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The position of the cochlear implant electrode array within the scala tympani is essential for an optimal postoperative hearing
benefit. If the electrode array changes in between the scalae intracochlearly (i.e., from scala tympani to scala vestibuli), a reduced
auditory performance can be assumed. We established a neural response telemetry-ratio (NRT-ratio) which corresponds with the
scalar position of the electrodes but shows within its limits a variability. The aim of this study was to determine if insertion depth
angle or cochlea size influences the NRT-ratio. The intraoperative electrophysiological NRT data of 26 patients were evaluated.
Using a flat panel tomography system, the position of the electrode array was evaluated radiologically. The insertion depth angle
of the electrode, the cochlea size, and the NRT-ratio were calculated postoperatively. The radiological results were compared with
the intraoperatively obtained electrophysiological data (NRT-ratio) and statistically evaluated. In all patients the NRT-ratio, the
insertion depth angle, and the cochlea size could be determined. A significant correlation between insertional depth, cochlear
size, and the NRT-ratio was not found. The NRT-ratio is a reliable electrophysiological tool to determine the scalar position of a

perimodiolar electrode array. The NRT-ratio can be applied independent from insertion depth and cochlear size.

1. Introduction

Cochlear implantation (CI) is a safe and effective procedure
for patients with residual hearing and profound sensorineural
hearingloss (SNHL). The insertion depth of cochlear implant
electrode arrays has been described to correlate with preser-
vation of residual hearing and word identification scores [1-
5]. If the electrode array changes from the scala tympani to the
scala vestibuli, a poorer audiological outcome is most likely
[6, 7]. It is reported that an insertion of a CI electrode array
into the scala tympani results in a better postoperative speech
perception compared to a position of the electrode in the
scala vestibuli [8, 9]. Translocation of electrode arrays from
the scala tympani into the scala vestibuli is known to occur

in most cases at an electrode insertion depth of approximately
180° [10].

Postoperative standard X-ray can be used to determine
the insertion depth [11, 12] but different imaging techniques
such as computed tomography (CT), flat panel tomography
(FPT), or digital volume tomography (DVT) are needed to
verify the electrode’s scalar position [8]. Intraoperative 3D
rotational X-ray can be used to produce high quality, real-
time images of the cochlea and the electrode array in the
operating room [8, 13]. Nevertheless, this technique is time
and cost consuming but provides reliable evidence about the
intracochlear position of the electrode array.

Another way to verify the electrode array’s scalar posi-
tion is the evaluation of intraoperative electrophysiological
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measurements. The spread of excitation measurements can
identify electrode array fold-overs [14]. Cochlear implant
devices from Cochlear Ltd. are equipped with the neural
response telemetry (NRT) system, which can measure the
electrically evoked whole nerve potentials (EAP) without
accessing the cochlear directly [15]. The EAP depends on the
distance between the electrode array and the spiral ganglion
[16]. For the perimodiolar Nucleus Contour electrode arrays
an apical to basal neural response telemetry-ratio (NRT-
ratio) can be used to determine the intracochlear position
of the electrode array [17, 18]. A NRT-ratio above 1.05
indicates an electrode translocation from scala tympani to
scala vestibuli and a NRT-ratio below 1.05 shows correlation
to a pure scala tympani placement [17]. But within the group
of patients with an electrode placement within scala tympani
a variation of the NRT-ratio was seen [17, 18].

It was therefore the aim of the present study to investigate
the dependence of the NRT-ratio of the electrodes on inser-
tion depth angles and cochlea sizes in a group of patients with
radiologically confirmed scalar tympani position.

2. Materials and Methods

A total of 26 patients were included in this retrospective
study. The inclusion criterion was the implantation with a
Nucleus Contour Advance electrode. All included patients
were implanted by the senior author between 2010 and 2015
with a standard surgical procedure including a postauricular
transmastoid approach, a posterior tympanotomy, and a
round window or extended round window access, as well
as the AOS technique for electrode insertion. Furthermore,
all of the included patients showed stable intraoperatively
measured t-NRT sweeps and a postoperative radiologic
evaluation of the electrode’s position based on a rotational
tomography (RT) with a digital flat panel detector. The study
was reviewed and supported by the institutional review board
at the Unfallkrankenhaus Berlin (IRB-ukb-HNO-2015/01) and
has been conducted according to the principles expressed in
the Declaration of Helsinki. Patient records and information
were anonymized and de-identified prior to analysis.

