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An STDP‑based encoding method 
for associative and composite data
Hong‑Gyu Yoon & Pilwon Kim*

Spike‑timing‑dependent plasticity(STDP) is a biological process of synaptic modification caused by 
the difference of firing order and timing between neurons. One of neurodynamical roles of STDP is 
to form a macroscopic geometrical structure in the neuronal state space in response to a periodic 
input by Susman et al. (Nat. Commun. 10(1), 1–9 2019), Yoon, & Kim. Stdp‑based associative memory 
formation and retrieval. arXiv: 2107. 02429 v2 (2021). In this work, we propose a practical memory 
model based on STDP which can store and retrieve high dimensional associative data. The model 
combines STDP dynamics with an encoding scheme for distributed representations and is able to 
handle multiple composite data in a continuous manner. In the auto‑associative memory task where 
a group of images are continuously streamed to the model, the images are successfully retrieved from 
an oscillating neural state whenever a proper cue is given. In the second task that deals with semantic 
memories embedded from sentences, the results show that words can recall multiple sentences 
simultaneously or one exclusively, depending on their grammatical relations.

Spike-timing-dependent plasticity(STDP) is a biological process of synaptic modification according to the order 
of pre- and post-synaptic spiking within a critical time  window3–5, and considered to be critical for understand-
ing the cognitive mechanisms such as temporal  coding6–8, and the formation of associative  memory9,10. In our 
separate  work2, we analyzed an STDP-based neural model and showed that the model can associate multiple high-
dimensional memories to a geometric structure in the neural state space which we call a memory plane. When 
exposed to repeatedly occurring spatio-temporal input patterns, the neural activity based on STDP transforms 
the patterns into the corresponding memory plane. Further, the stored memories can be dynamically revived 
with macroscopic neural oscillations around the memory plane if perturbed by a similar stimulus.

The presence and the function of the memory plane in the neural networks have caught attention in Ref.1, 
where it has been proposed that STDP can store transient inputs as imaginary-coded memories. In this work, 
we further emphasize a practical aspect of the memory plane, showing that it can play a central role in storing, 
retrieving, and manipulating structured information. Using the theoretical works in Ref.2, we intend to integrate 
an analytic and an implementation level description of the neural memory process based on the memory plane 
that is capable of handling high dimensional associative data.

In this work, we propose that a STDP-based memory model, combined with a proper encoding scheme, can 
store and retrieve a group structured information in the neuronal state space. Among a number of schemes for 
encoding compositional structure that have been proposed over the last few years, we adopt Tensor Product 
Representation(TPR)11. TPR is a general method for generating vector-space embeddings of internal represen-
tations and operations, which prove to contain a variety of structural information such as lists of paired items, 
sequences and networks.

We show that the STDP-based memory model with TPR can naturally provide a mechanism for segmenting 
continuous streams of sensory input into representations of associative bindings of items: first, we demonstrate 
an auto-associative memory task with a group of images. While the images are sequentially streamed into the 
system for storage, the corresponding information is internally stored in the connectivity matrix. Then the whole 
group of the images can be dynamically retrieved from the oscillating neural state, when the system is perturbed 
by a memory cue which is similar to any of the original images. In the second task for semantic manipulation, 
we use multiple semantic vectors to represent a sentence as a composite of words. Once several sentences are 
stored in the system via such semantic vectors, a single word can recall multiple sentences simultaneously or 
one exclusively, depending on their grammatical relations. This implies that the proposed method provides 
an alternative bio-inspiring approach to process multiple groups of associative data with composite structure.
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Methods
STDP‑based memory model. Our work follows the framework of standard firing-rate  models1,12. We set 
the differential equation for the neural state as

where x = [x1 · · · xN ]
⊤ ∈ R

N is the state of N neuronal nodes and W = (Wij) ∈ R
N×N is a connectivity matrix 

with Wij corresponding to the strength of synaptic connection from node j to i. Here φ is a regularizing transfer 
function and b(t) is a memory input.

