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Abstract: Microbial colonization of very preterm (VPT) infants is detrimentally affected by the
complex interplay of physiological, dietary, medical, and environmental factors. The aim of this
study was to evaluate the effects of an infant formula containing the specific prebiotic mixture of
scGOS/lcFOS (9:1) and glycomacropeptide (GMP) on the composition and function of VPT infants’
gut microbiota. Metagenomic analysis was performed on the gut microbiota of VPT infants sampled
at four time points: 24 h before the trial and 7, 14, and 28 days after the trial. Functional profiling was
aggregated into gut and brain modules (GBMs) and gut metabolic modules (GMMs) based on the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Enterococcus faecium, Escherichia coli,
Klebsiella aerogenes, and Klebsiella pneumoniae were dominant species in both the test group and the
control group. After the 4-week intervention, the abundance of Bifidobacterium in the test group was
significantly increased. We found two GBMs (quinolinic acid synthesis and kynurenine degradation)
and four GMMs (glutamine degradation, glyoxylate bypass, dissimilatory nitrate reduction, and
preparatory phase of glycolysis) were significantly enriched in the test group, respectively. The results
of this study suggested that formula enriched with scGOS/lcFOS (9:1) and GPM is beneficial to the
intestinal microecology of VPT infants.

Keywords: preterm; prebiotics; glycomacropeptide; metagenomics

1. Introduction

Globally, the preterm rate is rising and is the major cause of infant mortality. Preterm
infants have immature and fragile organs, which leads them to be more susceptible to
a series of health problems, especially when they are born very preterm (VPT) (born 28
to <32 weeks of gestation) [1]. Despite recent advances in neonatal care, VPT infants
remain at high risk of necrotizing enterocolitis, respiratory problems, neonatal jaundice,
and neurodevelopmental impairment [2].

Due to various health challenges, VPT infants are usually hospitalized in the neonatal
intensive care unit (NICU) for an extended period of time, being put on artificial respiration
and fed artificially or parenterally. Moreover, antibiotics and other medications are widely
used during the treatment of these infants. All these factors may interfere with the natural
pattern of microbiota acquisition and development, resulting in an aberrant establishment
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or deviation of the composition of the gut microbiota [3,4]. The microbiota of healthy
term infants is dominated by Bifidobacterium and Bacteroides; however, these bacteria only
exist in low abundance in premature infants [5]. In contrast, premature infants show low
diversity and increased colonization of potentially pathogenic bacteria from Gram-negative
Enterobacteriaceae of Proteobacteria [6]. These alterations may dramatically affect short- and
long-term health [7].

Nutrition is a key factor in shaping the composition and function of the early micro-
biota [8]. Breastmilk is considered the gold standard of infant nutrition and is recommended
for preterm infants [9]. However, preterm infants (especially <32 weeks of gestation) often
face the dilemma of insufficient breast milk. In this condition, infant formula provides a
healthy alternative that attempts to mimic the nutritional content of breast milk [10]. The
most common infant formula is based on bovine milk, which has a very different nutritional
composition than human breast milk. Human milk oligosaccharides (HMOs) not only have
a “prebiotic” effect [11] but are also rich in sialic acid found in brain gangliosides [12], the
content of which is significantly lower in formula than in breast milk [13]. Sialic acids are a
class of alpha-keto acid sugars with a nine-carbon backbone [14]. A study on piglets con-
firmed that sialic acid derived from casein glycomacropeptide could improve the learning
and memory abilities of piglets during early development [15].

Studies have found that the addition of prebiotics in term infant formula promotes
the development of a neonatal gut microbiota resembling that of breast-fed infants [16].
Furthermore, feeding infant formula containing a GOS/FOS mixture has a positive effect on
bifidobacterial abundance [17]. Glycomacropeptide (GMP) is a glycopeptide rich in sialic
acid that can also promote the growth of beneficial bacteria and bind to pathogenic bacte-
ria [18]. It has numerous biological effects on gut health, including preventing pathogen
adhesion, decreasing intestinal barrier dysfunction, limiting lipopolysaccharide production,
and attenuating inflammation [19].

