid in 80% yield, mp 236–238 ◦C. 1H NMR (400 MHz, CDCl3, ppm) δ: 1.06
(s, 6H, 2CH3), 2.39 (s, 2H, CH2), 3.24 (s, 2H, CH2), 3.77 (brs, 4H, 2CH2; CH2-N-CH2), 3.88
(brs, 4H, 2CH2; CH2-O-CH2), 7.10 (t, 1H, J = 7.6, Ar-H), 7.34 (t, 2H, J = 8.0, Ar-H), 7.7.53 (t,
2H, J = 7.6, Ar-H), 8.11 (s, 1H, CH-yrazole); 13C NMR (101 MHz, CDCl3, ppm) δ: 28.5, 35.3,
39.7, 44.2, 51.8, 66.5, 120.4, 121.1, 128.1, 138.1, 139.6, 141.7, 151.6, 162.7, 164.3, 165.2, 193.0
(CO). Anal. Calc. for C22H25N7O2 (419.49) C, 62.99; H, 6.01; N, 23.37. Found C, 62.73; H,
6.11; N, 23.54. HRMS-ESI (m/z) calculated for [M + H]+ 420.49; found:420.3225.

5. 6,6-Dimethyl-1-(4-(phenylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)-1,5,6,7-tetrahydro-
4H-indazol-4-one, 7e

Off-white solid in 86% yield, mp 230–232 ◦C. 1H NMR (400 MHz, CDCl3, ppm) δ 1.10
(s, 6H, 2CH3), 1.64 (brs, 4H, 2CH2), 1.71 (brs, 2H, CH2), 2.39 (s, 2H, CH2), 3.26 (s, 2H, CH2),
3.84 (brs, 4H, 2CH2; CH2-N-CH2), 7.06 (t, 1H, J = 7.6 Hz, Ar-H), 7.31 (t, 2H, J = 8.0, Ar-H),
7.35 (brs, 1H, NH), 7.56 (t, 2H, J = 7.6, Ar-H), 8.08 (s, 1H, CH pyrazole); 13C NMR (101 MHz,
CDCl3, ppm) δ 24.6, 25,7, 28.5, 35.3, 39.7, 39.7, 45.1, 51.8, 120.1, 120.9, 123.7, 128.9, 138.3,
139.4, 151.6, 163.4, 164.7, 165.2, 193.1 (CO). Anal. Calc. for C23H27N7O (417.52) C, 66.17; H,
6.52; N, 23.48. Found C, 66.32; H, 6.66; N, 23.21. HRMS-ESI (m/z) calculated for [M + H]+

418.44; found:418.4225.

6. 1-(4-((4-Chlorophenyl)amino)-6-morpholino-1,3,5-triazin-2-yl)-6,6-dimethyl-1,5,6,7-
tetrahydro-4H-indazol-4-one, 7f

Off-white solid in 81% yield, mp 237–239 ◦C. 1H NMR (400 MHz, CDCl3, ppm) δ
1.11 (s, 6H, 2CH3), 2.41 (s, 2H, CH2), 3.21 (brs, 2H, CH2), 3.79 (t, 4H, J = 4.4 Hz, 2CH2,
CH2-N-CH2), 3.91 (brs, 4H, 2CH2; CH2-O-CH2), 7.31 (d, 2H, J = 8.8, Ar-H), 7.52 (d, 2H,
J = 8.8 Hz, Ar-H), 8.12 (s, 1H, CH, pyrazole); 13C NMR (101 MHz, CDCl3, ppm) δ 28.5, 35.3,
39.7, 44.2, 51.7, 66.4, 121.4, 128.9, 140.1, 151.2, 162.7, 164.3, 176.0, 192.8 (CO). Anal. Calc.
for C22H24ClN7O2 (453.93) C, 58.21; H, 5.33; N, 21.60. Found C, 58.43; H, 5.45; N, 21.83.
HRMS-ESI (m/z) calculated for [M + H]+ 454.93; found:454.9522.

7. 1-(4-((4-Chlorophenyl)amino)-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)-6,6-dimethyl-1,5,6,7-
tetrahydro-4H-indazol-4-one, 7g

Off-white solid in 85% yield, mp 258–260 ◦C. 1H NMR (400 MHz, CDCl3, ppm) δ
1.09 (s, 6H, 2CH3), 1.72 (brs, 6H, 3CH2), 2.39 (s, 2H, CH2), 3.19 (brs, 2H, CH2), 3.87 (brs,
4H, 2CH2; CH2-N-CH2), 7.24 (d, 2H, J = 8.4, Ar-H), 7.55 (d, 2H, J = 8.0, Ar-H), 8.12 (s, 1H,
CH, pyrazole), 9.72 (brs, 1H, NH); 13C NMR (101 MHz, CDCl3, ppm) δ: 24.3, 25.7, 28.5, 35.3,
39.6, 45.6, 51.7, 121.5, 128.9, 140.1, 151.6, 163.4, 164.7, 165.2, 176.0, 193.1 (CO). Anal. Calc.
for C23H26ClN7O (451.96) C, 61.12; H, 5.80; N, 21.69. Found C, 61.29; H, 5.91; N, 21.43.
HRMS-ESI (m/z) calculated for [M + H]+ 452.96; found:452.8556.

8. 1-(4-((4-Methoxyphenyl)amino)-6-morpholino-1,3,5-triazin-2-yl)-6,6-dimethyl-1,5,6,7-
tetrahydro-4H-indazol-4-one, 7h

Beige crystals for ethyl acetate in 81% yield, mp 190–192 ◦C; 1H NMR (400 MHz,
CDCl3, ppm) δ 1.08 (s, 6H, 2CH3), 2.35 (brs, 2H, CH2), 3.22 (brs, 2H, CH2), 3.75 (m, 7H,
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OCH3, 2CH2, CH2-N-CH2), 3.84 (brs, 4H, 2CH2; CH2-O-CH2), 6.84 (d, 2H, J = 8.8, Ar-H),
7.38 (brs, 2H, Ar-H), 7.85 (brs, 1H, NH), 8.01 (s, 1H, CH pyrazole); 13C NMR (101 MHz, CDCl3,
ppm) δ 28.5, 35.3, 39.5, 44.2, 51.7, 55.5, 66.4, 113.9, 121.2, 122.1, 130.6, 139.6, 151.6, 156.3,
161.7, 163.3, 164.8, 176.0, 192.8 (CO). Anal. Calc. for C23H27N7O3 (449.52) C, 61.46; H, 6.05;
N, 21.81. Found C, 61.67; H, 6.21; N, 22.01. HRMS-ESI (m/z) calculated for [M + H]+ 450.52;
found: 450.2253.

9. 1-(4-((4-Methoxyphenyl)amino)-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)-6,6-dimethyl-
1,5,6,7-tetrahydro-4H-indazol-4-one, 7i

Beige crystals from ethyl acetate in 85% yield, mp 178–180 ◦C; 1H NMR (400 MHz,
CDCl3, ppm) δ: 2.09 (brs, 2H, CH2), 2.44 (brs, 2H, CH2), 3.35 (brs, 2H, CH2), 3.66 (brs,
8H, 4OCH2-), 3.78 (brs, 8H, 4NCH2-), 8.02 (s, 1H, CHpyrazole); 13C NMR (101 MHz, CDCl3,
ppm) δ 25.7, 28.5, 35.2, 39.6, 45.2, 51.7, 55.4, 114.0, 121.1, 122.0, 130.6, 139.5, 151.9, 156.0,
163.3, 169.4, 175.2, 193.1 (CO). Anal. Calc. for C24H29N7O2 (447.24) C, 64.41; H, 6.53; N,
21.91. Found C, 64.23; H, 6.41; N, 22.013. HRMS-ESI (m/z) calculated for [M + H]+ 447.24;
found: 448.2453.

10. 1-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-1,5,6,7-tetrahydro-4H-indazol-4-one, 7j

White precipitate from ethyl acetate in 94% yield; mp 260–262 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 2.07 (brs, 2H, CH2), 2.42 (brs, 2H, CH2), 3.37 (brs, 2H, CH2), 3.64 (brs, 8H,
4OCH2-), 3.76 (brs, 8H, 4NCH2-), 7.98 (s, 1H, CHpyrazole); 13C NMR (101 MHz, DMSO-d6)
δ 23.1, 25.0, 37.8, 43.5, 43.6, 66.8, 66.9, 121.2, 138.7, 152.8, 162.4, 164.6, 193.0; Anal. Calc.
for C18H23N7O3 (385.43): C, 56.09; H, 6.02; N, 25.44. Found: C, 56.35; H, 6.19; N, 25.66;
HRMS-ESI (m/z) calculated for [M + H]+ 386.43; found: 386.4432.

11. 1-(4,6-Di(piperidin-1-yl)-1,3,5-triazin-2-yl)-1,5,6,7-tetrahydro-4H-indazol-4-one, 7k

Off-white precipitate from ethyl acetate in 92% yield; mp 199–200 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 1.51 (brs, 8H, 4CH2), 1.62 (brs, 4H, 2CH2), 2.05 (brs, 2H, CH2),
2.42 (brs, 2H, CH2), 3.28 (brs, 2H, CH2), 3.73 (s, 8H, 4NCH2-), 7.98 (s, 1H, CHpyrazole);
13C NMR (101 MHz, DMSO-d6) δ 23.1, 24.2, 24.9, 25.2, 37.3, 43.8, 121.0, 138.3, 152.4, 162.5,
164.3, 193.0; Anal. Calc. for C20H27N7O (381.48): C, 62.97; H, 7.13; N, 25.70. Found: C, 63.12;
H, 7.30; N, 25.97; HRMS-ESI (m/z) calculated for [M + H]+ 382.48; found: 382.3455.