2.1. Radiologic Evaluation. Determination of the insertion
depth angle and cochlear size was performed using an
Allura Xper FD20 system (Philips Medical Systems, Best,
Netherlands) with a flat panel detector. The parameters of
the system were as follows: entrance field of 22 cm, 274 mAs,
95kV, 180° rotation, 241 projections, filter 0.90 mm Cu +
1.00mm Al, and posteroanterior (PA). The focus panel
distance was determined and constant over the entire rotation
ata frequency of 30 pic/s. The 3D tomography was performed
in the unsubtracted mode. From this volume data set, the
temporal bones were secondarily enlarged (FoV of 100 mm),
digitally stored and sent for 2D- and 3D-reconstruction to
an external workstation (Extended Brilliance Workspace,
Philips, Cleveland, USA). Two experienced surgeons and a
neuroradiologist certified all radiological images postoper-
atively. For the scalar position of the electrode array, image
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FIGURE 1: Exemplary measurement of the insertion depth angle. A
reconstructed 2D “cochlear view” from the postoperative rotational
tomography of patient 16. Insertion depth angle is 333°.

acquisition and reconstruction were performed as described
by Aschendorff et al. in 2007 [8].

2.2. Cochlear Size and the Insertion Depth Angle. To quantify
the cochlear size, the diameter of the basal turn was measured
using the reconstructed cochlear view [11]. The diameter of
the basal turn is measured from the center of the round
window to the lateral wall, crossing the position of the
helicotrema [19, 20]. This distance was chosen as it is sufficient
for defining of the cochlear size [19]. For the determination
of the insertion depth angle a reference line connecting the
center of the round window and the center of the modiolus
was defined at zero-degree angle. Another reference line from
the center of the modiolus to the tip of the electrode array
defines the angle that has to be subtracted or added if the
electrode crosses the first reference line according to the
consensus panel [12] (Figures 1 and 2).

2.3. Data Acquisition and NRT-Evaluation. NRT data
were obtained intraoperatively under sterile conditions
in all included patients. Software-based NRT recordings
(Cochlear’s Custom Sound 4.0) were used (Auto-NRT mode)
to measure and evaluate the NRT thresholds (t-NRT). In
each individual all electrodes were measured and recorded.

The NRT-ratios were calculated in each individual. This
was determined by dividing the average NRT value from
electrodes 18 and 16 in the apical part with the average NRT
value from electrodes 8 and 6 in the basal part of the electrode
array [17]. Statistical evaluation was performed using SPSS
(Version 22.0; IBM Co., Armonk, NY, USA). In a second
step modified NRT-ratios were correlated with the insertion
depth angle and the cochlea size. NRT-ratios were calculated
by shifting the selected electrode in the apical and basal part
(Table 1).

3. Results

A certain CI electrode position within scala tympani
was radiologically verified postoperatively in every patient.
Pearson’s product-moment correlation was performed to
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FIGURE 2: Exemplary measurement of the cochlear size. A recon-
structed 2D “cochlear view” from the postoperative rotational
tomography of patient 16. Cochlear size is 9 mm.

determine whether there was a relationship between the
NRT-ratio and the insertion depth angle and cochlear size,
respectively. For all variables, there were no outliers and the
data was normally distributed, as assessed by a Shapiro-Wilk
test (p > 0.05). The mean NRT-ratio was 0.90 (0.74-1.04, SD
+ 0.08), the mean insertion depth angle was 359.11° (326°-
400°, SD + 24.09), and the mean basal cochlear diameter
was 7.79 mm (7 mm-9 mm, SD + 0.46). There was neither a
correlation between the NRT-ratio and the insertion depth
angle, r(24) = 0.056, p > 0.05, nor a correlation between the
NRT-ratio and the cochlear size r(24) = —0.023, p > 0.05.