However, most of the previous studies only focused on individual prebiotic-associated
microorganisms and did not elucidate the whole gut microbiota of subjects; some studies
reported gut microbial composition at the genus level without a detailed description of the
species-specific effects of prebiotics. In the present study, we hypothesized that preterm
formula supplemented with a prebiotic mixture of scGOS/lcFOS and GMP would facilitate
the establishment of normal gut microbiota in VPT infants and confer health benefits. The
aim of our study was to investigate the effects of a preterm infant formula enriched with
scGOS/lcFOS and GMP on the composition and function of healthy VPT infants’ gut
microbiota, using metagenomic data collected at four time points. The effects on infant
growth and stool characteristics were further aims of this study.

2. Materials and Methods
2.1. Study Design and Subjects

This study is a prospective, non-randomized, controlled trial conducted between
October 2019 and November 2020 in the NICU of Peking University Third Hospital. The
study was approved by the Peking University Third Hospital Medical Science Research
Ethics Committee (No. S2016159). It was registered in the Chinese Clinical Trials Register
(registration number ChiCTR2100051988). Written informed consent was obtained from
parents before infant enrollment in the study.

Healthy VPT infants born at a gestational age between 28 and 32 weeks and whose
mothers could not offer sufficient breastmilk or elected not to breast-feed were recruited as
the study subjects. Exclusion criteria included severe gastrointestinal dysfunction, congen-
ital malformations, genetic diseases, or any other disease requiring surgery. The infants
were assigned to receive either a standard formula (control group) or an experimental
formula (test group) according to the preference of parents.

Basic clinical information about the parents and their offspring was obtained through
the medical records, including the mother’s age, mode of delivery, gestational age, infant
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sex, Apgar score, antenatal and postpartum antibiotic therapy, birth weight, length, and
head circumference.

Due to considerations of feeding tolerance and safety, the trial was started when the
infants’ enteral feeding volume reached 80 mL/kg/d. Prior to this, both groups were
fed the same standard formula for preterm infants. When the prescribed enteral feeding
amount was reached, the test group was fed the experimental formula, and the control
group continued to feed the standard formula. The control and experimental formulas
were comparable in nutritional composition, except that the experimental formula con-
tained a prebiotic mixture providing 0.65 g scGOS/lcFOS (9:1) and casein GMP providing
40 mg sialic acid/100 mL. Both formulas were bovine milk-based, containing energy
316 kJ/100 mL, protein 0.68 g/100 kJ, and lipid 1.30 g/100 kJ. The intervention was car-
ried out when the infant was hospitalized in the NICU and lasted for 28 days. During
this period, they underwent a daily clinical follow-up, including feeding volume, stool
consistency, and stool frequency.

2.2. Stool Collection

Fresh stools were collected by a trained nurse from the infants’ diapers within 24 h
before, 7 days after, 14 days after, and 28 days after the intervention using a collection
tube containing 8 mL of DNA stabilizer reagent (PSP® Spin Stool DNA Plus Kit, STRATEC
Biomedical AG, Birkenfeld, Germany). The samples were kept frozen at −80 ◦C until DNA
extraction.

2.3. Fecal DNA Extraction and Metagenomic Sequencing

The metagenomic DNA was extracted using MagPure Stool DNA kf kit (MP, Guangzhou,
China), following the manufacturer’s instructions, which included a step of mechanical cell
disruption by bead beating.

Metagenomic sequencing was performed by China National GeneBank (Shenzhen,
China), following the protocol published previously [20]. Briefly, DNA was fragmented and
barcoded, then subjected to amplification to produce DNA nanoballs. High-throughput
sequencing was performed on BGISEQ-500. Adaptor and low-quality reads were removed,
and human DNA reads were filtered out.