12. 1-(4-Morpholino-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)-1,5,6,7-tetrahydro-4H-indazol-4-
one, 7l

Off-white precipitate from ethyl acetate in 89% yield; mp 212–214 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 1.54 (brs, 4H, 2CH2), 1.64 (brs, 2H, CH2), 2.05-2.18 (m, 2H, CH2),
2.42-2.46 (m, 2H, CH2), 3.33 (brs, 2H, CH2), 3.65 (brs, 4H, 2OCH2), 3.76 (brs, 8H, 4NCH2),
8.02 (s, 1H, CHpyrazole); 13C NMR (101 MHz, DMSO-d6) δ 23.1, 24.1, 24.9, 25.2, 37.3, 44.3,
43.7, 65.9, 121.1, 138.5, 152.6, 162.5, 164.8, 193.0; Anal. Calc. for C19H25N7O2 (383.46): C,
59.51; H, 6.57; N, 25.57. Found: C, 59.73; H, 6.66; N, 25.80; HRMS-ESI (m/z) calculated for
[M + H]+ 384.46; found: 384.4465.

13. 1-(4-Morpholino-6-(phenylamino)-1,3,5-triazin-2-yl)-1,5,6,7-tetrahydro-4H-indazol-4-
one, 7m

Off-white precipitate from ethyl acetate in 94% yield, mp 298–300 ◦C; 1H NMR
(400 MHz, CDCl3) δ 2.26 (brs, 2H, CH2), 2.61 (brs, 2H, CH2), 3.36 (brs, 2H, CH2-), 3.89 (brs,
4H, 2OCH2), 3.97 (brs, 4H, 2 NCH2), 7.28 (m, 2H, Ar-H), 7.39 (d, J = 8.0 Hz, 2H, Ar-H),
7.47 (d, J = 8.1 Hz, 2H, Ar-H), 7.47 (brs, 1H, NH), 8.13 (s, 1H, CH pyrazole), 9.92 (s, 1H, NH);
13C NMR (101 MHz, CDCl3) δ 22.7, 24.7, 37.1, 45.4, 66.2, 113.6, 116.4, 122.3, 123.6, 129.6,
134.7, 137.6, 154.4, 160.2, 161.3, 194.9; Anal. Calc. for C20H21N7O2 (391.44): C, 61.37; H,
5.41; N, 25.05. Found: C, 61.62; H, 5.52; N, 25.37; HRMS-ESI (m/z) calculated for [M + H]+

392.44; found: 392.3455.
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14. 1-(4-(Phenylamino)-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)-1,5,6,7-tetrahydro-4H-indazol-
4-one, 7n

White precipitate from ethyl acetate in 87% yield; mp 256–258 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 1.161 (s, 4H, 2 CH2), 1.68 (s, 2H, CH2), 2.10 (brs, 2H, CH2), 2.49 (brs, 2H,
CH2), 3.33 (brs, 2H, CH2), 3.82 (s, 4H, 2NCH2), 7.05 (m, 1H, Ar-H), 7.32 (t, J = 8.4 Hz, 2H,
Ar-H), 7.80 (d, J = 8.8 Hz, 2H, Ar-H), 8.08 (s, 1H, CHpyrazole), 10.05 (brs, 1H, NH); 13C NMR
(101 MHz, DMSO-d6) δ 23.1, 24.1, 24.9, 25.4, 37.4, 44.3, 120.3, 121.2, 122.7, 128.6, 138.6,
139.3, 152.7, 162.5, 164.2, 193.0; Anal. Calc. for C21H23N7O (389.46): C, 64.76; H, 5.41; N,
25.05. Found: C, 61.62; H, 5.95; N, 25.18; HRMS-ESI (m/z) calculated for [M + H]+ 390.46;
found: 390.3545.

15. 1-(4-((4-Chlorophenyl)amino)-6-morpholino-1,3,5-triazin-2-yl)-1,5,6,7-tetrahydro-4H-
indazol-4-one, 7o

Off-white precipitate from ethyl acetate in 90% yield; mp 292–294 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 2.01 (brs, 2H, CH2), 2.43 (brs, 2H, CH2), 3.35 (brs, 2H, CH2),
3.70 (brs, 4H, 2OCH2), 3.79 (brs, 4H, 2NCH2-), 7.38 (d, J = 8.8 Hz, 2H, Ar-H), 7.77 (d, 2H,
J = 8.8 Hz, Ar-H), 8.05 (s, 1H, CHpyrazole), 10.23 (brs, 1H, NH); 13C NMR (101 MHz, DMSO-
d6) δ 23.1, 25.0, 37.4, 43.8, 65.9, 111.9, 121.3, 121.8, 128.5, 138.2, 140.4, 152.9, 163.2, 164.5,
193.1; Anal. Calc. for C20H20ClN7O2 (425.88): C, 56.41; H, 4.73; N, 23.02. Found: C, 56.61;
H, 4.87; Cl, 8.51; N, 23.20; HRMS-ESI (m/z) calculated for [M + H]+ 426.88; found: 427.1144.

16. 1-(4-((4-Bromophenyl)amino)-6-morpholino-1,3,5-triazin-2-yl)-1,5,6,7-tetrahydro-4H-
indazol-4-one, 7p

Off-white precipitate from ethyl acetate in 95% yield; mp 290–292 ◦C; 1H NMR
(400 MHz, CDCl3) δ 2.26 (t, J = 6.2 Hz, 2H, CH2), 2.63 (t, J = 6.6 Hz, 2H, CH2), 3.38 (t,
J = 6.4 Hz, 2H, CH2), 3.88 (m, 4H, 2OCH2-), 3.97 (m, 4H, 2NCH2), 7.32 (d, J = 8.7 Hz, 2H,
Ar-H), 7.51 (d, J = 8.3 Hz, 2H, Ar-H), 8.10 (s, 1H, CHpyrazole), 9.95 (s, 1H, NH); 13C NMR
(101 MHz, CDCl3) δ 22.5, 24.6, 37.0, 45.5, 66.0, 110.6, 113.5, 116.3, 119.2, 120.1, 123.5, 124.2,
132.4, 133.6, 142.2, 153.2, 154.8, 160.5, 161.0, 195.8; Anal. Calc. for C20H20BrN7O2 (470.33):
C, 51.07; H, 4.29; N, 20.85, Found: C, 51.37; H, 4.41; N, 20.99; HRMS-ESI (m/z) calculated
for [M + H]+ 471.33; found: 471.3255.

17. 1-(4-((4-Methoxyphenyl)amino)-6-morpholino-1,3,5-triazin-2-yl)-1,5,6,7-tetrahydro-4H-
indazol-4-one, 7q

Off-white precipitate from ethyl acetate in 88% yield; mp 254–256 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 2.04 (brs, 2H, CH2), 2.44 (brs, 2H, CH2), 3.35 (brs, 2H, CH2), 3.69
(brs, 4H, 2OCH2), 3.74 (brs, 4H, 2NCH2), 3.79 (s, 3H, OCH3), 6.91 (d, J = 8.8 Hz, 2H, Ar-H),
7.62 (d, J = 8.6 Hz, 2H, Ar-H), 8.04 (s, 1H, CHpyrazole), 10.00 (s, 1H, NH); 13C NMR (101 MHz,
DMSO-d6) δ 23.1, 24.9, 37.8, 44.4, 55.2, 65.9, 113.9, 121.2, 121.7, 124.2, 138.5, 138.6, 152.8,
154.6, 164.9, 193.0; Anal. Calc. for C21H23N7O3 (421.46): C, 59.85; H, 5.50; N, 23.26. Found:
C, 59.98; H, 5.66; N, 23.86; HRMS-ESI (m/z) calculated for [M + H]+ 422.46; found: 422.4566.

