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Abstract: Background and Objectives: Diffuse interstitial lung diseases (DILD) are a heterogeneous
group of over 200 entities, some with dramatical evolution and poor prognostic. Because of their
overlapping clinical, physiopathological and imagistic nature, successful management requires early
detection and proper progression evaluation. This paper tests a complex networks (CN) algorithm for
imagistic aided diagnosis fitness for the possibility of achieving relevant and novel DILD management
data. Materials and Methods: 65 DILD and 31 normal high resolution computer tomography (HRCT)
scans were selected and analyzed with the CN model. Results: The algorithm is showcased in two
case reports and then statistical analysis on the entire lot shows that a CN algorithm quantifies
progression evaluation with a very fine accuracy, surpassing functional parameters’ variations. The
CN algorithm can also be successfully used for early detection, mainly on the ground glass opacity
Hounsfield Units band of the scan. Conclusions: A CN based computer aided diagnosis could provide
the much-required data needed to successfully manage DILDs.

Keywords: interstitial lung disease; diffuse interstitial lung disease; idiopathic pulmonary fibrosis;
high-resolution computed tomography; complex networks; computer-aided diagnosis

1. Introduction

Diffuse interstitial lung diseases (DILD) are a large, heterogeneous group encompass-
ing more than 200 distinct pulmonary disorders, that affect the lung parenchyma to varying
degrees, via inflammation and fibrosis [1,2]. DILD are problematic in the sense that they
often present overlapping clinical, radiological, and pathological signs and symptoms,
yet different evolution patterns, making it difficult to determine the correct diagnosis and
treatment, even with a multi-disciplinary approach [3]. Idiopathic pulmonary fibrosis (IPF)
is the most frequently encountered DILD [4], a progressive fibrosing interstitial lung disease
(PF-ILD), with a distinctively poor outcome and an increased early death risk without
treatment [5].

High-resolution computer tomography (HRCT) together with biopsy should form the
diagnosis foundation, nonetheless, the biopsy is often absent, creating the need for accurate
diagnosis based solely on visualization [2,6]. Recent progress in computer-aided diagnosis
(CAD) techniques [7–9] have demonstrated that a mixture of computer enhancements and
medical expertise form a synergistic and precise approach. Despite this, some patients are
difficult to classify, due to mixed patterns of lung injury and/or interobserver variability,
relevant even among experienced radiologists [10].
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1.1. DILD Early Diagnosis

Early detection for certain diffuse interstitial lung diseases is difficult, all the more so
when based only on one HRCT. The accuracy in predicting the correct primary diagnosis
is improved by the availability of several imaging studies, spaced over time to allow
specific findings and patterns representative of the DILD to emerge [11]. This is even
more complicated as most DILDs have a variable evolution over time depending on the
predominant slope, inflammation (with high potential of reversibility) or fibrosis, while
some, such as IPF, have an unquestionable progressive nature.

To assist diagnosis, in addition to the HRCT imaging factor, functional lung investiga-
tion is indispensable for DILDs diagnosis, monitoring and prognosis. Pulmonary function
tests usually show a restrictive dysfunction in spirometry, with low forced vital capacity
(FVC) in DILD. Novel studies [12], Refs. [13,14] suggest that the diffusion capacity of the
lungs for carbon monoxide (DLco) correlates to HRCT findings in patients with diffuse
parenchymal lung diseases and it is proportional to the degree of lung involvement [15]. It
should be noted that the decrease in DLco occurs earlier than the decrease in FVC, so it is a
good marker for early lung impairment detection [14,16].

While composite index predictions for DILD have also been proposed [17,18] such as
the modified ILD-GAP score (Gender, Age, Physiology, ILD subtype), integrating clinical-
functional elements (respiratory functional tests–Dlco, FVC), they tend to create a mortality
prediction model [19] and are used after diagnosis is confirmed, not as an early diagnos-
tic indicator.

1.2. DILDs Evolution and Imagistic Diagnosis

Imagistic diagnosis of DILD is pattern-based and linked to underlying histology [20]. If
IPF evolution is indubitable fibrosis, for other DILDs there is considerably more variability
in the disease course.