The plasticity model that we propose is based  on13 as

where K is a temporal kernel and ρ is the learning rate. The parameter γ is the decaying rate of homeostatic plas-
ticity. While the synapses are repeatedly excited by the external input, they also need to decay simultaneously 
to forget and dump the obsolete and irrelevant information gradually. For analytic simplicity, we use φ(x) = x 
and a simplified Dirac-delta typed temporal kernel K(s) defined as

with τ > 0 . Using this kernel instead of the conventional exponential one has two main consequences: first, it 
models a specific interspike timing exhibiting maximal concentration of synaptic changes near origin, which 
has been observed in related works. Second, it yields a simple delayed term through the convolution in Eq. (2) 
which is relatively feasible for  analysis2.

Now after simplifications, the main model becomes

where xτ = x(t − τ) stands for the delayed synaptic response.
We use the memory input in the form of a sequential harmonic pulse as

where m1, . . . ,mn ∈ R
N are memory representations to be stored. Here ω stands for the frequency of neural 

oscillations and ξi , i = 1, . . . , n stands for the sampling time for each component. The trajectory of the memory 
input b(t) in (5) is periodic and embedded in a 2-dimensional plane S ⊂ R

N which we call a memory plane 
with respect to the memory representations m1, . . . ,mn . While the memory representations are distributed in 
the high dimensional neural state space RN , the memory plane S tends to be located in close proximity to the 
memory representations under a suitable  condition2. Further, the system (4) has a asymptotically stable solution 
(x∗,W∗) that consists of a periodic solution x∗(t) on the memory plane S and a constant connectivity matrix 
W(t) = W∗ = α(vu⊤ − uv⊤) for some vectors u and v in S. We will see below that the matrix W∗ contains the 
essential information to retrieve the memory representations m1, . . . ,mn . This implies, a convergence of x(t) to 
a certain periodic oscillation, x∗(t) , is a sign that the memories are stored in W in a distributed way.

In the retrieval phase, we set γ = ρ = 0 in Eq. (4) and use the connectivity matrix W = W∗ as

where

Here mc is the representation of memory cue. The retrieval system (6) has also a asymptotically stable periodic 
solution, say xc(t) . One can show that the trajectory of the periodic solution xc(t) is closely located to S if the 
memory cue mc is relevant to any of the memory representations m1, . . . ,mn. Hence, as a neural state x(t) is 
attracted to xc(t) , it is also bound to circle around the memory representations m1, . . . ,mn . Figure 1 shows that 
the neural oscillation occurs near the memory plane and therefore in proximity to all the memory representa-
tions, when mc is given close to one of them.

Encoding/decoding associative data with tag vectors. Before storing and retrieving specific asso-
ciative data in (4) and (6), respectively, we first need to properly encode them into memory representations 
m1, . . . ,mn . It is reasonable to assume that the cognitive systems do not simply receive external inputs in a 

(1)ẋ = −x +Wφ(x)+ b(t),

(2)

Ẇij(t) = −γWij(t)+ ρ

(∫ ∞

0
K(s)φ(xj(t − s))φ(xi(t)) ds

︸ ︷︷ ︸

pre- to post- firing

+

∫ ∞

0
K(−s)φ(xj(t))φ(xi(t − s)) ds

)

︸ ︷︷ ︸

post- to pre- firing

,

(3)K(s) :=

{
δ(s − τ) s > 0
−δ(s + τ) s ≤ 0,

(4)
{
ẋ = −x +Wx + b(t)
Ẇ = −γW + ρ

(
xxτ

⊤ − xτ x
⊤
)
,

(5)b(t) =

n∑

i=1

sin(ωt − ξi)mi ,

(6)ẋ = −x +W∗x + b(t).