18. 1-(4-((4-Chlorophenyl)amino)-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)-1,5,6,7-tetrahydro-
4H-indazol-4-one, 7r

White precipitate from ethyl acetate in 91% yield; mp. 265–267 ◦C; 1H NMR (400 MHz,
CDCl3) δ 1.75–1.78 (d, J = 11.0 Hz, 6H, 3 CH2), 2.30 (d, J = 6.6 Hz, 2H, CH2), 2.63 (s, 2H,
CH2), 3.37 (s, 2H, CH2), 3.88 (s, 4H, 2NCH2-), 7.38 (s, 2H, Ar-H), 7.48 (s, 2H, Ar-H), 8.13 (s,
1H, CH pyrazole), 10.21 (s, 1H, NH); 13C NMR (101 MHz, CDCl3) δ 22.86, 24.17, 25.29, 27.7,
37.30, 47.84, 111.52, 116.41, 124.39, 128.81, 133.79, 142.42, 154.16, 161.58, 162.63, 194.68; Anal.
Calc. for C21H22ClN7O (423.91): C, 59.50; H, 5.23; Cl, 8.36; N, 23.13, O, 3.77. Found: C, 59.66;
H, 5.39; Cl, 8.57; N, 23.41, O, 3.99. (m/z) Calcd: 423.91; LC-MS [M + H]+ Found: 425.0025.
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19. 1-(4-((4-Bromophenyl)amino)-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)-1,5,6,7-tetrahydro-
4H-indazol-4-one, 7s

Off-white precipitate from ethyl acetate in 96% yield; mp. 280–283 ◦C; 1H NMR
(400 MHz, CDCl3) δ 1.73 (td, J = 10.1, 9.6, 4.5 Hz, 6H, 3 CH2), 2.24 (s, 2H, CH2), 2.57 (s,
2H, CH2), 3.36 (s, 2H, CH2), 3.88 (s, 4H, 2NCH2), 7.47 (s, 4H, Ar-H), 8.13 (s, 1H, CHpyrazole),
9.95 (s, 1H, -NH); 13C NMR (101 MHz, DMSO-d6) δ 22.77, 24.61, 25.45, 27.41, 36.16, 43.88,
111.49, 117.25, 120.79, 122.24, 124.34, 130.17, 138.83, 148.84, 154.24, 161.45, 162.24, 165.31,
193.05; Anal. Calc. for C21H22BrN7O (468.36): C, 53.85; H, 4.73; Br, 17.06, N, 20.93, O, 3.42,
Found: C, 54.12; H, 4.89; Br, 17.39; N, 21.20, O, 3.55, (m/z) Calcd: 468.36; LC-MS [M + H]+

Found: 469.1269.

20. 1-(4-((4-Methoxyphenyl)amino)-6-(piperidin-1-yl)-1,3,5-triazin-2-yl)-1,5,6,7-tetrahydro-
4H-indazol-4-one, 7t

Off-white precipitate from ethyl acetate in 82% yield; mp. 233–235 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 1.47 (s, 4H, 2 CH2), 1.66 (s, 2H, CH2), 2.09 (s, 2H, CH2), 2.34 (s, 2H,
CH2), 3.05 (2H, CH2), 3.74 (s, 4H, 2NCH2-), 3.81 (s, 3H, -OCH3), 6.90 (s, 2H, Ar-H), 7.61
(s, 2H, Ar-H), 8.04 (s, 1H, CHpyrazole), 10.06 (s, 1H, NH); 13C (101 MHz, DMSO-d6) δ 20.80,
24.66, 25.82, 26.55, 37.26, 43.83, 55.72, 112.27, 120.79, 122.09, 123.00, 125.76, 133.16, 137.58,
153.21, 155.94, 163.01, 164.45, 166.42, 193.57, Anal. Calc. for C22H25N7O2 (419.49): C, 62.99;
H, 6.01; N, 23.37, O, 7.63. Found: C, 63.15; H, 6.17; N, 23.52, O, 7.85. (m/z) Calcd: 419.49;
LC-MS [M + H]+ Found: 420.2336.

2.2. Biology
2.2.1. Cell Culture

The parental MCF-7 (breast cancer), MDA-MB-231 (triple-negative breast cancer), U-87
MG (glioblastoma), A549 (non-small cell lung cancer), and PANC-1 (pancreatic cancer)
cell lines and HDFs (human dermal fibroblasts) were obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA). MCF-7 and A549 cells were cultured as
an attached monolayer and maintained in RPMI 1640 medium (EuroClone, Milan, Italy)
supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS) (EuroClone, Milan,
Italy), 1% penicillin-streptomycin (EuroClone, Milan, Italy), and 2 mM L-glutamine. MDA-
MB-231 cells were cultured as an attached monolayer and maintained in MEM (EuroClone,
Boston, MA, USA) supplemented with 10% (v/v) heat-inactivated fetal bovine serum
(FBS) (EuroClone, Milan, Italy), 1% penicillin-streptomycin (EuroClone, Milan, Italy), and
2 mM L-glutamine. U-87, PANC-1 and HDFs were cultured as an attached monolayer
and maintained in DMEM (EuroClone, Milan, Italy) supplemented with 10% (v/v) heat-
inactivated FBS (EuroClone, Milan, Italy), 1% penicillin-streptomycin (EuroClone, Milan,
Italy), and 2 mM L-glutamine. All cells were incubated at 37 ◦C in a 5% CO2 tissue culture
incubator (Memmert, Schwabach, Germany).

2.2.2. Cell Viability Assay (MTT)

To determine the IC50 of the synthesized compounds 5a–i and 7a–t on the cell lines,
an MTT assay was performed [51]. MDA-MB-231, MCF-7, and PANC-1 cells were seeded
into 96-well plates at 8 × 103 cells/well (Corning, New York, NY, USA), and U-87 and
A549 cells and HDFs were seeded at 6.5 × 103 cells/well. All cell lines were treated with
concentrations of the tested compounds ranging from 0.5 to 500 µg/mL. Cells were then
incubated at 37 ◦C in a 5% CO2 incubator for 72 h, after which the old media was aspirated
and the MTT assay salt (Bioworld, Visalia, CA, USA) in 100 µL of fresh media was added to
each well. Next, plates were incubated at 37 ◦C for 3 h, then 50 µL of solubilization solution
(DMSO) was added to each well to determine cell viability. The absorbance of the solution
was measured at 560 nm using a Glomax plate reader (Promega, Madison, WI, USA).
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2.2.3. EGFR Protein Kinase (PK) Inhibition

The EGFR-TK assay kit (ADP-GloTM kinase assay, Cat No. V9261, Promega, USA)
was used to determine the inhibitory capacity of compounds 7d, 7f and 7c against EGFR.
The autophosphorylation percentage inhibition by the compounds was calculated using
the following equation: 100−

[
Control
Treated − Control] using the curves of percentage inhibition

of 8 concentrations of each compound. IC50 values were calculated using GraphPad Prism
7 software (Dotmatics, San Diego, CA, USA) [52].

2.2.4. PI3K/AKT/mTOR Downstream Signaling Pathway

ELISA kits of PI3K assay kit (Cat. No. MBS268899, Promega, Madison, MI, USA), AKT
assay kit (Cat. No. MBS9511022, Promega, USA), and mTOR assay kit (Cat. No. LS-F21147,
Promega, USA) were used to study the PI3k/AKT/mTOR downstream signaling pathway
in MDA-MB-231 cells treated with 7d, 7f and 7c at their IC50 values or in untreated cells of
the same line.

2.2.5. Apoptosis by Flow Cytometry

To study the growth inhibition of all the cell lines treated with 5a–i and 7a–t, the
mechanism of apoptosis was determined by Annexin V/Propidium iodide (PI) stain using
flow cytometry. Each cell line was seeded at 1 × 105 cells/well in 6-well plates and
exposed to the IC50 concentration of each compound for that specific cell line, as shown in
Table 1. After 72 h, the cells were trypsinized using StemPro™ Accutase™ Cell Dissociation
Reagent (Gibco™, Inchinnan, UK). The collected cells were then washed with PBS. Next,
the Annexin V/PI apoptosis kit (Invitrogen, Waltham, MA, USA) was used to stain the cell
pellets, following the manufacturer’s instructions. 10,000 events were counted by BD FACS
CANTO II and analyzed using BD FACS Diva™ software version 7.0.

2.2.6. Gene Expression Analysis Using RT-qPCR

To further examine the apoptotic pathway, we assessed the gene expression of P53,
Bax, Caspases-3, -8, and -9 as proapoptotic genes, Bcl-2 as the anti-apoptotic gene, and
the downstream pathway of PI3K/AKT/mTOR. MDA-MB-231 cells were treated with
compound 7f at its IC50 value for 48 h. After completing the treatment, cells were collected,
and total RNA was extracted using the RNeasy® Mini Kit (Qiagen, Hilden, Germany).
cDNA was then synthesized using 500 ng of RNA (i-Script cDNA synthesis kit, BioRad,
Hercules, CA, USA). Finally, each RT-qPCR reaction was performed following routine
work [53]. The Ct values were then collected to calculate the relative gene expression in all
samples by normalization to the β-actin housekeeping gene [54,55].

2.2.7. CDOCKER Docking

CDOCKER is a CHARMm-based simulated annealing/molecular dynamics method
that uses rigid receptors for docking [56]. The CDOCKER protocol includes the following
steps: (i) A set of ligand conformations is generated using high-temperature molecular
dynamics starting with different random seeds. (ii) Random orientations of the conforma-
tions are produced by translating the center of the ligand to a specified location within the
receptor active site and performing a series of random rotations. (iii) A softened energy is
calculated, and the orientation is kept if the energy is less than a specified threshold. This
process continues until either the desired number of low-energy orientations is found, or
the maximum number of poor orientations has been attempted. (iv) Each orientation is
subjected to simulated annealing molecular dynamics. The temperature is heated to a high
preset temperature and then cooled to the target temperature. (v) A final minimization
of the ligand in the rigid receptor using non-softened potential is performed. For each
final pose, the CHARMm energy (interaction energy plus ligand strain) and the interaction
energy alone is calculated. The poses are sorted by CHARMm energy and the top-scoring
(most negative, thus favorable to binding) poses are retained. To enhance performance and
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shorten calculation times, a non-bond energy grid is used to calculate interaction energy
rather than the full potential energy terms commonly used by CHARMm.