2.4. Taxonomic and Functional Profiling

MetaPhlAn 3.0 was used to estimate the relative abundance of taxonomic profiles.
Putative amino acid sequences were translated from the gene catalog [21] and aligned
against the proteins or domains in the Kyoto Encyclopedia of Genes and Genomes (KEGG)
databases (release 79.0, with animal and plant genes removed) using BLASTP (v2.26,
default parameter, except -m 8 -e 1e-5 -F -a 6 -b 50). Each protein was assigned to a KEGG
orthologous (KO) group on the basis of the highest-scoring annotated hit(s) containing
at least one segment pair scoring over 60 bits. The relative abundance profile of KOs
was determined by summing the relative abundance of genes from each KO using the
mapped reads per sample [21]. The abundance of each gut metabolic module (GMM) (-a 2
-d GMM.v1.07.txt -s average) and gut neuroactive module (GBM) (default parameter) were
calculated as shown in the former article [22,23].

2.5. Statistical Analysis

All statistical analyses were performed using R statistical software version 4.0.3.
Baseline characteristics and clinical results of the study participants were presented as
mean ± SD for continuous variables and frequencies for categorical variables.

Alpha-diversity (Shannon index) was calculated using the Vegan package and com-
pared by using Wilcoxon rank-sum test. Phylogenetic measures of beta-diversity based
on the genus level abundance profile were also calculated by using the Vegan package,
and PCoA plot based on Bray–Curtis distances were performed using the ggplot2 package.
The top two principal coordinates (PC1 and PC2, representing the maximum amount of
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variation present in the dataset) were compared in each group. In order to investigate the
specific differences in the gut microbiome composition and function between the test and
control groups, Wilcoxon rank-sum test was used, and p-values were corrected for multiple
testing using the Benjamin and Hochberg method. In order to compare the microbiota
community structure across four time points, Kruskal–Wallis test was used and pairwise
test for multiple comparisons was performed using Bonferroni’s p-adjustment method.
Statistical significance was assumed at p < 0.05.

2.6. Data Availability

The datasets used to analyze for this study can be found in the China National
Genebank (CNGB) with program ID CNP0001742.

3. Results

A total of 155 samples from day 0 (24 h before intervention), 7 days, 14 days, and
28 days after intervention were obtained from 72 infants (Figure 1). One participant in
the test group dropped out because of sepsis, and one in the control group dropped out
because of necrotizing enterocolitis, and they were not included in the analysis. In the test
group, an average of 2.3 stool samples were collected per participant, and in the control
group, an average of 2 stool samples were collected per participant. The characteristics of
the participants are shown in Table 1. Thirty-seven infants were allocated to the test group
and thirty-five to the control group in the present research. No significant differences were
found in baseline characteristics between the two study groups except that the test group
was more mature (p = 0.040) and had a shorter hospitality stay than the control group
(p = 0.039). However, there was no significant difference in the corrected gestational age at
the beginning of the intervention.

Table 1. Characteristics of the study participants.

Test Group (n = 37) Control Group (n = 35) p

Male sex (n [%]) 14 (37.8) 20 (58.8) 0.077
Siblings at birth (n [% yes]) 11 (29.7) 13 (37.1) 0.505
Cesarean delivery (n [%]) 23 (62.2) 22 (64.7) 0.824

Maternal antibiotics at delivery
(n [% yes]) 11 (29.7) 10 (30.3) 0.958

Infant antibiotics after inclusion
(n [% yes]) 12 (32.4) 14 (40.0) 0.504

Maternal age (year) 32.2 ± 4.8 32.8 ± 4.7 0.589
Birth weight (g) 1329.2 ± 268.1 1265.1 ± 257.1 0.305

Birth length (cm) 38.3 ± 3.3 37.7 ± 2.5 0.384
Head circumference (cm) 27.6 ± 1.7 26.9 ± 1.7 0.060

1-min Apgar score 8.6 ± 2.0 8.2 ± 2.1 0.356
5-min Apgar score 9.4 ± 1.1 9.0 ± 1.2 0.227

10-min Apgar score 9.5 ± 0.8 9.4 ± 0.8 0.562
Gestational age at birth (week) 30.4 ± 1.8 29.5 ± 1.6 0.040

Corrected age at the beginning of
intervention (week) 32.4 ± 1.3 31.8 ± 1.5 0.095

Hospitalization (day) 41.4 ± 15.2 49.4 ± 16.9 0.039
Continuous variables are represented as the mean ± SD.