Travis et al. [1] proposed five categories for longitudinal behavior patterns divided for
ILD evolution. These types of phenotypic clusters in fibrotic DILD can be subdivided into
three patterns: stable non-progressive fibrosis after removal of a trigger (e.g., DILD–drug
related), irreversible stable under treatment fibrosis (e.g., mycophenolate mofetil therapy
in connective tissue disease-associated ILD [21] and chronic hypersensitivity pneumonitis
(HPc) [22]) and progressive irreversible fibrosis (IPF-like disease) [23]. Other non-fibrotic
DILD cluster can be reversible self-limiting (respiratory bronchiolitis-associated interstitial
lung disease (RB-ILD)) and reversible but with potential for progression (e.g., cellular
non-specific interstitial pneumonia (NSIP) and some fibrotic NSIP, desquamative interstitial
pneumonia (DIP), organizing pneumonia (OP)). This latest longitudinal behavior pattern
requires short-term observation to confirm treatment response and long-term observation
to ensure that gains are preserved [1].

Fibrotic phenotypes require a constant, long-term follow-up of the HRCT imaging
evolution to successfully manage the specific case by maintaining the status, preventing or
slowing down the progression [24]. Fibrosis presence is a defining characteristic of a group
of progressive lung diseases that includes, but is not limited to IPF, progressive pulmonary
fibrosis (PPF) [25]. In radiology terms, usual interstitial pneumonia (UIP) is the classic
progressive fibrotic phenotype, but self-sustaining progressive fibrosis is not narrowed
only to patients with IPF, because progressive NSIP or HPc phenotype should also be
taken into account [26]. According to the recent consensus from the meeting between the
American Thoracic Society, European Respiratory Society, Japanese Respiratory Society,
and Asociación Lationamericana de Tórax, PPF was defined as at least two of the three
criteria (worsening symptoms, radiological progression, and physiological progression)
occurring within the past year with no alternative explanation in a patient with an ILD
other than IPF [27].

Distinguishing the various pulmonary fibrosis forms is important for determining the
correct prognosis, despite the current merge management tendency for probable UIP with
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(typical) UIP [27] (e.g., a patient with a probable UIP pattern has fewer acute exacerbations
and longer survival compared to patients with a typical UIP pattern [28,29]).

1.3. Computer-Aided Diagnosis

There are quite a few approaches to computer-aided diagnosis for lung HRCTs avail-
able or in development, based on different techniques. Whether they are built on artificial
intelligence, neural networks, or machine learning [7–9], these types of software applica-
tions, fail to capture the dynamics of a pathology evolution. They only provide a static
evaluation of HRCTs with no prognosis of a patient’s health state. In addition, some of
them, such as CALIPER, require extra information, such as tests or respiratory parame-
ters, to be able to provide a fairly accurate conclusion (e.g., affected lung volume), albeit
extrapolated in a relatively short timeframe [30].

The novel 2022 guide [27] normalizes the use of CAD in disease pattern recognition
but highlights the need for programs that offer better prognosis and more importantly
early objective characterization of any type of lung abnormalities (incidentally identified
or otherwise).

A few of these techniques take a more in-depth approach such as analyzing lung
patches of certain dimensions [31], however none truly revolutionize the approach to DILD
early diagnosis and classification by accurately calculating the deterioration rate and/or
affected lung volume.

A mixture of pattern matching and math-based techniques, the complex network
approach [32] might provide insights previously unexplored by the other CADs. The
purpose of this paper is to test a novel complex network approach in imagistic applications
centered on DILDs.

1.4. Hypothesis to Be Explored

The current paper explores the practical use of a complex networks (CN) approach
based on [32] and its suitability to provide early discovery and/or support/enhance diag-
nosis by offering a reliable quantifiable progression metric. This is especially important
since international guidelines [27] have recently shifted the focus towards antifibrotic
medication for almost all progressive DILDS not only IPF. Early characterization of progres-
sion presence as well as a quantifiable and not subjective progression metric are therefore
critical [33,34].

Hypothesis 1. States that the CN algorithm accurately characterizes quantitatively DILD progression.

Hypothesis 2. Advances that the CN algorithm allows early detection.

2. Materials and Methods
2.1. Lot Selection

From the private “Dr. Victor Babes” Infectious Diseases and Pneumoftiziology Clinical
Hospital Timisoara National Fibrosis Center database were selected 65 DILD patients with
multiple scans and 31 normal lung patients.