The NRT-ratio is a quotient between apical and basal CL
levels. In the apical and basal part different electrodes were
selected and shifted to calculate different NRT-ratios. These
ratios were also correlated with the insertion depth angle and
the cochlear diameter. A slight positive but not statistically
significant correlation was seen between the NRT-ratios and
the insertion depth angles (r < 0.3; p > 0.05) and a slight
negative relationship was seen between the NRT-ratio and the
cochlear size (r > —0.3; p > 0.05), respectively (Table 1).

Furthermore the relationship between the insertion depth
angle and the cochlear size was investigated. Pearson’s
product-moment correlation showed a moderate negative
correlation but not statistically significance with r(24) =
-0.311, p > 0.05.

4. Discussion

Cochlear implantation is a safe and reliable procedure for
the treatment of severe to profound sensorineural hearing
loss and patients with residual hearing. The position of
the electrode array in the cochlea is fundamental for the
interaction between the implant and the cochlear neuronal
structures. The NRT-ratio for the estimation of the intra-
cochlear position of the CI is dependent on the intracochlear
structures [17, 18]. In previous studies a variation of the NRT-
ratio was seen for patients with an electrode position within

scala tympani [17, 18]. The question arises if this variability is
dependent on cochlear size or the insertion depth angle.

The vitality of neuronal structures and the amount of
spiral ganglion degeneration among the cochlea are essential
for the NRT patterns and the reliable NRT-ratio. Neurosen-
sory, hereditary disorders such as Usher’s syndrome [21],
diseases with “nonhomogenous dead” ganglion cells such as
superficial siderosis [22], or congenital rubella infection [23]
could result in irregular t-NRT pattern. In patients with long-
term deafness, the total number and viability of the spiral
cell ganglions after this long period is not clear but can be
assumed to be affected [24]. In such neural affected patients
the NRT-ratio is less valid as in patients without degenerative
neural impairments.

In our group of patients with a certain electrode position
within the scala tympani the NRT-ratio shows variability
between 0.74 and 1.04. As the electrically evoked cochlear
action potential (ECAP) depends on the proximity of the
electrode array and the spiral ganglion cells [16, 25, 26],
the NRT thresholds depend as well on this distance. In the
apex, the diameter of the cochlea is smaller and the electrode
array converges to the spiral ganglion cells. Hence ECAP
thresholds are lower in the apex than in the base [27]. Based
on these findings an electrode with a greater insertion angle
can be assumed to correlate with a smaller NRT-ratio. To
our knowledge there are no published studies comparing the
angular insertion depth with the electrophysiological pattern.
In our study population, we do not see the tendency that
greater insertion angles correlate with a smaller NRT-ratio.
Nevertheless an unknown factor is still the lack of informa-
tion about the vitality of spiral ganglion cells although NRT
pattern was recorded regularly in all patients. We modified
the NRT-ratio by regarding different electrode ranges in the
apical and basal part (Table 1).

The cochlear diameter in our patient’s population varied
from 7.0 to 8.8 mm and is comparable to the literature [19,
28]. Similar to the insertion depth angle no relationship
between the NRT-ratio and the cochlear size was found but
a moderate not significant correlation between the insertion
depth angle and the cochlear diameter was observed. This
finding underlines the hypothesis by Escudé et al. [19] that,
for perimodiolar arrays, the cochlear size may influence the
insertion depth angle.

In comparison with our previous study [18] (mean NRT-
ratio 0.88 (0.7-0.99) for patients with scala tympani position),
where all implants were inserted via a cochleostomy anterior
inferior to the round window, the mean NRT-ratio is a little
higher in the present study as implants were inserted via
the round window or an enlarged RW. CI electrode arrays
inserted via a cochleostomy have deeper insertion depth
angles than those inserted via the round window, even if
inserted to the same marker’s position [29].

5. Conclusion

The NRT-ratio allows the distinction between a regular and
a scalar changing position of perimodiolar CI electrodes for
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the surgeon. The insertion depth angle and the cochlear size
have no statistically significant influence on the NRT-ratio.
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