PCoA based on Bray–Curtis dissimilarity was used to examine the microbial commu-
nity structure across different groups and stages (Figure 2a). The distribution of samples
by groups and stages is shown along the first and second axes of the PCoA plot. Along
the first axis, the value of PC1 in the control group showed an increasing trend over time,
and there was a significant difference in microbiota community structure between stages
three and four. A similar trend was found in the test group, but no significant difference
was observed between the four stages. Along the second axis, the microbiota community
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structure of the test group showed significant differences between stages one and two, as
well as stages one and three. There was no such difference found in the control group.
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We compared the number of genera between the test group and the control group over
the sampled time points (Figure 2b). We found that the genus number of the control group
showed an increasing trend over time while the test group remained constant. The number
of genera in the control group at stage four was significantly higher than that at stage one
(p = 0.0036) and stage three (p = 0.046). After 28 days of intervention, the genus number of
the control group was significantly higher than that of the test group, indicating that the
test formula had an effect on the richness of microbiota in the VPT infant gut (p = 0.028).

The alpha diversity of the infant gut microbiota was measured by the Shannon in-
dex. There was no significant change in the microbial diversity within either group over
the intervention period. When comparing between feeding groups, the test group was
significantly lower than the control group at 7 d (p = 0.009) and 28 d (p = 0.031) (Figure 2c).

The main phyla in the feces in both the test group and the control group were Pro-
teobacteria, followed by Firmicutes and Actinobacteria. Consistent with the results of previ-
ous studies, we detected that Enterobacteriaceae-related genera such as Klebsiella, Escherichia,
and Enterobacter, and genera of Enterococcus, Clostridium, and Bifidobacterium predominated
the intestinal microbiome of VPT infants (Figure 3a). The relative abundance of the gut
microbiota in both the test and control groups fluctuated during the intervention period.

We found that Enterococcus faecium, Escherichia coli, Klebsiella aerogenes, and Klebsiella
pneumoniae were dominant species in both groups (Figure 3b). The test group was char-
acterized by a higher relative abundance of Bifidobacterium on day 28 (adjusted p = 0.023,
Figure 3c). Four Bifidobacterium species were detected: B. longum, B. animalis, B. breve,
and B. pseudocatenulatum. Among them, B. longum was most affected by the administered
prebiotics and showed the greatest increase in the test group (Figure 3c).

Using gut and brain modules (GBMs) and gut metabolic modules (GMMs), we evalu-
ated the functional capacity development of gut microbiota. After 28 days of intervention,
two significantly changed GBMs between two groups were observed. Quinolinic acid
synthesis and kynurenine degradation were enriched in the test group (Figure 4a,b). Four
significantly changed GMMs between the two groups were observed. Glutamine degrada-
tion, glyoxylate bypass, dissimilatory nitrate reduction, and preparatory phase of glycolysis
(Figure 4c–f) were enriched in the test group compared with the control group.
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Figure 4. Comparison of gut and brain modules (GBMs) and gut metabolic modules (GMMs) between
the test group and the control group. Quinolinic acid synthesis (a), kynurenine degradation (b),
glutamine degradation (c), glyoxylate bypass (d), dissimilatory nitrate reduction (e) and preparatory
phase of glycolysis (f).

Infants in both groups consumed an increasing amount of formula during the study
period. No significant difference was observed between the two groups in daily intake of
formula, weight, length, and head circumference. No significant differences were shown
at any timepoint for stool consistency and stool frequency between the test and control
groups (Table 2).
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Table 2. Clinical results at 4 time points.