The following CDOCKER parameters were implemented in this study. A binding
site sphere of 10.14 Å radius surrounding the copied co-crystallized ligand from the
EGFR structure (PDB code: 6v6o) was implemented. The conformers of the starting lig-
ands were energy-minimized and then heated to 1000 K over 1000 molecular dynamics
steps to generate 50 starting random conformations for each ligand. Each random con-
former was rotated 50 times within the binding pocket for subsequent energy refinement.
The van der Waals energies of the resulting conformers/poses were examined and those
of ≥300 kcal/mol were discarded. Surviving conformers/poses were subjected to a cycle
of simulated annealing over 2000 heating steps to the targeted temperature of 700 K,
followed by 5000 cooling steps to the targeted temperature of 300 K. The docked poses
were energy-minimized to a gradient tolerance of zero kcal/mol/Å. A total of 599 poses
were saved for subsequent scoring.

2.2.8. Scoring of Docked Poses

The highest-ranking docked conformers/poses generated by CDOCKER were scored
using 9 scoring function: Jain [57,58], LigScore1, LigScore2 [59], PLP1, PLP2 [57], PMF,
PMF04 [60,61], -CDOCKER Energy, and -CDOCKER Interaction Energy [56].

LigScore1 and LigScore2 scores were calculated using the CFF force field (version
1.02) and grid-based energies with a grid extension of 7.5 Å across the binding site.
PMF scores were calculated using cutoff distances of 12.0 Å for carbon–carbon inter-
actions and other atomic interactions, while PMF04 scores were calculated employing
cutoff values of 6.0 and 9.0 Å for carbon-carbon interactions and other atomic interactions,
respectively. -CDOCKER Energy and -CDOCKER Interaction Energy were calculated
using the Momany-Rone ligand partial charge method. Docked conformers/poses were
selected based on consensus among the 9 scoring functions [62,63]. The consensus
function assigned a value of 1 for any molecular pose ranked within the highest 20%
by the particular scoring function; otherwise, it was assigned a zero value (i.e., fit was
within the lowest 80%). Subsequently, the consensus function summed up the scores for
each molecular pose/conformer and ranked the molecular orientation. Docked poses
of a particular ligand that achieved consensus among at least 8 scoring functions were
selected and saved.

3. Results and Discussion
3.1. Chemistry

Hydrazino s-triazine derivatives 3a–l required for this study were prepared fol-
lowing our reported method [32,33,50] (Scheme 1), where cyanuric chloride 1 was
reacted with the first nucleophile at 0 ◦C in the presence of NaHCO3 as a base and
acetone–water as a solvent for 2 h. The second nucleophile was added at the same
temperature in the presence of 1 equiv. of NaHCO3 and the reaction was stirred at room
temperature (rt) for 24 h. The products 2-chloro-4,6-disubstituted s-triazine derivatives
2a–l were treated with hydrazine hydrate in ethanol under reflux for 6–8 h to afford
the hydrazino derivatives 3a–l [32,33,50], which were used directly in the next step
without further purification.
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Scheme 1. Synthesis of hydrazine-disubstituted s-triazine derivatives 3a–l.

To optimize the reaction conditions for the incorporation of the pyrazole ring into
the s-triazine scaffold, we started with the study of 4-hydrazinyl-6-morpholino-N-phenyl-
1,3,5-triazin-2-amine 3d as the model substrate (Table 1). Initially, ethylacetocacetate 4
(1 equiv.) was reacted with neat DMF-DMA (1.2 equiv.) at rt for 5–10 min to generate
the enaminedinone intermediate I (Scheme 2), followed by the addition of 4-hydrazinyl-
6-morpholino-N-phenyl-1,3,5-triazin-2-amine 3d (1 equiv.) in 5% acetic acid in ethanol.
The reaction mixture was refluxed for 4 h and monitored by TLC (n-hexane-ethylacetate,
1:1), which showed two products. The reaction did not promote at all with longer time
(8 h) (Table 1, entries 1 and 2). The 1H-NMR spectrum (Supporting information, Figure S1)
showed the two products 5d and 5d’ in a 1:1 ratio. Given that the yield of these products
(5d and 5d’, Scheme 2) was low, we hypothesized that this parameter could be affected by
reaction time or acid loading in the medium.
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Encouraged by this result, we focused on the solvent effect (Table 1). The reaction was
repeated by altering the AcOH ratio (10%, 20% and 33.3%). Screening of AcOH loading
revealed that the increasing percentage of AcOH was crucial, as the chemical yield of the
cyclized product rather than the open form was enhanced. The optimal reaction condition
was 33.3% AcOH, affording the final cyclized compound 5d in 90% yield in 6 h (Entry 5),
which increased to 95% after 8 h (Entry 6).

Table 1. Optimization of the cycloaddition reaction for the formation of the pyrazole derivatives.

Entry Solvent Time (h) 5d’ % 5d%

1 5% AcOH-EtOH 4 50 50
2 5% AcOH-EtOH 8 50 50
3 10% AcOH-EtOH 8 40 60
4 20% AcOH-EtOH 6 ~20 ~80
5 AcOH-EtOH (1:2) 6 traces ~90
6 AcOH-EtOH (1:2) 8 traces ~95

The tentative synthetic reaction pathway is shown in Scheme 2. It comprises the
initial formation of the enamine intermediate I in situ, followed by nucleophilic attack
by the hydrazine derivative in the presence of AcOH to afford the final cyclized prod-
uct. The hydrazine derivative 3d could possible attack the enamine intermediate I via
two pathways (A or B). The enamine intermediate I is typically more reactive in bath A
(5d) via initial addition-elimination amine-exchange of the dimethylamino group by the
hydrazine derivative to afford the product 5d through the open analogue 5d’ after removal
of water molecule form the intermediate II [64,65]. This analogue of pyrazole derivative 5d
is more favor than its analogue in path B which first formation of the Schiff base (interme-
diate III) then Nu-attack to the enamine to afford the cyclized analogue 5d” after removal
of NEMe2 (Scheme 3) [64,65].
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Under the optimized conditions and configured the synthetic pathway, various hy-
drazine derivatives 3a–i, including various heterocycles (morpholine and piperidine) and,
substituted aryls employed in this reaction and furnished the products 5a–i, as indicated
in Scheme 4 in excellent yield. The spectral data for the synthesized compounds 5a–i are
provided in the supporting information, see Figures S2–S9).
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Scheme 4. Synthesis of pyrazole-s-triazine derivatives 5a–i.

To explore a cyclized 1,3-dicarbonyl compounds instead of ethylacetoacetate, for
example, 5,5-dimethyl-1,3-cyclohexandione 6a or 1,3-cyclohexadionone 6b were employed
in the reaction under the optimized reaction condition used for the synthesis of 5a–i but did
not afford the final compound 7. In contrast, when the reaction was run in a neat AcOH,
complete reaction occurred after 8–12 h, as shown by TLC (n-hexane-ethylacetate, 1:1).
After completion of the reaction, the acidic solution was poured into ice-cold water and
extracted with AcOEt or CHCl3. Next, the organic phase was washed with 10% Na2CO3
solution and NaCl solution and then dried over anhydrous MgSO4. The desired products
7a–t (Scheme 5) were obtained after evaporation of the solvent.

The structures of all the products obtained were established by IR, NMR (1H and 13C),
elemental analysis, and HRMS-ESI (Figures S10–S29 for the NMR spectrum and Figures
S30–S38 for the HRMS). In addition, compound 7t (CCDC No.: 2177427) was assigned
based on single crystal X-ray diffraction analysis [66–69] (see Supporting Information).
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3.2. Biology
3.2.1. Cytotoxicity

The anticancer activity of the pyrazolyl-s-triazine derivatives (5a–i and 7a–t; Table 2)
was studied in the following cell lines: human breast cancer (MCF-7 and MDA-MB-231);
glioblastoma (U-87 MG); non-small cell lung cancer (A549); pancreatic cancer (PANC-1);
and human dermal fibroblasts (HDFs). Most of the derivatives affected the viability of
the six cancer cell lines, as determined by the MTT cell viability assay [51] (Table 2 and
Figure 2). The most effective compounds were 7d, 7f, and 7c. Of note, the substitution
of the triazine ring had a marked impact on anticancer activity (Table 2). In most cases,
compounds 5a–i (carboxylate derivatives) showed lower activity than 7a–t (5,5-dimethyl-
1,3-cyclohexadione and 1,3-cyclohexadionone derivatives). Moreover, 5,5-dimethyl-1,3-
cyclohexadione s-triazine derivatives 7a–i showed higher activity against most cancer cells
compared with 1,3-cyclohexadionone derivatives 7j–t. In general, compounds with the
aniline moiety exerted greater activity compared to those with a morpholine or piperidine
ring. Interestingly, piperidine and morpholine can be considered to belong to the same
family in some aspects of their synthetic chemistry. The presence of the piperidine moiety
was detrimental for anticancer activity, as observed in compounds with both the piperidine
and aniline ring attached to the triazine ring, compared to morpholine analogs. Compounds
with two aniline moieties showed the highest activity (Table 2). Thus, 5d, which contains
morpholine and aniline, showed IC50 values of 39.4± 1.9, 42.2± 3.4, 73.8± 21.0, 26.4 ± 2.7,
10.5 ± 2.4, and 33.4 ± 3.7 (µM) against MDA-MB-231, U-87 MG, PANC-1, A549, MCF-7
and HDFs, respectively. In contrast, compounds with two morpholine 5a, two piperidine
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5b, one morpholine and one piperidine 5c and one piperidine and aniline 5e showed
lower activity, with higher IC50 values. In addition, compounds with substituted aniline
(p-bromo-, p-chloro-, or p-methoxyanilne) exerted lower activity than unsubstituted aniline
in this series of compounds. The same behavior was observed with series of compounds
7a–t (Table 2).