Inclusion criteria were as follows:

• Each patient was diagnosed by at least 3 lung specialists, with 5+ years’ experience in
DILD/IPF.

• Each CT qualified as HRCT, with parameters constant throughout the lot (further
described in Section 2.2).

• All pathological patients have imagistic monitoring spanning at least 1 year.
• For each investigation, further data are available: DLco, FEV, age, sex, clinical outcome.
• All CTs have annotations: full CT descriptions developed by the centers’ specialists

following the MDD.

Exclusion criteria were:

• Patients unwilling to come for yearly follow-up imaging.
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• Patients with poor quality HRCT imaging, with artifacts or slice thicker than 1.5 mm.
• Presence of severe associate pathology such as hepatic cirrhosis, neurodegenerative

disease, neuro-psychiatric disease, severe heart failure, etc.
• Lack of freely expressed consent (from the observation sheet and/or lack of discernment).

The database query spanned the 2012–2021 interval and all the results were further
validated by the lung specialists involved in this paper.

The lots were similar in age and sex profile, and they all legally consented to their data
being used for academic purposes and the Ethics Committee approved this study.

For each patient’s physiological data (age, sex, smoking status), pulmonary function
tests (PFT)–like forced vital capacity (FVC) by spirometry performed and diffusing capacity
of the lungs for DLco together with HRCT annotations were investigated. Patients’ quanti-
tative dynamic HRCT images were also provided, and their case history was reviewed by
four pneumology specialists.

Since each scan in the database is already annotated by at least three specialists, it was
possible to define very selective criteria for the DILD lot: typical HRCT appearance of the
most commonly encountered interstitial lung diseases in which overlapping of primary
lesions creates models for idiopathic pulmonary fibrosis (IPF), non-specific interstitial
pneumonia (NSIP), hypersensitivity pneumonitis (HP), sarcoidosis (S) and organizing
pneumonitis (OP). To narrow the scope, the selected primary lesions were reticulation and
consolidation (defined together as band C), ground glass opacity (band GGO) as well as
emphysema, and cysts (defined together as band E). These lesions have clear imagistic
absorption rates, that permit grouping, further explained in Section 2.3.

The HRCT region of interest was marked by a radiologist with high experience in imag-
istic diagnosing of DILDs (10+ years), collaborated with the other specialists’ inputs. The
selected imagistic elements were typical for IPF (29 patient—44.62%), NISIP (16 patients—
24.62%), OP (8 patients—12.3%), S (8 patients—12.3%) and HP (4 patients—6.15%). Since
the morphological pattern of IPFs represents 55% of idiopathic interstitial pneumonia, the
selected cases presented usual interstitial pneumonia pattern–subpleural and peripheric
distribution, with apicobasal gradient (predominantly basal) of reticulations, bronchiolecta-
sis and end stages “honeycombing” cysts with paucity of ground glass opacification [35,36].
An IPF subtype characterized by low survival rate, combined pulmonary fibrosis, and
emphysema (CPFE) was also pursued [37].

In NSIP cases, features of cellular type with lower lung predominant subpleural
ground glass opacification and fine reticulations were provided [38]. Additionally, cases in
the fibrotic stage, with reticulation, traction bronchiectasis, and architectural distortion due
to fibrosis were selected.

Lesion to be found for the acute HP cases were centrilobular or geographical ground
glass opacification, poorly defined centrilobular nodules and air trapping (mosaic atten-
uation) with characteristic mid- and upper-lung zone predominance [39]. Additionally,
chronic HP cases with fibrosis with septal thickening–reticulation, traction bronchiectasis,
possibly honeycombing and headcheese sign (various degrees of ground-glass and marked
mosaic attenuation due to sparing of secondary lobules) [40] were also carefully chosen.

In sarcoidosis, the lot presented perilymphatic micronodularity. Moreover, the lot was se-
lected to be in sarcoidosis fibrotic stage with reticulation and/or honeycombing [41] presence.

The OP cases had bilateral patchy airspace consolidation/ground-glass opacities, with
or without small nodules, with typical perilobular pattern and fluctuation [42,43].

