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Abstract

Present-day and ancient population genomic studies from different study organisms have rapidly become accessible to diverse research
groups worldwide. Unfortunately, as datasets and analyses become more complex, researchers with less computational experience often
miss their chance to analyze their own data. We introduce FrAnTK, a user-friendly toolkit for computation and visualization of allele
frequency-based statistics in ancient and present-day genome variation datasets. We provide fast, memory-efficient tools that allow the
user to go from sequencing data to complex exploratory analyses and visual representations with minimal data manipulation. Its simple
usage and low computational requirements make FrAnTK ideal for users that are less familiar with computer programming carrying out
large-scale population studies.
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Introduction
Recent advances in DNA retrieval and sequencing techniques
have made it possible to obtain whole-genome (Bergström et al.
2020; Margaryan et al. 2020) and genome-wide (Olalde et al. 2018)
data from hundreds of present-day and ancient individuals in
single studies. Together with the development of statistics for hy-
pothesis testing, e.g., f-statistics (Patterson et al. 2012), these large
datasets have allowed us to characterize the genetic structure
and demographic history of diverse populations with unprece-
dented resolution. Genomic population history studies often rely
on comparing data from the population(s) of interest with refer-
ence variation datasets from other ancient and contemporary
populations. This comparison is usually performed by applying
methods such as principal components analysis (Patterson et al.
2006), multidimensional scaling (Malaspinas et al. 2014), model-
based clustering (Alexander et al. 2009), and hypothesis testing
through f-statistics (Patterson et al. 2012). The latter have been
particularly useful as they can be used both for exploratory anal-
yses, e.g., measuring shared drift between pairs of populations,
and for formal hypothesis testing, e.g., testing for admixture and
estimating admixture proportions. Importantly, f-statistics can
be computed from pseudo-haploid calls from ancient DNA
(aDNA) data where calling diploid genotypes is challenging due to
low-depth and increased error (but see Günther and Nettelblad
2019). This strategy is not confined to human evolution research,
but it has been successfully applied to other study organisms,
e.g., maize (Ramos-Madrigal et al. 2016), horses (Gaunitz et al.
2018), and canids (Ramos-Madrigal et al. 2021).

Over the last few years, ancient and present-day population

genomic sequencing has become accessible to more research
groups worldwide. However, many data analysis tools remain

accessible only to users with more experience in computer

programming, thus creating a disconnect between researchers in

charge of data generation, researchers with data analysis exper-

tise, and researchers from diverse disciplines involved in results
interpretation. Whereas this might be unavoidable in some cases,

simplifying routine exploratory data analyses into user-friendly

tools could facilitate the contribution of researchers with less

computational experience to genomic data analysis and interpre-

tation. We introduce FrAnTK, a fast, user-friendly toolkit that
allows users to easily combine their sequencing data with refer-

ence datasets and compute and visualize allele frequency-based

statistics routinely used in population genomic studies. FrAnTK

is mainly aimed at users with limited programming experience,

but we anticipate it will also be helpful to experienced users who
seek to streamline exploratory analyses and visualization.

Methods
FrAnTK contains tools with four main functionalities summa-

rized in Figure 1: (1) precomputing the population allele frequen-
cies from a SNP variation dataset, (2) computing allele frequency-

based statistics, (3) visualizing multiple related statistics, and (4)

merging sequencing data with a reference SNP variation dataset.

We provide a description of the main tools included in FrAnTK in

Supplementary Table S1.
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We start with a plink file (Chang et al. 2015) containing
genome-wide bi-allelic SNP data from multiple individuals from
different populations. In this case, we rely on plink files as they
have been widely used by researchers in the field for over a de-
cade (see the practical example included below for a note on how
to go from vcf to plink). To speed up the subsequent computation
of test statistics and to substantially reduce computational
resource requirements (see benchmark below), we first compute
the allele frequencies for each SNP site for each population.
We store these frequencies in a .gz compressed file, accompanied
by three more files that keep track of SNP site coordinates and
population names and ploidy (see file format description in
Supplementary Information).