Table 2. IC50 values of the tested compounds after the MTT assay showing variable responses of the
treated cell lines with different specificity.

Compound
Anticancer Activity in Human Cancer Cells Lines

IC50 ± STDEV (µM/mL)

MDA-MB-231 U-87 MG PANC-1 A549 MCF-7 HDFs
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MCF-7 and HDFs, respectively. In contrast, compounds with two morpholine 5a, two pi-

peridine 5b, one morpholine and one piperidine 5c and one piperidine and aniline 5e 

showed lower activity, with higher IC50 values. In addition, compounds with substituted 

aniline (p-bromo-, p-chloro-, or p-methoxyanilne) exerted lower activity than unsubsti-

tuted aniline in this series of compounds. The same behavior was observed with series of 

compounds 7a–t (Table 2). 

In general, the IC50 of 7d, 7f, and 7c revealed a reduction in the viability of the cancer 

cell lines tested compared to the normal fibroblasts. Interestingly, there were some varia-

tions in the IC50 values of the compounds in the distinct cancer cell lines. For instance, 7c 

showed similar IC50 values against MCF-7, U-87 MG, and PANC-1 cell lines (15.7–17.1 

µM) while the values against the MDA-MB-231 and A549 cells were 28.2 and 49.8 µM, 

respectively. Compound 7d was found to be more powerful against MCF-7, U-87 MG, 

and A549 cells, with IC50 values of 8.3, 10.9, and 12.4 µM, respectively. On the other hand, 

the MDA-MB-231 cancer cell line showed resistance to 7d compared to the HDFs. Com-

pound 7f was the least effective against the cancer cell lines. However, it showed selectiv-

ity against the MDA-MB-231 cell line compared to the other compounds and the IC50 of 

other cell lines (Table 2, Figure 2). 

Table 2. IC50 values of the tested compounds after the MTT assay showing variable responses of the 

treated cell lines with different specificity. 

Compound 

Anticancer Activity in Human Cancer Cells Lines 

IC50 ± STDEV (µM/mL) 

MDA-MB-231 U-87 MG PANC-1 A549 MCF-7 HDFs 

 

69.4 ± 2.5 65.4 ± 4.2 78.3 ± 7.7 74.6 ± 8.7 57.3 ± 6.2 74.6 ± 9.4 

 

307.1 ± 64.8 355.2 ± 8.5 311.6 ± 30.4 503.4 ± 27.5 306.1 ± 47.6 351.2 ± 52.8 

 

313.8 ± 13.9 840.4 ± 333.8 403.0 ± 47.8 404.0 ± 49.6 249.6 ± 26.7 356.2 ± 14.7 

307.1 ± 64.8 355.2 ± 8.5 311.6 ± 30.4 503.4 ± 27.5 306.1 ± 47.6 351.2 ± 52.8
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MCF-7 and HDFs, respectively. In contrast, compounds with two morpholine 5a, two pi-

peridine 5b, one morpholine and one piperidine 5c and one piperidine and aniline 5e 

showed lower activity, with higher IC50 values. In addition, compounds with substituted 

aniline (p-bromo-, p-chloro-, or p-methoxyanilne) exerted lower activity than unsubsti-

tuted aniline in this series of compounds. The same behavior was observed with series of 

compounds 7a–t (Table 2). 

In general, the IC50 of 7d, 7f, and 7c revealed a reduction in the viability of the cancer 

cell lines tested compared to the normal fibroblasts. Interestingly, there were some varia-

tions in the IC50 values of the compounds in the distinct cancer cell lines. For instance, 7c 

showed similar IC50 values against MCF-7, U-87 MG, and PANC-1 cell lines (15.7–17.1 

µM) while the values against the MDA-MB-231 and A549 cells were 28.2 and 49.8 µM, 

respectively. Compound 7d was found to be more powerful against MCF-7, U-87 MG, 

and A549 cells, with IC50 values of 8.3, 10.9, and 12.4 µM, respectively. On the other hand, 

the MDA-MB-231 cancer cell line showed resistance to 7d compared to the HDFs. Com-

pound 7f was the least effective against the cancer cell lines. However, it showed selectiv-

ity against the MDA-MB-231 cell line compared to the other compounds and the IC50 of 

other cell lines (Table 2, Figure 2). 

Table 2. IC50 values of the tested compounds after the MTT assay showing variable responses of the 

treated cell lines with different specificity. 

Compound 

Anticancer Activity in Human Cancer Cells Lines 

IC50 ± STDEV (µM/mL) 

MDA-MB-231 U-87 MG PANC-1 A549 MCF-7 HDFs 

 

69.4 ± 2.5 65.4 ± 4.2 78.3 ± 7.7 74.6 ± 8.7 57.3 ± 6.2 74.6 ± 9.4 

 

307.1 ± 64.8 355.2 ± 8.5 311.6 ± 30.4 503.4 ± 27.5 306.1 ± 47.6 351.2 ± 52.8 
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39.4 ± 1.9 42.2 ± 3.4 73.8 ± 21.0 26.4 ± 2.7 10.5 ± 2.4 33.4 ± 3.7 

 

74.7 ± 10.3 193.8 ± 55.5 436.3 ± 59.9 608.4 ± 143.1 242.9 ± 87.9 140.6 ± 5.9 

 

Not converged 10.4 ± 6.1 28.7 ± 7.7 Not converged 207.4 ± 9.5 11.5 ± 2.7 

 

 

93.1 ± 7.7 206.2 ± 19.7 169.0 ± 10.9 202.5 ± 9.3 186.9 ± 34.8 155.5 ± 19.5 

39.4 ± 1.9 42.2 ± 3.4 73.8 ± 21.0 26.4 ± 2.7 10.5 ± 2.4 33.4 ± 3.7
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Table 2. Cont.

Compound
Anticancer Activity in Human Cancer Cells Lines

IC50 ± STDEV (µM/mL)

MDA-MB-231 U-87 MG PANC-1 A549 MCF-7 HDFs
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39.4 ± 1.9 42.2 ± 3.4 73.8 ± 21.0 26.4 ± 2.7 10.5 ± 2.4 33.4 ± 3.7 

 

74.7 ± 10.3 193.8 ± 55.5 436.3 ± 59.9 608.4 ± 143.1 242.9 ± 87.9 140.6 ± 5.9 

 

Not converged 10.4 ± 6.1 28.7 ± 7.7 Not converged 207.4 ± 9.5 11.5 ± 2.7 

 

 

93.1 ± 7.7 206.2 ± 19.7 169.0 ± 10.9 202.5 ± 9.3 186.9 ± 34.8 155.5 ± 19.5 

74.7 ± 10.3 193.8 ± 55.5 436.3 ± 59.9 608.4 ± 143.1 242.9 ± 87.9 140.6 ± 5.9
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39.4 ± 1.9 42.2 ± 3.4 73.8 ± 21.0 26.4 ± 2.7 10.5 ± 2.4 33.4 ± 3.7 

 

74.7 ± 10.3 193.8 ± 55.5 436.3 ± 59.9 608.4 ± 143.1 242.9 ± 87.9 140.6 ± 5.9 

 

Not converged 10.4 ± 6.1 28.7 ± 7.7 Not converged 207.4 ± 9.5 11.5 ± 2.7 

 

 

93.1 ± 7.7 206.2 ± 19.7 169.0 ± 10.9 202.5 ± 9.3 186.9 ± 34.8 155.5 ± 19.5 

Not converged 10.4 ± 6.1 28.7 ± 7.7 Not converged 207.4 ± 9.5 11.5 ± 2.7
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39.4 ± 1.9 42.2 ± 3.4 73.8 ± 21.0 26.4 ± 2.7 10.5 ± 2.4 33.4 ± 3.7 

 

74.7 ± 10.3 193.8 ± 55.5 436.3 ± 59.9 608.4 ± 143.1 242.9 ± 87.9 140.6 ± 5.9 

 

Not converged 10.4 ± 6.1 28.7 ± 7.7 Not converged 207.4 ± 9.5 11.5 ± 2.7 

 

 

93.1 ± 7.7 206.2 ± 19.7 169.0 ± 10.9 202.5 ± 9.3 186.9 ± 34.8 155.5 ± 19.5 
93.1 ± 7.7 206.2 ± 19.7 169.0 ± 10.9 202.5 ± 9.3 186.9 ± 34.8 155.5 ± 19.5

Pharmaceutics 2022, 14, x FOR PEER REVIEW 19 of 32 
 

 

 

29.7 ± 1.8 76.7 ± 26.4 57.6 ± 9.8 592.1 ± 31.9 
46.6 ± 11.1 

 
126.1 ± 29.6 

 

110.7 ± 20.8 330.5 ± 84.6 183.1 ± 30.2 249.4 ± 87.5 328.5 ± 92.6 170.3 ± 30.6 

 

Not converged Not converged 
Not 

converged 
Not converged 431.9 ± 58.5 

Not 

converged 

 

 

338.4 ± 114.5 292.8 ± 26.1 472.9 ± 73.3 228.5 ± 24.7 199.5 ± 13.2 3779.9 ± 627.3 

29.7 ± 1.8 76.7 ± 26.4 57.6 ± 9.8 592.1 ± 31.9 46.6 ± 11.1 126.1 ± 29.6
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Table 2. Cont.