2.2. Imaging Parameters

The patients were analyzed with constant settings, on the General Electrics (GE)
Healthcare Optima 520 CT, using sixteen 1.25 mm thick slices, reconstructed using high
spatial frequency at 32. The scan time was 1 s and was performed with the following
settings: 120 kV, 130 mAs, with a 2.5 mm collimation. The field of view was 35 cm with a
768 × 768 matrix size. The radiation dose was adapted as needed, due to tissue penetration.
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The examination position was prone for the 90% of the selected lot, the rest being
analyzed in a supine position.

Examinations were stored using the industry accepted format of Digital Imaging
and Communications in Medicine (DICOM) in the cloud storage of the aforementioned
National Fibrosis Center database

2.3. Selecting the Pathological Imagistic Alterations

The literature defines four categories of pathological imagistic lung alterations: the
reticular pattern, nodular pattern, high attenuation (ground glass opacity, consolidation,
atelectasis), and low attenuation (emphysema, cyst, air trapping) whose distribution,
overlap, and association with other lesions matter, in relation to the secondary pulmonary
lobule (SPL) and the lung regions segmentation [44,45]. However, attenuation range of
X-ray beam tissue absorption, measured in Hounsfield units (HU) and reflected in the grey
tones from the image can help with the layering of these lesions. For the used CT apparatus,
General Electric Healthcare Optima 520 literature [46–48] shows that three HU bands can
encompass all of the aforementioned lung alterations: band E [−1024, −977), band GGO
[−977, −703), and band C [−100, 5).

On band E, emphysema appears as polygonal or rounded low-attenuation areas,
without walls [49], and on the same band, cysts are round circumscribed areas of lucency
or low attenuation with a diameter greater or equal to 1 cm, surrounded by epithelial or
fibrous contour, typically presenting discrete walls [50].

Ground-glass opacity (GGO) refers to a homogeneous area of increased lung opacity
(a process which partially fills the airspaces) in which the increased opacity does not obscure
the underlying bronchial and vascular structures. GGO may either be the result of air space
disease (partial filling of the alveoli) or early interstitial lung disease (fine thickening of the
interstitium or alveolar wall, i.e., fibrosis) because of fluid, cells and fibrosis presence [51].
This pattern has its own HU band and is therefore easier to select.

Consolidation is denser than GGO and from a purely visual viewpoint, consolidation
looks like a visibly defined compact opacity in DILD [52]. On the same HU band as consoli-
dations is the reticular pattern, a network of intersecting line opacities. The reticulation
appears due to interstitium injury causing thickening of the intra and interlobular septa
of secondary pulmonary lobule [36] pathologically reflected in the various degrees of
inflammation and fibrosis.

In imaging practice, the basic lesions in the DILD appearance may exist independently,
but most often they are found in various combinations, overlapping, creating true models
that may be typical or less for a certain DILD entity [53,54]. Mosaicism [55], head cheese
pattern [56], and crazy paving pattern [57] are examples of this overlap, but more important
for this research paper is the honeycombing pattern which is a mixture of cluster cysts
(E band) and reticulations (C band) [58]. Pathologically, honeycombing is the final stage in
DILD progression to fibrosis with architectural distortion, traction bronchiolectasis, and
cysts layer formation [51,59]. An algorithm splitting these lesions into separate layers can
therefore enhance the data.

2.4. Computer-Enhancing the Data

The transformation of DICOM images by the studied algorithm [32] takes place in
multiple stages: First DICOM images are analyzed, and each pixel is converted into its HU
unit equivalent. Then, depending on the desired HU bands, only pixels pertaining to said
bands are kept, eliminating all others. The remaining pixels are split into layers according
to their specific HU band, obtaining one separate image for every layer, respectively.
The resulting images are then transformed into complex networks according to specific
predefined attachment rules, in a manner similar to conversion of grayscale images into
complex networks presented in [60,61]: nodes with similar HU values (within the range of
50 HU units) and closer than 4 px away are considered to be linked, while all noncompliant
ones are detached. In other words, any two visual points in the lung which are very close
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together and have a similar shade (density), are very probably part of the same type of
tissue, whether it is affected or healthy. Based on the obtained network, certain metrics
can be calculated, and consequently, more precise conclusions can be drawn regarding the
structure of the analyzed lung area.