(7)b(t) = sinωtmc , mc ∈ R
N .
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passive way, but rather actively pose them in the neural state space on acceptance. Suppose f1, . . . , fn ∈ R
D are 

a series of the external inputs from the environment containing high dimensional associative information. We 
use a set of internal tags r1, . . . , rm ∈ R

K to mark what classes the corresponding external inputs belong to. They 
may be used to indicate the order of sequence for the events (the first, the second, ..., the last) if the input is 
streamed through sequential observations, or types of sensors (visual, auditory, olfactory, tactile) if the input is 
a combination of senses, or the sentence elements (subject, predicate, object, modifier) if the input is a sentence 
composed of words. Such internal tags r1, . . . , rm can be formulated as low dimensional orthonormal vectors.

Following the vector embedding method for structured  information11, we use the tensor product to encode 
a raw data fi into a memory representation mi as

where r is the tag vector corresponding to the raw data fi . If r is of unit length, the original data can be exactly 
decoded from the memory representations by applying the right dot product of tagging vector as

We say a neural state x ∈ R
N to be retrievable if x is a linear combination of the memory representations 

m1, . . . ,mn . For a retrievable state x(t) =
∑n

j=1 cjmj , a selective recovery of the original fi is possible by apply-
ing the right dot product with the corresponding tag vector as

It can be shown that all the points on the memory plane S with respect to m1, . . . ,mn are retrievable.
Let us describe how the encoding/decoding scheme is combined with the above memory models. In the 

storage phase, we encode the data f1, . . . , fn into the memory representations m1, . . . ,mn using the tag vectors 
in Eq. (8), and run the system (4) with the memory input b(t) in Eq. (5). To retrieve the original data, we run the 
retrieval system (6) with a certain cue mc . We wait until x(t) converges to an oscillating trajectory, xc(t) , then try 
to evaluate x(t) · r for retrieval. It has been  shown2 that xc(t) always has intersections with S which are therefore 
retrievable. However, since the neural state space RN is high dimensional, an irrelevant choice for mc leads to a 
trivial intersection near the origin which yields no meaningful retrieval. To the contrary, if mc is close to any of 
m1, . . . ,mn , then x(t) converges to a periodic solution xc(t) which is almost embedded S as illustrated in Fig. 1. 
Indeed, one can show that if mc is a scalar multiple of one of the memory representations, the corresponding 
xc(t) is completely embedded in S and is therefore retrievable for all t.

In the following section, we show through numerical tests for storage and retrieval that the STDP-based 
model (4) with the tensor product encoding can naturally provide a neural mechanism for segmenting continu-
ous streams of sensory input into representations associative bindings of items.

Results
Retrieval of grouped images. We first demonstrate an auto-associative memory task that involves a 
group of images. This task uses five 64× 64 grayscale images of classical orchestral instruments in Fig. 2. The 
images are translated into external input vectors fi , i = 1, . . . , 5 in R642 and are combined into the memory rep-
resentations as mi = fi ⊗ ri , i = 1, . . . , 5 . Here the tag vectors ri , i = 1, . . . , 5 are orthonormal in R5 and used as 
a placeholder for each image.

For numerical simulations in this article, the modified Euler’s method for delay equations has been universally 
used. In the first memory task, each 64× 64 image is translated to a vector fi as follows: every pixel is mapped 
to a value in [−σ , σ ], σ > 0 , depending on its brightness (pure black to −σ and pure white to σ linearly). Then 

(8)mi = fi ⊗ r,

(9)mi · r = (fi ⊗ r) · r = fi(r · r) = fi .

(10)x · ri =





n�

j=1

cjmj



 · ri = cifi .

Figure 1.  Graphical illustration of the memory representations m1, . . . ,mn and the corresponding memory 
plane S. The memory plane S is located in the subspace spanned by the memory representations and is shown to 
be close enough to them. A periodic orbit close to S can be used for efficient memory retrieval.
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the resulted 64× 64 matrix is flattened to a vector fi . In the storage phase, σ = 0.02 was used to maintain the 
magnitude for fi and mi at an appropriate level. Reconstructing the image from the vector can be done by per-
forming the procedure in reverse order. The storage phase was proceeded for 40 seconds with the integration 
step size �t = 0.1 and ξi = π