Compound
Anticancer Activity in Human Cancer Cells Lines

IC50 ± STDEV (µM/mL)

MDA-MB-231 U-87 MG PANC-1 A549 MCF-7 HDFs
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29.7 ± 1.8 76.7 ± 26.4 57.6 ± 9.8 592.1 ± 31.9 
46.6 ± 11.1 

 
126.1 ± 29.6 

 

110.7 ± 20.8 330.5 ± 84.6 183.1 ± 30.2 249.4 ± 87.5 328.5 ± 92.6 170.3 ± 30.6 

 

Not converged Not converged 
Not 

converged 
Not converged 431.9 ± 58.5 

Not 

converged 

 

 

338.4 ± 114.5 292.8 ± 26.1 472.9 ± 73.3 228.5 ± 24.7 199.5 ± 13.2 3779.9 ± 627.3 

110.7 ± 20.8 330.5 ± 84.6 183.1 ± 30.2 249.4 ± 87.5 328.5 ± 92.6 170.3 ± 30.6
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29.7 ± 1.8 76.7 ± 26.4 57.6 ± 9.8 592.1 ± 31.9 
46.6 ± 11.1 

 
126.1 ± 29.6 

 

110.7 ± 20.8 330.5 ± 84.6 183.1 ± 30.2 249.4 ± 87.5 328.5 ± 92.6 170.3 ± 30.6 

 

Not converged Not converged 
Not 

converged 
Not converged 431.9 ± 58.5 

Not 

converged 

 

 

338.4 ± 114.5 292.8 ± 26.1 472.9 ± 73.3 228.5 ± 24.7 199.5 ± 13.2 3779.9 ± 627.3 

Not converged Not converged Not converged Not converged 431.9 ± 58.5 Not converged

Pharmaceutics 2022, 14, x FOR PEER REVIEW 19 of 32 
 

 

 

29.7 ± 1.8 76.7 ± 26.4 57.6 ± 9.8 592.1 ± 31.9 
46.6 ± 11.1 

 
126.1 ± 29.6 

 

110.7 ± 20.8 330.5 ± 84.6 183.1 ± 30.2 249.4 ± 87.5 328.5 ± 92.6 170.3 ± 30.6 

 

Not converged Not converged 
Not 

converged 
Not converged 431.9 ± 58.5 

Not 

converged 

 

 

338.4 ± 114.5 292.8 ± 26.1 472.9 ± 73.3 228.5 ± 24.7 199.5 ± 13.2 3779.9 ± 627.3 
338.4 ± 114.5 292.8 ± 26.1 472.9 ± 73.3 228.5 ± 24.7 199.5 ± 13.2 3779.9 ± 627.3

Pharmaceutics 2022, 14, x FOR PEER REVIEW 20 of 32 
 

 

 

28.2 ± 4.4 17.1 ± 4.2 16.4 ± 11.8 49.8 ± 4.5 15.7 ± 3.1 245.6 ± 22.8 

 

97.3 ± 9.3 10.9 ± 4.1 26.7 ± 8.3 12.4 ± 6.4 8.3 ± 2.1 38.9 ± 8.3 

 

47.4 ± 13.2 73.1 ± 32.6 
Not 

converged 
89.8 ± 22.8 132.2 ± 28.0 47.4 ± 8.9 

 

21.1 ± 2.6 41.6 ± 14.9 32.8 ± 12.3 52.0 ± 10.8 27.0 ± 11.0 65.0 ± 15.6 

28.2 ± 4.4 17.1 ± 4.2 16.4 ± 11.8 49.8 ± 4.5 15.7 ± 3.1 245.6 ± 22.8
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Table 2. Cont.

Compound
Anticancer Activity in Human Cancer Cells Lines

IC50 ± STDEV (µM/mL)

MDA-MB-231 U-87 MG PANC-1 A549 MCF-7 HDFs
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28.2 ± 4.4 17.1 ± 4.2 16.4 ± 11.8 49.8 ± 4.5 15.7 ± 3.1 245.6 ± 22.8 

 

97.3 ± 9.3 10.9 ± 4.1 26.7 ± 8.3 12.4 ± 6.4 8.3 ± 2.1 38.9 ± 8.3 

 

47.4 ± 13.2 73.1 ± 32.6 
Not 

converged 
89.8 ± 22.8 132.2 ± 28.0 47.4 ± 8.9 

 

21.1 ± 2.6 41.6 ± 14.9 32.8 ± 12.3 52.0 ± 10.8 27.0 ± 11.0 65.0 ± 15.6 

97.3 ± 9.3 10.9 ± 4.1 26.7 ± 8.3 12.4 ± 6.4 8.3 ± 2.1 38.9 ± 8.3
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28.2 ± 4.4 17.1 ± 4.2 16.4 ± 11.8 49.8 ± 4.5 15.7 ± 3.1 245.6 ± 22.8 

 

97.3 ± 9.3 10.9 ± 4.1 26.7 ± 8.3 12.4 ± 6.4 8.3 ± 2.1 38.9 ± 8.3 

 

47.4 ± 13.2 73.1 ± 32.6 
Not 

converged 
89.8 ± 22.8 132.2 ± 28.0 47.4 ± 8.9 

 

21.1 ± 2.6 41.6 ± 14.9 32.8 ± 12.3 52.0 ± 10.8 27.0 ± 11.0 65.0 ± 15.6 

47.4 ± 13.2 73.1 ± 32.6 Not converged 89.8 ± 22.8 132.2 ± 28.0 47.4 ± 8.9
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28.2 ± 4.4 17.1 ± 4.2 16.4 ± 11.8 49.8 ± 4.5 15.7 ± 3.1 245.6 ± 22.8 

 

97.3 ± 9.3 10.9 ± 4.1 26.7 ± 8.3 12.4 ± 6.4 8.3 ± 2.1 38.9 ± 8.3 

 

47.4 ± 13.2 73.1 ± 32.6 
Not 

converged 
89.8 ± 22.8 132.2 ± 28.0 47.4 ± 8.9 

 

21.1 ± 2.6 41.6 ± 14.9 32.8 ± 12.3 52.0 ± 10.8 27.0 ± 11.0 65.0 ± 15.6 21.1 ± 2.6 41.6 ± 14.9 32.8 ± 12.3 52.0 ± 10.8 27.0 ± 11.0 65.0 ± 15.6
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Not converged Not converged 
Not 

converged 
Not converged 175.0 ± 93.6 4.2 ± 2.0 

 

402.2 ± 11.6 Not converged  37.7 ± 7.1 Not converged  206.2 ± 15.8 316.8 ± 23.4 

 

567.9 ±   67.5 348.4 ± 126.6 939.3 ± 204.1 579.6 ± 285.1 25.8 ± 89.4 2922.4 ± 251.1 

 

256.6 ± 51.1 Not converged 339.6 ± 67.2 507.7 ± 57.3 529.8 ± 50.3 1326.6 ± 128.2 

Not converged Not converged Not converged Not converged 175.0 ± 93.6 4.2 ± 2.0
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Table 2. Cont.

Compound
Anticancer Activity in Human Cancer Cells Lines

IC50 ± STDEV (µM/mL)

MDA-MB-231 U-87 MG PANC-1 A549 MCF-7 HDFs
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Not converged Not converged 
Not 

converged 
Not converged 175.0 ± 93.6 4.2 ± 2.0 

 

402.2 ± 11.6 Not converged  37.7 ± 7.1 Not converged  206.2 ± 15.8 316.8 ± 23.4 

 

567.9 ±   67.5 348.4 ± 126.6 939.3 ± 204.1 579.6 ± 285.1 25.8 ± 89.4 2922.4 ± 251.1 

 

256.6 ± 51.1 Not converged 339.6 ± 67.2 507.7 ± 57.3 529.8 ± 50.3 1326.6 ± 128.2 

402.2 ± 11.6 Not converged 37.7 ± 7.1 Not converged 206.2 ± 15.8 316.8 ± 23.4
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Not converged Not converged 
Not 

converged 
Not converged 175.0 ± 93.6 4.2 ± 2.0 

 

402.2 ± 11.6 Not converged  37.7 ± 7.1 Not converged  206.2 ± 15.8 316.8 ± 23.4 

 

567.9 ±   67.5 348.4 ± 126.6 939.3 ± 204.1 579.6 ± 285.1 25.8 ± 89.4 2922.4 ± 251.1 

 

256.6 ± 51.1 Not converged 339.6 ± 67.2 507.7 ± 57.3 529.8 ± 50.3 1326.6 ± 128.2 

567.9 ± 67.5 348.4 ± 126.6 939.3 ± 204.1 579.6 ± 285.1 25.8 ± 89.4 2922.4 ± 251.1
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Not converged Not converged 
Not 

converged 
Not converged 175.0 ± 93.6 4.2 ± 2.0 

 

402.2 ± 11.6 Not converged  37.7 ± 7.1 Not converged  206.2 ± 15.8 316.8 ± 23.4 

 

567.9 ±   67.5 348.4 ± 126.6 939.3 ± 204.1 579.6 ± 285.1 25.8 ± 89.4 2922.4 ± 251.1 

 

256.6 ± 51.1 Not converged 339.6 ± 67.2 507.7 ± 57.3 529.8 ± 50.3 1326.6 ± 128.2 256.6 ± 51.1 Not converged 339.6 ± 67.2 507.7 ± 57.3 529.8 ± 50.3 1326.6 ± 128.2
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437.5 ± 105.1 Not converged 515.9 ± 79.2 379.8 ± 90.2 290.2 ± 37.0 1337.7 ± 144.4 

 

Not converged Not converged 
Not 

converged 
1744.1 ± 126.7 654.0 ± 144.2 638.7 ± 78.0 

 

90.6 ± 13.0 74.7 ± 21.4 61.3 ± 16.9 43.4 ± 12.5 34.2 ± 4.1 117.0 ± 28.4 

 

126.3 ± 41.9 185.4 ± 52.9 
Not 

converged 
92.9 ± 12.1 368.7 ± 42.1 189.5 ± 50.3 

 

464.2 ± 105.7 51.4 ± 26.3 
Not 

converged 
85.7 ± 47.9 228.2 ± 100.0 54.5 ± 26.3 

437.5 ± 105.1 Not converged 515.9 ± 79.2 379.8 ± 90.2 290.2 ± 37.0 1337.7 ± 144.4
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Table 2. Cont.