From the DICOM format, for each selected region of interest, three complex networks
were generated, one for each pathologically relevant Hounsfield unit (HU) interval: E
for emphysema and cysts, GGO for ground glass opacity, and C for consolidation and
reticulations. The scale for the HU transformation is device-specific and was based on this
implementation [46–48].

2.5. Selecting Relevant Metrics

In order to assess the usefulness of the proposed CN approach, the measurements
should reflect the underlying biological processes and their dynamic evolution. A CN can
be characterized by many metrics, from the ones that measure the way it is interconnected,
to the ones that characterize information flow or clusterization [62]. Since the underlying
purpose of this paper can be biologically translated into a way to measure lesions and their
expansion, the corresponding CN measurements should then reflect interconnectedness
and size. Therefore, the selected measurements are maximum degree number (the max-
imum connections number in the network for a singular node), total degree count (how
many connections are in the network), and average degree count (the average number of
connections per node–how sparse the network is). A network node can represent either a
singular pixel or a small region, according to the way the algorithm is implemented and for
the purpose of this section it echoes a pixel.

Figure 1 shows examples to illustrate these specific measurements. A micronod-
ule (Figure 1a) can be translated visually (Figure 1d) as a node or a cluster of nodes
(e.g., Figure 1d, node number 13, purple) with the highest degree in the analyzed window.
A sarcoidosis or a honeycombing network (Figure 1b,c) may have similar total number
of edges (interconnections), yet their average degree metrics are wildly different. One
(S–Figure 1b) has many nodes with a median of approximately two connections (reflecting
the typical micronodules perilymphatic distribution of linearly interconnected nodules,
like a string), yet the other one (honey combing, Figure 1c) has fewer nodes but with
many connections, averaging at 5.8 (reflecting the cyst wall, which is linearly homogenous).
Loosely translated, total count shows how “damaged” the sample is per total, average
count shows how localized these lesions are and maximum degree represents the patho-
logical alteration’s peak intensity. Therefore, it can be concluded that these measurements
reflect interconnectedness and size, the two parameters needed to be measured, obviously
evaluated separately on all three HU bands.

For progression assessment, the same patients were analyzed in successive scans.
Adjusting for as close as possible anatomical continuity, the selected (quasi) identical loca-
tions were compared on the three HU bands. Since progression is translated as a variation
over time, this interprets into the engineering notion of speed. However, measurement
difference over time reflects an absolute speed, characteristic for a specific location/patient
and since the measurement should be comparable between individuals/scans, a relative
variation speed was defined, as expressed in Equation (1).

v =

{
(s−s0)
s0×t , f or s0 ! = 0

s
t , in rest

. (1)

The s value from (1) represents the analyzed metric and s0 is the corresponding point
from the reference sample, used for normalization.

In Equation (1) t is expressed as years, since DILD patients require yearly checks [63].
A simple way to compute its value is by counting the number of days (for example by
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using the Excel function DAY ()) between the oldest HRCT (at time t0) and the one currently
evaluated (t1) and normalizing it using a 365-day year.

T = DAY (DATE (t1) − DATE(t0))/365. (2)

Another valid option is to normalize the year at 360 days as it is customary in some
financial formulas, yet the most aspect is the constancy of the normalization type. In this
paper, the normalization provided in Formula (2) was used.
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3. Results
3.1. Case Reports

To better illustrate the process, this section presents sample locations from two very
different patients put through the analysis process. The results in Figure 2 belong to a
patient which was classified as a typical UIP following a heated discussion among our
fibrosis center specialists who presents an untypical honeycombing pattern, which may
skew the diagnosis towards probable UIP. However, age and sex leaned heavily towards
the final diagnosis. Therefore, this case is ideal to test the detection capability of the studied
algorithm. This case with UIP+ emphysema (CPFE phenotype) imagistic progression is
showcased below.
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Figure 2. Case report for a lung axial HRCT, UIP + E pattern (CPFE) patient progression. (a) Superior
lung region HRCT slice in initial t0 year, (b) Superior lung region HRCT slice in next year-t1. (c) Supe-
rior lung region HRCT slice in second year-t2. (d) Relative speed variations on the superior lung slice,
for all three bands. Speed is computed using Equation (1). (e) Basal lung region HRCT slice in initial
t0 year. (f) Basal lung region HRCT slice next year-t1. (g) Basal lung region HRCT slice in second
year-t2. (h) Relative speed variations on the basal lung slice, for all three bands. Speed is computed
using Equation (1).