5 (i − 1) (5-evenly sequenced points on [0,π ] ). The model parameters are chosen 
as ω = 1.5 , γ = ρ = 0.5 , and τ = π

2ω = π
3  . These specific choices were made based upon the analysis in [2], to 

achieve the convergence of W(t) → W∗ with simultaneously guaranteeing the sufficiently large magnitude of W∗ . 
As expected, stable convergence of connectivity to a certain W∗ is well achieved, when the arbitrary initial condi-
tions x(0) and W(0) are appropriately small. The retrieval phase was proceeded for 15 seconds with �t = 0.01 for 
appropriately small arbitrary x(0) . In Figs. 3, 4, and 5, the brightness threshold σ was adjusted to 0.002 for clear 
visibility, since the magnitude of the retrieved images are relatively small compared to original ones. Thus, any 
element of x · ri having value outside [−0.002 0.002] is developed to a pixel of just pure black or white.

Figure 3 depicts the numerical simulation for the retrieval phase. For a better understanding of the process, 
a graphic illustration of the memory plane and the initial memory cue is given with the actual data. When the 
neural state x(t) in Eq. (5) is continually perturbed by a noisy copy of one of the original images (violin), it 
approaches the memory plane S. Once the x(t) converges to a limit cycle around S as stated in Theorem 2, the 
external input f1, . . . , f5 can be reproduced by applying the tag vectors to x(t) . In Fig. 3, we display two snapshots 
of the retrieved images obtained at two points on the orbit: Fig. 3b is taken at the farthest from S and Fig. 3c is at 
the intersection. It is notable that the retrieved images continuously oscillate, developing week/strong and posi-
tive/negative images in turns. Such flashing patterns are generally different from image to image and are affected 
by the sequential order of the memory representations in Eq. (5) in the storage phase. Furthermore, due to the 
orthogonality of the tag vectors, the perfect images are acquired on the time instance when x(t) penetrates S.

Figure 4 shows that the quality of the retrieved images depends on how close the memory cue is to the original 
image input. The cue with low-level noise in Fig. 4a leads to the orbit (blue) close to the memory plane S, pro-
ducing the images of decent quality in Fig. 4c. However, if the cue is more contaminated with noise as in Fig. 4b, 
x(t) approaches S at a relatively larger angle, making a stretched narrower elliptical orbit (red) that periodically 

Original images

Figure 2.  Grayscale images of 64× 64 pixels displaying classical orchestral instruments that are used for the 
memory input vectors f1, . . . , f5 . All images were taken from Pixabay.

b Retrieved images

c

a

Figure 3.  Auto-associative memory retrieval from a contaminated cue. (a) The noisy cue mc = f̃1 ⊗ r̃1 is 
generated from f̃1 =

√
1− α2f1 + αζ and r̃1 =

√

1− β2r1 + βη, where ζ , η are Gaussian noise following 
N

R642 (0, ‖f1‖) and NR5(0, 1), respectively. The parameters are α = 0.25 and β = 0.2 . (b) Snapshot of the 
retrieved images at the farthest point (red dot) from memory plane S. (c) Snapshot of the retrieved images at 
the intersection (green dot) of the orbit and the memory plane S. The timing of intersection t = t† > 0 can be 
analytically determined as t† = (tan−1 ω + nπ)/ω , n ∈ Z

2. Here, the contrast between the main object and the 
background are not well reproduced as the original images, since the brightness threshold σ = 0.005 is used for 
drawing the retrieved images. One can obtain an original(either identical or exactly inverted) image by using a 
certain optimal value of σ for each retrieved image.
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c

d

b

a

Figure 4.  Comparison of retrieval quality according to the noise level in the cue. (a) The less noisy cue. 
The cue is generated in the same way as in Fig. 3 except using f3 and r3 instead of f1 and r1 . Gaussian noise 
are N