Compound
Anticancer Activity in Human Cancer Cells Lines

IC50 ± STDEV (µM/mL)

MDA-MB-231 U-87 MG PANC-1 A549 MCF-7 HDFs
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437.5 ± 105.1 Not converged 515.9 ± 79.2 379.8 ± 90.2 290.2 ± 37.0 1337.7 ± 144.4 

 

Not converged Not converged 
Not 

converged 
1744.1 ± 126.7 654.0 ± 144.2 638.7 ± 78.0 

 

90.6 ± 13.0 74.7 ± 21.4 61.3 ± 16.9 43.4 ± 12.5 34.2 ± 4.1 117.0 ± 28.4 

 

126.3 ± 41.9 185.4 ± 52.9 
Not 

converged 
92.9 ± 12.1 368.7 ± 42.1 189.5 ± 50.3 

 

464.2 ± 105.7 51.4 ± 26.3 
Not 

converged 
85.7 ± 47.9 228.2 ± 100.0 54.5 ± 26.3 

Not converged Not converged Not converged 1744.1 ± 126.7 654.0 ± 144.2 638.7 ± 78.0
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437.5 ± 105.1 Not converged 515.9 ± 79.2 379.8 ± 90.2 290.2 ± 37.0 1337.7 ± 144.4 

 

Not converged Not converged 
Not 

converged 
1744.1 ± 126.7 654.0 ± 144.2 638.7 ± 78.0 

 

90.6 ± 13.0 74.7 ± 21.4 61.3 ± 16.9 43.4 ± 12.5 34.2 ± 4.1 117.0 ± 28.4 

 

126.3 ± 41.9 185.4 ± 52.9 
Not 

converged 
92.9 ± 12.1 368.7 ± 42.1 189.5 ± 50.3 

 

464.2 ± 105.7 51.4 ± 26.3 
Not 

converged 
85.7 ± 47.9 228.2 ± 100.0 54.5 ± 26.3 

90.6 ± 13.0 74.7 ± 21.4 61.3 ± 16.9 43.4 ± 12.5 34.2 ± 4.1 117.0 ± 28.4
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437.5 ± 105.1 Not converged 515.9 ± 79.2 379.8 ± 90.2 290.2 ± 37.0 1337.7 ± 144.4 

 

Not converged Not converged 
Not 

converged 
1744.1 ± 126.7 654.0 ± 144.2 638.7 ± 78.0 

 

90.6 ± 13.0 74.7 ± 21.4 61.3 ± 16.9 43.4 ± 12.5 34.2 ± 4.1 117.0 ± 28.4 

 

126.3 ± 41.9 185.4 ± 52.9 
Not 

converged 
92.9 ± 12.1 368.7 ± 42.1 189.5 ± 50.3 

 

464.2 ± 105.7 51.4 ± 26.3 
Not 

converged 
85.7 ± 47.9 228.2 ± 100.0 54.5 ± 26.3 

126.3 ± 41.9 185.4 ± 52.9 Not converged 92.9 ± 12.1 368.7 ± 42.1 189.5 ± 50.3
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437.5 ± 105.1 Not converged 515.9 ± 79.2 379.8 ± 90.2 290.2 ± 37.0 1337.7 ± 144.4 

 

Not converged Not converged 
Not 

converged 
1744.1 ± 126.7 654.0 ± 144.2 638.7 ± 78.0 

 

90.6 ± 13.0 74.7 ± 21.4 61.3 ± 16.9 43.4 ± 12.5 34.2 ± 4.1 117.0 ± 28.4 

 

126.3 ± 41.9 185.4 ± 52.9 
Not 

converged 
92.9 ± 12.1 368.7 ± 42.1 189.5 ± 50.3 

 

464.2 ± 105.7 51.4 ± 26.3 
Not 

converged 
85.7 ± 47.9 228.2 ± 100.0 54.5 ± 26.3 464.2 ± 105.7 51.4 ± 26.3 Not converged 85.7 ± 47.9 228.2 ± 100.0 54.5 ± 26.3
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Table 2. Cont.

Compound
Anticancer Activity in Human Cancer Cells Lines

IC50 ± STDEV (µM/mL)

MDA-MB-231 U-87 MG PANC-1 A549 MCF-7 HDFs
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175.4 ± 64.0 345.1 ± 58.0 4.46 ± 2.3 Not converged 17.0 ± 56.3 93.8 ± 40.2 

 

845.2 ± 205.0 Not converged 
Not 

converged 
179.4 ± 78.8 3430.9 ± 481.7 

Not 

converged 

 

16.1 ± 2.5 44.8 ± 3.5 60.0 ± 8.4 83.9 ± 12.1 2182.0 ± 221.7 20.7 ± 6.3 

 

40.3 ± 9.3 71.5 ± 15.7 47.5 ± 2.6 18.6 ± 2.9 27.0 ± 4.7 74.7 ± 9.9 

175.4 ± 64.0 345.1 ± 58.0 4.46 ± 2.3 Not converged 17.0 ± 56.3 93.8 ± 40.2
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175.4 ± 64.0 345.1 ± 58.0 4.46 ± 2.3 Not converged 17.0 ± 56.3 93.8 ± 40.2 

 

845.2 ± 205.0 Not converged 
Not 

converged 
179.4 ± 78.8 3430.9 ± 481.7 

Not 

converged 

 

16.1 ± 2.5 44.8 ± 3.5 60.0 ± 8.4 83.9 ± 12.1 2182.0 ± 221.7 20.7 ± 6.3 

 

40.3 ± 9.3 71.5 ± 15.7 47.5 ± 2.6 18.6 ± 2.9 27.0 ± 4.7 74.7 ± 9.9 

845.2 ± 205.0 Not converged Not converged 179.4 ± 78.8 3430.9 ± 481.7 Not converged
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175.4 ± 64.0 345.1 ± 58.0 4.46 ± 2.3 Not converged 17.0 ± 56.3 93.8 ± 40.2 

 

845.2 ± 205.0 Not converged 
Not 

converged 
179.4 ± 78.8 3430.9 ± 481.7 

Not 

converged 

 

16.1 ± 2.5 44.8 ± 3.5 60.0 ± 8.4 83.9 ± 12.1 2182.0 ± 221.7 20.7 ± 6.3 

 

40.3 ± 9.3 71.5 ± 15.7 47.5 ± 2.6 18.6 ± 2.9 27.0 ± 4.7 74.7 ± 9.9 

16.1 ± 2.5 44.8 ± 3.5 60.0 ± 8.4 83.9 ± 12.1 2182.0 ± 221.7 20.7 ± 6.3
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175.4 ± 64.0 345.1 ± 58.0 4.46 ± 2.3 Not converged 17.0 ± 56.3 93.8 ± 40.2 

 

845.2 ± 205.0 Not converged 
Not 

converged 
179.4 ± 78.8 3430.9 ± 481.7 

Not 

converged 

 

16.1 ± 2.5 44.8 ± 3.5 60.0 ± 8.4 83.9 ± 12.1 2182.0 ± 221.7 20.7 ± 6.3 

 

40.3 ± 9.3 71.5 ± 15.7 47.5 ± 2.6 18.6 ± 2.9 27.0 ± 4.7 74.7 ± 9.9 40.3 ± 9.3 71.5 ± 15.7 47.5 ± 2.6 18.6 ± 2.9 27.0 ± 4.7 74.7 ± 9.9
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In general, the IC50 of 7d, 7f, and 7c revealed a reduction in the viability of the
cancer cell lines tested compared to the normal fibroblasts. Interestingly, there were
some variations in the IC50 values of the compounds in the distinct cancer cell lines.
For instance, 7c showed similar IC50 values against MCF-7, U-87 MG, and PANC-1 cell lines
(15.7–17.1 µM) while the values against the MDA-MB-231 and A549 cells were 28.2 and
49.8 µM, respectively. Compound 7d was found to be more powerful against MCF-7, U-87
MG, and A549 cells, with IC50 values of 8.3, 10.9, and 12.4 µM, respectively. On the other
hand, the MDA-MB-231 cancer cell line showed resistance to 7d compared to the HDFs.
Compound 7f was the least effective against the cancer cell lines. However, it showed
selectivity against the MDA-MB-231 cell line compared to the other compounds and the
IC50 of other cell lines (Table 2, Figure 2).