We supply a set of scripts for computing allele frequency-
based statistics (Supplementary Table S1). These scripts take the
precomputed allele frequencies as input and return a point esti-
mate together with its standard error, estimated through a
weighted block-jackknife procedure (Patterson et al. 2012). In this
release, we provide scripts for computing average pairwise
distances, f3, f4, and D-statistics, f4-ratios (Patterson et al. 2012),
admixture/contamination-corrected f4-statistics (Reich et al.
2012), minor allele count-stratified D-statistics (Prüfer et al. 2014),

and enhanced D-statistics that rely on specific ascertainment
schemes to detect faint allele sharing patterns (Meyer et al. 2012).
All analyses can be restricted to transversion polymorphisms to
reduce the effect of aDNA postmortem damage (Briggs et al. 2007).
These scripts can be run in parallel as they keep memory usage
to a minimum by processing one SNP at a time. Moreover, they
can be easily modified to accommodate additional analyses.
We note that an implementation of some of these analyses, e.g.,
admixture/contamination-corrected f4-statistics (Reich et al.
2012), enhanced D-statistics (Meyer et al. 2012), has not been
made available elsewhere or depend on additional data manipu-
lation, which hinders their widespread usage.

To supplement the scripts for computing single statistics, we
provide multi-threaded wrappers for automated computation of
multiple related statistics (Supplementary Table S1). A common
exploratory analysis is to assess the genetic relationship between
a fixed test population and a set of reference populations. For in-
stance, we can compute all possible f3-statistics of the form
f3(TestPop, X; Outgroup), to explore what is the population X in the
reference dataset that shares the most drift with the test popula-
tion. Our wrapper scripts make it possible to run this kind of
analysis with a single command and support average pairwise

.txt results can be supplied
together with different _cat
and _leg files to produce

different plots

BuildFreqs.py
(Precompute population

allele frequencies)

Allele frequency-based statistics
computation scripts, 

e.g., getf3.py, getF4subtr.py *

Wrappers for automated 
computation and plotting 

of multiple statistics, 
e.g., autoPWf3wfixed.R, 

autoDstrat.R *

Genome-wide bi-allelic
SNP data (plink format)

_clust file with
individual-population 

information

_cat file with
population-category 
information (optional)

_leg file with
plotting parameters
for each category in 

_cat file (optional)

.txt file with BAM/CRAM file paths, 
individual-population info.,
base and mapping quality
filtering and end-trimming 

parameters

Precomputed allele frequencies 
from BuildFreqs.py or addBams.py

(_freqs.gz, _pop, _regions, _chrs files) 

addBams.py
(Pseudo-haploid calling
and population pooling)

Population allele frequencies and 
supporting files including 

new pseudo-haploid calls from 
BAM/CRAM files 

(_freqs.gz, _pop, _regions, _chrs files) 

.txt result with point estimates
and block-jackknife 

standard errors for each 
population combination

.pdf visual representation of
point estimates and standard

errors for all population 
combinations

.txt result with point estimate
and block-jackknife standard error

Population allele frequencies and 
supporting files keeping track of site 
coordinates, populations, and ploidy

(_freqs.gz, _pop, _regions, _chrs files) 

Precomputed allele frequencies 
from BuildFreqs.py or addBams.py

(_freqs.gz, _pop, _regions, _chrs files) 

Precomputing population allele frequencies from a SNP variation dataset

Computing allele frequency-based statistics

Automated computation and visualisation of multiple related statistics

Merging sequencing data with a SNP variation dataset

Precomputed allele frequencies 
from BuildFreqs.py or addBams.py

(_freqs.gz, _pop, _regions, _chrs files) 