R642 (0, ‖f3‖) and NR5(0, 1) , respectively. The parameters are α = 0.1 and β = 0.2 . (b) The severely 
contaminated cue with α = 0.7 . (c) Snapshots of the retrieved images from the less noisy cue in (a), taken at the 
farthest point from S (top row) and at the intersection (bottom row). Here, p(t†) ≈ 0.0271 , and p ≈ 0.0899 . (d) 
Snapshots of the retrieved images from the more noisy cue in (b), taken at the farthest point from S (top row) 
and at the intersection (bottom row). Here, p(t†) ≈ 0.0194 , and p ≈ 0.0688.

a Retrieved images

b

Figure 5.  (a) Result of retrieval from a partially obstructed cue. Snapshots of the retrieved images are taken 
at the farthest point from S (top row) and at the intersection of the orbit and the memory plane (bottom row). 
Here, p(t†) ≈ 0.0273 , and p ≈ 0.1092 . (b) Result of retrieval from an irrelevant cue. Snapshots of the retrieved 
images are taken at the farthest point from S (top row) and at the intersection of the orbit and the memory plane 
(bottom row). Here, p(t†) ≈ 0.0000 , and p ≈ 0.0015 . In both (a) and (b), we used the noisy tag vector r̃1 used in 
Fig. 3 for retrieval.
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gets far from S. Although the orbit from the severely contaminated cue still passes through the memory plane, 
it only does near the origin, providing relatively feeble images during a short time.

The retrieval can be performed with an incomplete cue. In Fig. 5a, the images are recalled from the partially 
obstructed cue. The original images can be recovered at a decent level, especially when x(t) passes through the 
memory plane S. Figure 5b displays that an irrelevant cue (forest) fails to retrieve the original memory inputs. 
Indeed, it can be shown that a completely irrelevant cue results in a one-dimensional periodic orbit that keeps 
penetrating the memory plane back and forth just at the origin.

To quantitatively verify the performance, we introduce the scaled cosine similarity f⊤i gi(t)/�fi�
2 between the 

original image fi and the retrieved image gi(t) at t. Note that, if 
∥
∥gi(t)

∥
∥ = O(�fi�) , this metric reflects the usual 

cosine similarity between two images and also ‘the memory intensity’ 
∥
∥gi(t)

∥
∥/‖fi‖ together. Let p(t) denote the 

average of the scaled cosine similarity for the images fi , i = 1, . . . , n at t, and let p denote the temporal average 
of p(t). One can see that these two measures successfully capture the quality of retrieved images depending on 
given cues. See the caption of Figs. 4 and 5 for more detail.

The memory capacity of the model measured by the time-averaged performance p according to the number 
of memorized patterns is illustrated in Fig. 6. The performance p is observed to decrease at least in a degree of 
n−

1
2 as expected in Ref.2.

Multiple groups of memory with composite structure. This section deals with applications of the 
model to more complex associative memory. Suppose we have multiple groups of memory representations and 
have stored each group in the form of the memory plane using the system in Eq. (4). We are especially interested 
in the case where some memory representations belong to multiple groups. The following questions naturally 
arise: 1) Can the common memory component retrieve the corresponding multiple groups together? 2) Can a 
single memory group be selected by adding a further memory component in the cue? These questions are poten-
tially related to high-level inference on memory.

We also focus on compositional structure of memory representations created by the tag vectors. Memory 
inputs in this section are words and are collectively provided in the form of a sentence. We assume that each tag 
vector stands for the sentence element (subject, predicate, object, modifier) and is naturally bound to a word 
according to the role of the corresponding word in the sentence. Being activated by such a sequential stream of 
words, the system in Eq. (4) forms the memory plane which can be referred to as the encoding of the sentence.