3.2.2. EGFR Enzymatic Assay

The capacity of 7d, 7f, and 7c to inhibit EGFR was tested (Table 3). Compounds 7d
and 7f exhibited potent EGFR inhibitory activity, with IC50 values of 59.24 and 70.3 nM,
compared to Tamoxifen, with an IC50 value of 69.1 nM. Compound 7c showed moderate
activity (IC50 value of 81.6 nM).

Table 3. IC50 values of the compounds tested in the EGFR-PK assay.

Compound EGFR-PK Inhibition, IC50 [nM] *,#

7d 70.3 ± 1.34
7f 59.24 ± 1.16
7c 81.6 ± 1.67

Tamoxifen 69.1 ± 1.39

* Values are expressed as Mean ± SD of three independent replicates. # IC50 values were calculated using
sigmoidal non-linear regression curve fit of percentage inhibition against five concentrations of each compound.

3.2.3. PI3K/AKT/mTOR Downstream Signaling Pathway

To study the molecular target for the promising cytotoxicity of 7d, 7f, and 7c, which
showed the highest cytotoxic activity and promising EGFR inhibitory capacity, these
compounds were tested against the PI3K, AKT, and mTOR downstream inhibition pathway.
The PI3K/AKT/mTOR signaling cascade is important in many cellular processes, including
growth and proliferation, apoptosis, survival, and metabolism, all of which contribute to
tumor progression [70,71].

These compounds showed promising capacity to inhibit PI3K/AKT/mTOR (Table 4).
In this regard, 7d and 7f exhibited remarkable PI3K/AKT/mTOR inhibitory activity by
0.66/0.82/0.8 and 0.35/0.56/0.66-fold, respectively, by inhibiting their concentrations to
4.39, 37.3, and 69.3 ng/mL in the 7d-treatment, and to 2.39, 25.34, and 57.6 ng/mL in
the 7f-treatment compared to the untreated control; while compound 7c did not show
inhibitory activity compared to the control.

Table 4. Activity of the tested compounds 7d, 7f, and 7c, against the EGFR downstream signaling
pathway (PI3K/AKT/mTOR) in untreated and treated MDA-MB-231 cells.

Compound PI3K
(ng/mL)

AKT
(ng/mL)

mToR
(ng/mL)

Control 6.64 ± 0.15 45.39 ± 0.68 86.39 ± 2.1
7d 4.39 ± 0.16 37.3 ± 0.69 69.3 ± 1.98
7f 2.39 ± 0.12 25.34 ± 0.39 57.6 ± 1.23
7c 6.1 ± 0.36 42.6.3 ± 0.49 86.3 ± 1.67

Values are expressed as Mean ± SD of three independent replicates.

3.2.4. Apoptosis by Flow Cytometry

The results of the apoptosis assay showed significant induction of apoptosis by 7d,
7f, and 7c in all the cancer cell lines compared to the normal cell line. In particular,
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the greatest induction of apoptosis by these three compounds occurred in the MDA-
MB-231 and PANC1 cancer cell lines. In this regard, they induced total apoptosis in
MDA-MB-231 cells by 26.1%, 31.54%, and 17.2%, respectively, compared to 1.43% in
the untreated control (Figures 3 and 4). Additionally, they induced total apoptosis in
PANC1 cells by 31.7%, 30.4%, and 40.3%, respectively, compared to 11% in the untreated
control (Figures 3 and S39). Furthermore, 7f showed more specific activation of apoptosis
in the A549 cancer cell line (27.7% compared to 0.11% in control) compared to the other
two compounds (Figures 3 and S39), and it induced total apoptosis in MCF-7 cells (21.53%
compared to 0.67% in control). Histograms for Annexin V/PI stainting for the tested
compounds in cancer cells were supported in the Supporting Information Figure S39.
Results elucidated that cytotoxic activities in cancer cells were due to apoptosis rather
than necrosis.
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3.2.5. Compound 7f Upregulated Pro-Apoptotic Genes and Downregulated
Anti-Apoptotic Ones

To confirm the apoptosis-inducing activity of the compounds in MDA-MB-231 cells,
we conducted gene expression analysis using RT-qPCR in both untreated and treated cells.
As seen in Figure 5, treatment with compound 7f increased the expression of the following
pro-apoptotic genes: a 3.8-fold increase in P53, a 2.8-fold increase in Bax, and a 6.7-, 3.06-,
and 7-fold increase in caspases 3, 8, and 9, respectively. In contrast, this treatment caused
a 0.17-fold decrease in the expression of the anti-apoptotic gene Bcl-2. In addition, this
treatment induced a 0.61-, 0.32-, and 0.18-fold decrease in the PI3K/AKT/mTOR down-
stream pathway. These results regarding behavior of upregulating the proapoptotic genes
and down- regulating the antiapoptotic gene agreed with previous literatures [50,72,73] on
proving apoptosis induction in cancer cells. Apoptosis activity upon treatment with com-
pound 7f, a derivative of pyrazolyl s-triazine moieties, was elucidated via EGFR inhibition
and its downstreaming pathway of PI3K/AKT/mTOR.
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Figure 5. Fold of change of apoptosis-related genes (A): Upregulated genes and (B): Downregulated
genes in untreated and treated MDA-MB-231 cells with compound 7f. Values are expressed as
Mean ± SD of three independent replicates. Data were normalized using β-actin as house-keeping
gene. Red dashed line represents the untreated control (Fold change = 1).

3.2.6. Molecular Docking Study

We implemented CDOCKER, with a binding site sphere of 10.14 Å radius (Figure 6).
Docked poses (i.e., 599) generated by CDOCKER were scored by means of the follow-
ing 9 scoring functions: Jain [57,58], LigScore1, LigScore2 [59], PLP1, PLP2 [57], PMF,
PMF04 [60,61], -CDOCKER Energy, and -CDOCKER Interaction Energy [56].

We selected docked conformers/poses based on consensus among the 9 scoring
functions [60,61]. The consensus function assigned a value of 1 for any molecular pose
ranked within the highest 20% by the particular scoring function; otherwise, a zero value
was assigned (i.e., the fit was within the lowest 80%). Docked poses of a particular ligand
that achieved consensus among at least 8 scoring functions were selected.

The best-docked poses of 7d, 7f, and 7c interacted with several amino acids in the
active site (Figure 6). Interactions included hydrogen bonding, and hydrophobic and
electrostatic interactions. The three ligands showed slightly different binding modes in the
active site (Figure 6), particularly 7d and 7f.

The central triazine ring of the three compounds is involved in hydrogen bonding
with Lys745 (K745) and hydrophobic interactions with Val726 (V726). One terminal of the
three compounds also participates in hydrophobic interactions and either hydrogen or
electrostatic bonding with Arg841 (R841). The other terminals of the three compounds are
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involved in several hydrophobic interactions with Leu718 (L718), Met790 (M790), Ala743
(A743), and Leu788 (L788). Of note, the binding site of the three compounds is enriched
in basic amino acids (K745 and R841) and hydrophobic amino acids (V726, L718, M790,
A743, and L788). All the binding poses in Figure 6 show a comparable number and type of
interactions (i.e., consensus score ≥ 8), which are believed to play a significant role in the
high affinity of these compounds.
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Figure 6. (A) X-Ray structure of EGFR in complex with LN2380 ligand (PDB code: 6v6o), with active
binding site highlighted in pink. (B) The best-docked poses (pink) of the three tested compounds
with consensus among at least 8 scoring functions. (C–E) show the best docking poses of 7d, 7f, and
7c with the interacting amino acids in the active site. The carbon atoms of the ligands are depicted in
pink. Hydrogen bonding, hydrophobic interactions, and electrostatic interactions are indicated by
the dashed lines in green, light pink, and magenta, respectively. As shown in the figures, the three
ligands are involved in a variety of interactions and have similar binding modes.

4. Conclusions

Here, we reported an easy one-pot procedure for the synthesis of pyrazole-s-triazine
derivatives via the reaction of β-dicarbonyl compounds in the presence of DMF-DMA
with 4,6-disubstituted 2-hydrazinyl-s-triazine in the presence of acetic acid. This method
achieved a novel pyrazole and pyrazole-fused cycloalkanones in 80–95% yield and could
find applications for the preparation of a variety of pyrazolo-s-triazine derivatives with
biological activity of interest. Most of the tested compounds showed promising cyto-
toxicity against a panel of cancer cells and a safe profile against normal cells. Interest-
ingly, compounds 7c, 7d, and 7f induced apoptosis in MDA-MB-231 cells through the
EGFR/PI3K/AKT/mTOR signaling pathway. Hence, these compounds emerge as poten-
tial target-oriented chemotherapeutic agents against breast cancer.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/pharmaceutics14081558/s1, X-Ray determination of com-
pound 7t; Figures S1–S29: Selected NMR and MS spectrum data for the synthesized compounds 5a–i
and 7a–t; Figures S30–S38: Selected HRMS spectrum data for some of the synthesized compounds 5
and 7 series; and Figure S39. Flow cytometric analysis (Annexin V-FTIC/PI assay).

https://www.mdpi.com/article/10.3390/pharmaceutics14081558/s1
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