Figure 1 Overview of the main FrAnTK functionalities, their input and output files. Input files are shown in blue, operations performed by FrAnTK are shown
in red and output files are shown in purple. *See Supplementary Table S1 and github.com/morenomayar/FrAnTK#SecComputingA SingleStatistic for a full
list of the analyses implemented in FrAnTK.
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distances, f3, f4, “basic” D and enhanced D-statistics. In addition,

we include wrapper scripts for computing admixture/

contamination-corrected f4-statistics over a range of admixture/

contamination proportions and minor allele count-stratified

D-statistics over a specified range of minor allele counts.
The wrapper scripts also provide automated plotting function-

ality, which allows users to create visual representations of clas-

sical exploratory analyses (e.g., Figure 2, A–C). For every run, we

automatically produce a plot with default plotting parameters.

The user can easily customize this plot by providing simple files

that map populations to categories with specific plotting parame-

ters (see usage example below).
FrAnTK includes a single-command tool for merging sequenc-

ing data in BAM/CRAM format (Li et al. 2009) with the precomputed

allele frequency files. For a given BAM/CRAM file, we sample one

random allele at every SNP position included in the reference

dataset to generate pseudo-haploid calls (calls giving rise to tri-

allelic sites are set to missing). Reads and bases can be filtered

according to their mapping and base quality. Additionally, the

user can request a given number of bases to be ignored from both

ends of each read to reduce aDNA postmortem damage-related er-

ror (Briggs et al. 2007). This merging approach is intended for

cases where the user has access to low-to-intermediate-depth ge-

nome-wide sequencing data from a small sample of individuals,

where reliable diploid genotype calling is not feasible, e.g., aDNA

data (Nielsen et al. 2011; Günther and Nettelblad 2019). Thus, we

restrict the analyses to known segregating sites present in the

reference variation dataset (precomputed allele frequencies).
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Figure 2 Visual representation of the worldwide allele sharing patterns of the �24ka Mal’ta individual produced by FrAnTK. (A) Shared genetic drift
between the Mal’ta individual and present-day populations in the HGDP dataset. We show the autof3wfixed.R wrapper results for f3(Mal’ta, X; Yoruba).
Error bars represent 1.96 standard errors. (B) D-statistics exploring non-East Asian admixture in the Karitiana (an Indigenous American population). We
show the autoDwfixed.R wrapper results for D(Karitiana, Han; X, Yoruba). Error bars represent 3.3 standard errors. jZj-scores are shown next to each point.
(C) Mal’ta-related admixture-corrected f4-statistics of the form f4(Han, Karitiana; French, Yoruba). For each statistic, we subtracted f4(Han, Mal’ta; French,
Yoruba) weighted by an admixture proportion c ranging between 0% and 50% (y-axis) using the autof4subtr.R wrapper. Error bars represent 3.3 standard
errors. (D,E) TreeMix admixture graphs (as output by the TreeMix software) relating the ancient Mal’ta individual and a set of worldwide present-day
populations. We fit admixture graphs with zero and one admixture edges.
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For cases where sequencing data are available for a large enough
sample, such that joint SNP calling is feasible using tools such as
ANGSD (Korneliussen et al. 2014), the user can use the tools in
FrAnTK to create pseudo-haploid calls on the previously identi-
fied segregating sites, without recurring to genotype reference
data.

FrAnTK is designed to be accessible, from installation to ad-
vanced usage, to researchers with less computational experience
and to be applicable to a diverse range of projects. The tools in
FrAnTK are implemented in python (python2 and python3 are
supported), R and perl and depend only on standard tools and
libraries that are commonly present in Unix-like setups in the
field of population genomics: plink (Chang et al. 2015), samtools
(Li et al. 2009) and the doParallel and ggplot2 (Wickham 2016) R li-
braries. Moreover, FrAnTK can be used on any genome-wide
dataset from any study organism with a genome assembly
contiguousness that allows for proper block-jackknife sampling.