For the simulation of semantic memory, we use three sentences composed of 8 words. Every word appearing 
in the sentence has one of the 4 roles (sentence elements). The vocabulary of the words and the roles are listed in 
Fig. 7a. We simply use arbitrarily chosen orthonormal sets {fi}8i=1 for the words and {rj}4j=1 for the roles, respec-
tively. Figure 7b shows a couple of examples for memory representations each of which is a binding of a word 
and a role. Here the subindex on the right-hand side is used to express the corresponding role for the word. Our 
goal is to store the semantic information of sentences through Eq. (4) with the memory input b(t) in Eq. (5). 
There are three sentences S1, S2 and S3 listed in Fig. 7c that we use as the memory input in the simulation. Note 
that word John appears three times in the sentences, once in S1 as an object, and twice in S2 and S3 as a subject. 
Similarly, the words Mary and garden occur twice in a different context.

The memory connectivity W∗
k , k = 1, 2, 3 are obtained from separate single group learning on the sen-

tences Sk , k = 1, 2, 3 , respectively. We then set the combined memory connectivity for three sentences, i.e., 
W∗ = W∗

1 +W∗
2 +W∗

3 for the collective retrieval phase. Here, we adopt the function

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 6.  Memory capacity measured by the time-averaged performance: the memory representations were 
constructed with randomly generated 200 dimensional pattern vectors and 20 dimensional tag vectors.
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to measure how close the retrieved quantity is to the word fi as the role rj.
In the following semantics tasks, the retrieval was proceeded for 30 seconds with �t = 0.01 for appropriately 

small x(0) . Multiple cues such as JohnS +MaryO in Fig. 9d are implemented by assigning each cue to its original 
sampling time through a harmonic pulse. In other words, the combined cue JohnS +MaryO is implemented as 
bc(t) = sin(ωt − ξ1)(f2 ⊗ r1)+ sin(ωt − ξ3)(f1 ⊗ r3).

In the first task of multiple composite memories, MaryS is given as the cue. Since Mary occurs as a subject 
only in S1 , one can expect the retrieved result to be S1 as in Fig. 8a. The numerical simulation of the retrieval 
process turned out to agree well with this expectation. Figure 8b compares the fitness of the words. The values of 
Pij (t) in Eq. (11) are evaluated while x(t) is oscillating along a convergent orbit of Eq. (6). If Pij (t) keeps increas-
ing with a large slope, the corresponding memory component fi ⊗ rj can be identified as a dominantly retrieved 
one. The graphs in Fig. 8b show that such representations are MaryS , callingP , JohnO and livingroomM , which 
are well matched to S1.

(11)Pij (t) :=

∫ t

t0

∣
∣
∣f⊤i (x(s) · rj)

∣
∣
∣ds, i = 1, . . . , 8, j = 1, . . . , 4,

a Words ( Roles ( )

Mary
John
dog

calling
chasing
looking

living room
garden

Subject

Predicate

Object

Modifier

Mary Subject

calling Predicate

John Object

living room Modifier

c
is in the

is a in the
is at in the

memory 
representations

b

Figure 7.  (a) List of words and roles used for the external input fi and the tag rj . (b) Descriptive explanation 
on constructing memory representations. (c) Three sentences S1 , S2 and S3 generated by grouping memory 
representations. Note that the words John, Mary and garden appear several times in different contexts.

Figure 8.  (a) Expected result of retrieval when the cue MaryS given. (b) The numerical result of retrieval by the 
cue MaryS . Dominant increasing values of Pji(t) are colored red, which turned out to correspond to S1.
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The second task deals with the case with an ambiguous memory cue. Suppose that the memory component 
JohnS is given as the cue. Since it occurs in the both sentence S2 and S3 , it is reasonable that the retrieval result 
should involve all the memory representations in both sentences as in Fig. 9a. This may be understood in that 
one of the fundamental capabilities of the brain is to examine all possible memories that contain the common 
cue, especially when the given cue is insufficient. However, this ambiguity can be eliminated by adding further 
cues. For example, if MaryO is added as in Fig. 9b, the retrieval result should be narrowed down to S3 due to the 
extra constraint.