The results presented in Figure 3 present a typical NSIP pattern in evolution.
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Figure 3. Case report for a NSIP + E patient progression. (a) Superior lung region axial HRCT slice in
initial t0 year. (b) Superior lung region axial HRCT slice in next year-t1. (c) Relative speed variations
on the superior lung slice, for all three bands. Speed is computed using Equation (1). (d) Basal
lung region axial HRCT slice in initial t0 year. (e) Basal lung region axial HRCT slice in next year-t1.
(f) Relative speed variations on the basal lung slice, for all three bands. Speed is computed using
Equation (1).

3.2. Progression Speed

In a manner similar to the one presented in the previous section the whole lot was
analyzed. The defined relative speed, on each HU band and on each CN, parameter
analyzed with a t-test versus DLco relative variation is shown in Table 1. The lot on which
this test was performed is the entire lot, normal and DILD patients. It should be noted
that, while maximum degree can also be analyzed since the measurement searched for is
progression, peak singular lesion is less relevant.

Table 1. t-test results for relative speed in HU bands parameters VS DLco.

HU Layer Total Count VS DLCO Average Count VS
DLco Parameters

E

1.81144865 2.297734923 t Stat

0.038529988 0.013194925 P(T ≤ t) one-tail

2.016692199 2.015367574 t Critical two-tail

GGO

−1.334981884 −1.82528253 t Stat

0.092702764 0.035714932 P(T ≤ t) one-tail

1.987934206 1.987934206 t Critical two-tail

C

−1.334981884 −1.82528253 t Stat

0.093421672 0.035996812 P(T ≤ t) one-tail

1.999623585 1.992543495 t Critical two-tail
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The null hypothesis is retained for all but one of the selected series. The average count
VS DLco test on the E band rejects the null hypothesis and its data are marked with italics
in Table 1.

3.3. Testing for Early Detection

To search for early detection, the lot was grouped into cases considered normal and
cases with incipient DILD and fairly good functional parameters (GAP-ILD 0–3 points,
DLco values between 70 and 85%). The DLco values were chosen as an interval centered on
the lower normal limit (80%) to allow the inclusion of early impairment in alveolar-capillary
membrane. The cases were analyzed on the same three axis with results presented as box
plots in Figure 4 and resumed in Table 2.
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Figure 4. CNs on Borderline normal versus normal layer distribution; Layer E values with (a) maxi-
mum degree (b) total count (c) average count; Layer GGO values with (d) maximum degree (e) total
count (f) average count; Layer C with (g) maximum degree (h) total count (i) average count.
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Table 2. Statistical t-tests results between borderline and normal lungs.

Layer Max Degree Total Count Average Count Parameters

E

−0.357327012 −0.33960631 −1.194455411 t Stat

0.361362738 0.367964892 0.119667428 P(T ≤ t) one-tail

2.02107539 2.02107539 2.02107539 t Critical two-tail

GGO

2.362901118 2.496174465 2.132901092 t Stat

0.016568972 0.012345754 0.023097162 P(T ≤ t) one-tail

2.144786688 2.131449546 2.093024054 t Critical two-tail

C

2.787128882 2.910253494 1.723111496 t Stat

0.006593367 0.005384188 0.048371727 P(T ≤ t) one-tail

2.119905299 2.131449546 2.055529439 t Critical two-tail

The t-test data presented in Table 2 is written in italics for the series rejecting the
null hypothesis.

4. Discussion

Figure 2 presents two levels of axial HRCT slices (superior and basal lung region)
selected in order to showcase debatable UIP pattern+ emphysema (CPFE phenotype)
imagistic progression. It should be mentioned that although all the results presented in
this paper pertain to the axial lung plane, this does not restrict their generality. A technical
analysis presenting the equivalence in sagittal, coronal, and axial plane results, would
overstate the purpose of this paper, which is to showcase CN model applications in imagistic
settings. Returning to the UIP + emphysema case, an imagistic interpretation for the
progression starts with the initial t0 point which, in the superior lung region indicates fine
reticulation presence, bullous emphysema, and slight subpleural honeycombing cysts and
in the basal region is marked with reticulation and honeycombing lesions, both sparse.