Results
To assess the performance of our toolkit, we computed a number
of statistics on a whole-genome reference dataset using FrAnTK
and admixtools (Patterson et al. 2012), and recorded the running
time and memory usage in each case. Although multiple tools for
computing f- and other site-statistics are available, e.g., popstats
(Skoglund et al. 2015), we use admixtools for benchmarking as it
is the most commonly used peer-reviewed tool in the field.
Moreover, admixtools is also called internally by the popular
admixr wrapper (Petr et al. 2019). We used the SGDP Team C data-
set (Mallick et al. 2016), which contains diploid genotypes for
33,512,001 bi-allelic SNPS from 345 individuals from 164 popula-
tions. We computed the 161 possible D-statistics of the form
D(French, Sardinian; X, Ju-hoan_North), which we distributed over 20
threads (Intel Xeon Gold 2.10 GHz CPU). Using the qpDstat (v712)
program from admixtools, the task was completed in 5.1 h, with a
peak memory usage of �520 GB (�26 GB per thread). Using the
automated D-statistic wrapper in FrAnTK (autoDwfixed.R), the
task was completed in 2.2 h, with a peak memory usage of
�5.8 GB (�287 MB per thread). We attribute these gains to two key
features: (1) precomputing the allele frequencies to speed up sub-
sequent computation and (2) processing one site at a time instead
of loading the whole dataset onto memory. In this example, the
admixtools-based approach would require the user to prepare a
set of input files and distribute the parallel processes across dif-
ferent threads. Once all processes have run, the user would have
to parse separate results and use a custom script for visualizing
the results. By contrast, by using FrAnTK, the user can go from
the initial data to a visual representation of the results by run-
ning two one-line commands.

Practical example
We present a practical example on how to use some of the differ-
ent tools included in FrAnTK to explore the genetic ancestry of an
ancient human whose genome has been sequenced to an average
depth of coverage of 0.1X. We run the example on a compute
node with 40 cores (Intel Xeon Gold 2.10 GHz CPU). We use the
HGDP SNP array dataset (Li et al. 2008) as a reference and a subset
of the 1X genome from an individual that lived �24 ka in the
Central South Siberian site of Mal’ta (Raghavan et al. 2014). The
data for running this example can be downloaded using wget.

wget https://sid.erda.dk/share_redirect/E48FQXKjCe \

-O FrAnTKPrcaticalExampleData.tar.gz

The HGDP SNP array dataset contains diploid genotypes for

644,088 bi-allelic SNPS from 938 individuals from 53 worldwide

populations. We start by precomputing the population allele fre-

quencies of the HGDP reference dataset. This procedure was

completed in 2.3 min.

#get the number of populations in the _clust file

n ¼�cut -f 3 HGDP_hg19_genotypes_clust j sort j uniq j wc -l�

#precompute population allele frequencies

frantk BuildFreqs plinkpref¼HGDP_hg19_genotypes \
clustfile¼HGDP_hg19_genotypes_clust npops¼"$n" \
prefout¼HGDP_hg19_genotypes_f

In case the reference data were provided in a vcf file instead of a

plink file, we can obtain a suitable plink file with bi-allelic SNPs

using plink:

plink --vcf VCFFILENAME --double-id --snps-only \

--set-all-var-ids @:# --maf 0.000001 --make-bed \

--out PLINKFILENAME

Next, we combine the sequencing data from the 0.1X Mal’ta ge-

nome with the precomputed allele frequencies. To do so, we cre-

ate a text file to specify that we will filter out all reads with a

mapping quality <30, all nucleotides with a base quality <20 and

we will trim 5 bases from each of the ends of every read.

echo -e ’MalTa_subsample.bam\tMalTa\tMalTa\t30\t20\

t5’> bamlist.txt

We then run addBams.py. This procedure was completed in

<1 min. Note that one could alternatively run bam2plink.py to ob-

tain a plink file with pseudo-haploid calls from the BAM file.

frantk addBams listname¼bamlist.txt \
freqpref¼HGDP_hg19_genotypes_f \
newpref¼HGDP_hg19_genotypes_f_WithBam nthr¼1