T1 T2 T3 T4

Infant feeding volume (mL/day)

Test 175.1 ± 63.5 214.7 ± 69.5 258.4 ± 55.1 297.5 ± 38.0
Control 171.9 ± 78.3 199.0 ± 64.2 249.7 ± 59.7 293.9 ± 36.8
p value 0.136 0.719 0.217 0.314

Weight (g)

Test 1420.9 ± 199.9 1459.2 ± 186.4 1634.6 ± 199.5 1900.0 ± 197.2
Control 1393.1 ± 210.1 1456.8 ± 222.8 1599.1 ± 235.3 1900.0 ± 129.2
p value 0.582 0.966 0.583 0.699

Length (cm)

Test 39.8 ± 2.9 40.3 ± 2.1 41.3 ± 2.3 44.7 ± 2.5
Control 38.8 ± 2.7 40.0 ± 2.6 41.1 ± 2.7 44.4 ± 2.8
p value 0.231 0.736 0.814 0.794

Head circumference (cm)

Test 28.0 ± 2.0 28.3 ± 2.0 29.1 ± 2.1 31.2 ± 3.1
Control 27.5 ± 1.8 28.2 ± 2.3 28.6 ± 2.3 29.7 ± 2.5
p value 0.323 0.861 0.488 0.187

Stool consistency (Bristol stool score)

Test 3.9 ± 0.5 4.0 ± 0.0 3.9 ± 0.4 4.0 ± 0.0
Control 3.8 ± 0.6 3.9 ± 0.3 3.9 ± 0.3 3.9 ± 0.4
p value 0.359 0.103 0.865 0.253

Stool frequency (times/day)

Test 1.7 ± 1.5 1.7 ± 1.3 2.2 ± 1.5 2.3 ± 1.1
Control 1.9 ± 1.2 2.1 ± 1.4 2.2 ± 1.3 1.7 ± 1.3
p value 0.643 0.268 0.908 0.778

4. Discussion

To the authors’ knowledge, the present study was the first study using metagenomic
shotgun sequencing to profile the gastrointestinal microbiome of VPT infants. We found
that after the 4-week intervention of the specific prebiotic mixture of scGOS/lcFOS (9:1)
and GPM, the abundance of Bifidobacterium in the test group was significantly increased.
Gut and brain modules (GBMs) and gut metabolic modules (GMMs) showed differences
in neuroactive compound production and energy source utilization between the test and
control groups.

It is acknowledged that gestational age is an important factor in the establishment of
the infant gut microbiota [24]. VPT infants have a delayed progression to a Bifidobacterium-
dominated microbiota compared to term infants [6]. Consistent with previous studies [25,26],
we observed that Klebsiella, Escherichia, and Enterococcus predominated the intestinal microbiome
of VPT infants. Although the gut microbiota of VPT infants is highly dynamic, the composition
and longitudinal progression trend of the gut microbiota in the two groups were similar
because they were both fed with formula.

In our study, we found a significant increase in the abundance of Bifidobacterium in the
test group, with a proportion similar to that reported in breast-fed counterparts [27]. Both
scGOS/lcFOS and GPM have been reported to promote the growth of Bifidobacterium. A
dose-related bifidogenic effect of GOS/FOS supplementation has previously been shown
in formula-fed term infants, ranging between 0.4–0.8 g/dL [28], which was comparable to
our study. On the other hand, Korpela et al. studied probiotic and galactooligosaccharides
(GOS) supplementation in breast-fed and formula-fed neonates; they found the bifidobac-
terial community in the formula-fed infants have a weaker response to the supplement
compared to the breast-fed infants. Only breast-fed infants showed the expected increase in
bifidobacteria and reduction in Proteobacteria and Clostridia [29]. GMP supplementation pro-
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moted the growth of Bifidobacterium in the feces of rats with atopic dermatitis and increased
the contents of acetic acid and butyric acid [30]. The administration of GMP to 6-week-old
infants for 6 months augmented the levels of Bifidobacterium compared with baseline [31].
At the species level, we found 4 Bifidobacterium species in the VPT infant gut: B. longum, B.
animalis, B. breve, and B. pseudocatenulatum. The former two were relatively abundant in
the VPT infant gut, and B. longum showed the greatest response to the intervention. This
finding was in correspondence with a previous study in bacterial cultures, which showed
that B. longum strains had the ability to utilize both GOS and FOS and used a major extent
for growth [32].