As was previously mentioned, according to the HU ranges, reticulations and con-
solidations have similar values, yet in this specific context, the values are interpreted as
reticulations. In the selected areas, the CN model offers data for relative variation speed
on each layer. This speed is specific to a selected site and reflects a relative variation in
characteristics over a time period. It is not an absolute value, its meaning is related to the
swiftness of change, therefore highlighting rapidly deteriorating areas. Since the algorithm
behind the CN conversion considers lesions as small as 3 mm [32], by default, the speed is
more granular than the human eye.

The CN model’s relative speed on the E layer presents an increase in follow-up in year
1 and year 2, yet the magnitude between the superior (Figure 2d) and basal slices (Figure 2h)
is very different. The superior region is almost 10 times faster deteriorating than the basal
slice, quantifying the superior lobe’s emphysema lesion extension and honeycombing cyst
layers increase (Figure 2a–c) compared with the basal lobe in which emphysema is not very
well expressed (Figure 2e–g). C layer increases both on the superior slice and basal slice,
presenting the pathological process of lesion progression with lung architectural distortion,
reticulation, multilayer variate size cyst. The model detects small variations on the GGO,
especially in the basal plane (Figure 2e–h), suggesting a probable acute substrate in that
specific area. This image is highly annotated (being part of the national DILD database,
is already rated by at least three lung experts and five other lung specialists rated all the
images used in this study), yet the GGO difference is imperceptible. Studying the patients’
data, the symptoms from follow-up year 1 are inexplicably slightly exacerbated, yet they
are not so in follow-up year 2. This confirms the CN relative speed light variation and its
ability for early detection. Functional parameter relative variation is almost zero in both
follow-up years, defining a stationary functional status, underling the premature detection
of the proposed CN model.



Medicina 2022, 58, 1288 13 of 18

Figure 3 presents imagistic axial lung HRCT lesion evolution in a NSIP pattern case.
On the E band, relative speed expresses a marked increase in the emphysema focus points
numbers (total count), with only medium increase in their intensity (average), for both
sample sites, clearly explained by the buildup in honeycombing cysts layers. GGO in
t0 (Figure 3a,d) shows slightly increase in the follow-up sample, corresponding with the
imaging slice HRCT interpretation (Figure 3c,f). The C layer displays only on superior
regions a slight increase (Figure 3a,b), reflected by the well-defined multilayer cysts and
their defining walls. Again, functional parameters have almost no variation, underling the
premature detection of the proposed CN model.

Referring to the entire lot, results from Table 1 support the testing of hypothesis 1 which
states that the CN algorithm accurately and quantitatively characterizes DILD progression.
The fact that most of the statistical comparison between DLco and CN measurements
variation show relevant similarities, concludes that hypothesis 1 is true. The only exception
belongs to the comparison between average count and DLco on the E band (marked
with italic in the table). Some patients classified as normal have chronic obstructive lung
pathology in a compensation clinical status and/or are an active or former smoker. Since
the CN measurements reflect biological terms, this means that the number of the E-layer
regions of interest are the same, but the regions’ median intensity is statistically relevant
and higher than its corresponding functional parameter variance.

The statistical testing between the borderline and normal groups, presented in Figure 4
and Table 2 warrants further exploration. On the E layer, there is no statistical difference
between the early diagnostic set and the normal set; therefore, the CN model does not allow
early detection on this layer. From a biological perspective, early DILD diagnosis with
emphysema phenotype is almost identical to smokers’ emphysema lesions, as confirmed by
the results. On the GGO layer, there is a statistical difference, the null hypothesis is rejected,
and the proposed model is successful in early DILD detection. On the C band, maximum
degree and total count detect early DILD, yet average count does not. Pathologically,
the proposed model accurately detects well-defined consolidation lesions and does not
successfully differentiate diffuse early consolidations with blurred edges in their early
stages. As a consequence, hypothesis 2 that the CN algorithm allows early detection is true
on the GGO, mostly true on the C layer, and false on the E layer.