It turned out that the numerical simulations successfully capture the expected features of the memory retrieval 
process mentioned above. Figure 9c shows the results from the memory cue JohnS . It is notable that chasingP 
and lookingP in the second graph simultaneously increase with the almost same slope, indicating that they are 
equally dominant memory representations in retrieval. This is even clearer when compared to another memory 
component callingP which is steady and negligible. The same pattern appears with JohnO and dogO in the third 
graph, both of which are dominant retrieval representations. The numerical results in Fig. 9d also reflect the 
retrieval tendency with additional memory cue. We provide the system in Eq. (6) with the extended memory 
input in Eq. (7) that consists of two memory representations JohnS and MaryO . Since the newly added cue 
MaryO confines the retrieval result to the sentence S3 as in Fig. 9b, the memory representations in S2 , chasingP 
and dogO , should be suppressed in retrieval. The second and third graphs in Fig. 9d show that, while chasingP 
and dogO increase (due to the common cue JohnS ), the slope is smaller than that of lookingP and MaryO in S3 , 
respectively. This implies that the dominantly retrieved representations are JohnS , lookingP , MaryO and gardenM 
which are matched to S3.

Discussion
There is now substantial evidence accumulated that neural oscillations are related to memory encoding, atten-
tion, and integration of visual  patterns14–16. In Ref.1, the idea has been proposed that memories constitute stable 
dynamical trajectories on a two-dimensional plane in which an incoming stimulus is encoded as a pair of 
imaginary eigenvalues in the connectivity matrix. We extended such an idea further through a specific memory 

Figure 9.  (a) Expected result of retrieval by a single component cue JohnS . (b) Expected result of retrieval by 
multiple component cues JohnS and MaryO . (c) Numerical result of retrieval by a single component cue JohnS . 
(d) Numerical result of retrieval by multiple component cues JohnS and MaryO.
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system that can process a group of high dimensional associative data sets, by using the exact analytic relation 
between the inputs and the corresponding synaptic changes shown in Ref.2.

While the Hopfield  network17 retrieves static single data as a fixed point, the proposed model explores multiple 
data sets through neural oscillations. Compared to other neural-based models capable of conducting explicit and 
perfect retrieval of grouped data such  as18–20, the model proposed in this work has the novelty of using a simple 
and continuous framework to reconstruct a group of multiple data in the general vector form. Moreover, the 
model produces the output through neural oscillations in reaction to an external cue, showing a potential link 
to a real memory process occurring in the brain.

We encode the input data with tag vectors based on the tensor representation, which has been proposed as a 
robust and flexible distributed memory  representation11,21–24. This preprocess enables us to efficiently retrieve the 
stored data and, in addition, to deal with the composite structure in the data set. The ability to process associate 
multiple data sets with composite structures is essential in natural language understanding and reasoning. It 
has been shown that the proposed model can handle multiple sentences that describe distinct situations and can 
selectively allow the recall cue to arouse a group of associative memories according to its semantic relevance.

From a practical perspective, our results suggest an alternative approach for a memory device. The conven-
tional von Neumann architecture is non-scalable and its performance is limited by the so-called von Neumann 
bottleneck between nonvolatile memories and microprocessors. On the other hand, operating data with artificial 
synapses is benefiting from a parallel information process consuming a small amount of energy per synapse. 
Moreover, conventional digital memory systems convert the inputs to a binary code and save it in a separate 
storage device, likely destroying the correlation information by such physical isolation. The proposed model is 
based on continuous dynamical systems and provides a simple and robust approach to deal with a sequence of 
associative high-dimensional data. Processing data in the continuous and distributed system results in the plastic 
storage of the correlated information in the synaptic connections.

In this work, we used a continuous model based on the average of local spiking activities of neurons. The 
model can be seen as a continuous approximation of Spiking Neural Network(SNN) which has been recognized 
as a promising arhitecture for bio-inspired neuromorphic hardware. There have been several studies showing 
the dynamical correspondence between SNNs and their firing-rate approximations including Wilson–Cowan 
 model25–27. However, reproducing the memory process in this paper through SNN is substantial yet interesting 
challenge in practice, considering it requires establishing a proper conversion between a series of high dimen-
sional data and spiking patterns.
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