Moreover, the premature gut microbiota is different not only in composition but also
in functionality. The main short-chain fatty acids (SCFAs) produced by the intestinal
microbiota were found at lower levels in fecal samples from preterm and VLBW infants
than in the feces of full-term infants [33]. In this study, we found that the intervention also
improved the function of the microbial community. Glutamine is the amino group donor
for many cellular biosynthetic reactions and serves as a storage reservoir of ammonia,
playing a central role in nitrogen metabolism [34]. The glutamine degradation enriched in
the test group might indicate the enhanced ability of microorganisms to utilize nitrogen
sources. Glyoxylate bypass is also known as the glyoxylate shunt, in which acetyl-CoA is
converted to succinate for the synthesis of carbohydrates. The glyoxylate shunt acts as a
microbial survival pathway [35,36] and is essential for the production of bacterial acetate
and fatty acid metabolism [37]. Dissimilatory nitrate reduction is a pathway related to
bacteria’s respiration. Nitrate is one of the alternative electron acceptors allowing bacteria
to respire in the absence of oxygen [38]. The glycolytic pathway is a major metabolic
pathway for microbial fermentation, and the preparatory phase forms a key intermediate
of the pathway. In the preparatory phase of glycolysis, one glucose molecule is converted
to two glyceraldehyde-3- phosphate [39]. The kynurenine pathway is responsible for
90% of tryptophan metabolism, and the downstream metabolites kynurenic acid and
quinolinic acid of this pathway have recently been identified as relevant for the nervous
system, as they exert neuroprotective and excitotoxic effects, respectively, through their
interaction with N-methyl-D-aspartate (NMDA) receptors [40]. Recently, it became evident
that intestinal bacteria can affect brain function and behavior through signaling pathways
of the microbiome gut–brain axis [41].

Since previous studies have reported that the preterm infant gut cluster is independent
of sex or delivery mode [42], we did not subgroup these factors in the subject recruitment
and analysis. Antibiotics are another factor that has an important influence on the intestinal
microbiota. In this study, all infants received one course of antibiotics, with a third receiving
at least one additional course. Thus, despite the potential confounding effects of antibiotic
use, this study represents a typical characterization of the bacterial community of VPT
infants under clinical supervision.

The present study has several limitations. Firstly, although the study was conducted
out of humanitarian interest and left to parents to decide which preterm formula to feed
their infants, this non-randomized study design may give rise to imbalances and biased
estimates of treatment effects [43]. A relatively small sample size may limit the power of
statistical analysis. However, our study found some significant differences in the composi-
tion and function of the gut microbiota between the test and control groups, which were
consonant with previous findings. The loss of our study samples was mainly attributed to
(i) extracting DNA from VPT infant stool samples being challenging and (ii) subjects being
unable to adhere to our longitudinal intervention and collection schedule when discharged
from the NICU. It is of great importance that safety is taken into account when trials are
performed in VPT infants because those infants are at increased risk for infections, so the
trials are conducted under close supervision in the NICU. This also resulted in a short trial
period, which was insufficient to observe the trajectory trends of the intestinal microbiome
over a long period of time.
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5. Conclusions

In summary, our results show that formula enriched with scGOS/lcFOS (9:1) and
GPM is safe for VPT infants, and it promotes the growth of Bifidobacterium. VPT infants
fed the experimental formula have a microbiota more active in neuroactive compound
production and energy source utilization, which might benefit their health. However,
future randomized controlled studies with larger samples are warranted to further confirm
these findings.
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