Under the current guidelines [57], various types of DILDs who manifest PPF like
idiopathic interstitial pneumonia, autoimmune DILDs, exposure-related, DILDs with cysts
and/or airspace filling or sarcoidosis should implement an antifibrotic protocol. The
practical problem is to detect the progressive aspect as early as possible in order to have
maximum treatment benefits in terms of patient’s life quality and duration. This leaves
the practitioners in a bind, as they can rely on their practical “medical sense” or CAD
approaches to assess the opportunity of commencing treatment. Previous CAD approaches
like the ones that implement simple mathematical based techniques in one or more dimen-
sions [32,64–66] or more complex machine and deep learning algorithms [7–9,66–68] or
even the commercially available CALIPER do not provide a way to objectively assess the
aggressive aspect of a lung disease that can serve as an indicator for the commencement of
the antifibrotic protocol. However, the studied approach, by using a physics-inspired speed
measurement, can do this. The proposed speed measurement does not assess the disease
severity, yet it assesses its aggressive aspect. For example, a simple <insert disease here> in
its early stages can progress rapidly, and then the measured speed is high. In this paper, in
Figure 2 the superior region, although it has a less severe aspect deteriorates faster and this
is quantified by the speed measurement accordingly. A more severe aspect can however
be fairly stationary, a sign that there is another factor to be considered (the medication is
working, the phenotype is slowly progressive, the disease is remissive, or it shifted towards
other areas).
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5. Conclusions

To successfully deal with DILDs there are two issues that need to be solved, well
known by all the practicians: early detection and accurate progression evaluation. So far,
the traditional medical and the computer-based approaches based on artificial intelligence,
machine learning, etc., have both come up short even though some diseases such as IPF
critically need efficient solutions. The purpose of this paper was to explore if a CN-based
computer-aided diagnosis can provide the much-required data needed to successfully
manage DILDs.

In order to do so, two hypotheses were tested: the first one explored progression, and
the second one was early detection. For progression, the CN CAD was an almost complete
success. Its fine accuracy, in testing lesions as small as 3 mm, allowed correlation with the
clinical status beyond the granularity of standard functional tests. The only problem was
on the E band for the average count measurement type, yet this is easily offset by the other
five measurement axis.

For early detection, the inflammation GGO layer proved to be key. In fact, inflamma-
tion and fibrosis are the two typical DILD states, and the CN algorithm performed well on
both GGO and C-defined HU bands. This showcases the practical abilities of this algorithm
type, particularly well-suited to DILDs, not filled so far by any other tools, such as, for
example, Caliper.

As pitfalls, the CN algorithm has a considerable run-time, growing exponentially
proportional to the analyzed window. It also needs prior lung segmentation, which can be
obtained through other CAD or manually.

It is the authors’ belief that this algorithm should be incorporated in a much larger
CAD, combining the faster machine learning segmentation and pattern detection capabili-
ties with the slower, yet accurate CN local analysis.
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Abbreviation

AIP Acute interstitial pneumonia
CAD Computer-aided diagnosis
CN Complex networks
CPFE Combined pulmonary fibrosis and emphysema
CT Computer tomography
DILD Diffuse interstitial lung diseases
DIP Desquamative interstitial pneumonia,
DILD Diffuse interstitial lung diseases
Dlco Diffusing capacity of the lungs for carbon monoxide
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FVC Forced vital capacity
GE General electrics
GGO Ground glass opacity
HRCT High resolution computed tomography
HPc Chronic hypersensitivity pneumonitis
HU Hounsfield unit
ILD Interstitial lung diseases
IPF Idiopathic pulmonary fibrosis
LAM Lymphangiomyomatosis
LCH Langerhans cell histiocytosis
LIP Lymphoid interstitial pneumonia
NSIP Non-specific interstitial pneumonia
MDD Multidisciplinary discussion
OP Organizing pneumonitis
PAP Pulmonary alveolar proteinosis
PCR Polymerase chain reaction
PFT Pulmonary function test
PF-ILD Progressive fibrosing interstitial lung disease
PPFE Pleuroparenchymal fibroelastosis
RB-ILD Respiratory bronchiolitis-associated interstitial lung disease
S Sarcoidosis
SPL Secondary pulmonary lobule
UIP Usual interstitial pneumonia
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