Using the merged data, we can explore the broad genetic affini-

ties of the low-depth Mal’ta genome. We use the autof3wfixed.R

wrapper (with 40 threads) to compute the 51 possible f3-statistics

of the form f3(Mal’ta, X; Yoruba), where X represents all the popu-

lations in the HGDP SNP array dataset. This run was completed

in �20 s.

frantk autof3wfixed \

freqpref¼HGDP_hg19_genotypes_f_WithBam h1¼MalTa \
target¼Yoruba catfile¼HGDP_hg19_genotypes_cat \
legfile¼HGDP_hg19_genotypes_leg nthr¼40

autof3wfixed.R will output the plot shown in Figure 2A. Note that

color and symbol information is stored in the HGDP_hg19_geno

types_cat and HGDP_hg19_genotypes_leg files, which we supply

through the catfile and legfile options. These results replicate the

finding in (Raghavan et al. 2014), that the population represented by
the �24ka Mal’ta individual was genetically most closely related to

present-day Indigenous Americans, followed by present-day West

Eurasians.
Raghavan et al. (2014) showed that the ancestors of Indigenous

Americans most likely descended from an admixture event be-

tween an East Asian-related population and a Mal’ta-related pop-

ulation. We can test whether the Mal’ta individual is a better

proxy for the ancient North Eurasian population that contributed

to the ancestry of Indigenous Americans than present-day West

Eurasians are. We run the autoDwfixed.R wrapper (with 40

threads) to compute all possible D-statistics of the form

D(Karitiana, Han; X, Yoruba), where X represents all the
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populations in the HGDP dataset, including the Mal’ta individual.
This run was completed in �20 s.

frantk autoDwfixed \

freqpref¼HGDP_hg19_genotypes_f_WithBam \
h1¼Karitiana \
h2¼Han h4¼Yoruba \
catfile¼HGDP_hg19_genotypes_cat \
legfile¼HGDP_hg19_genotypes_leg nthr¼40

autoDwfixed.R will output the plot shown in Figure 2B. These results
support that the ancient population that mixed with an East Asian-
related population to give rise to the ancestors of Indigenous
Americans was more closely related to the ancient Mal’ta individual
than to present-day populations around the world.

In Figure 2B, we observed that, although the French are not
the best proxy for the non-East Asian-related ancestry in
Indigenous Americans, D(Karitiana, Han; French, Yoruba) deviated
significantly from D¼ 0 (Z�14.9). This pattern is most likely due
to shared ancestry between the Mal’ta individual and present-
day French (Lazaridis et al. 2014). We can explore how Mal’ta-
related admixture in Indigenous Americans affects this statistic
by computing admixture-corrected f4-statistics (Reich et al. 2012).
We use the autof4subtr.R wrapper to compute

f4ðHan;Karitiana; French;YorubaÞ � cf4ðHan;Mal0ta; French;YorubaÞ
1� c

;

assuming an admixture proportion c range between 0% and 50%,
with 2.5% increases. This run was completed in �10 s.

frantk autof4subtr \

freqpref¼HGDP_hg19_genotypes_f_WithBam \
h1¼Han \
h2¼Karitiana h3¼French h4¼Yoruba x¼MalTa \
minp¼0 maxp¼.5 pstep¼0.025 \
catfile¼HGDP_hg19_genotypes_cat \
legfile¼HGDP_hg19_genotypes_leg nthr¼40

Figure 2C shows that subtracting c� 0.375 Mal’ta-related admix-
ture results in f4-statistics with jZj<3. These results are consistent
with the previous estimate of 14–38% Mal’ta-related admixture in
Indigenous Americans (Raghavan et al. 2014).

We can use the Freqs2Treemix.py script to convert the allele fre-
quency file to the treemix input format (Pickrell and Pritchard 2012).
First, we create a file with a list of populations of interest (one per
line). Note that all populations should be present in the _pop file.
Then we run Freqs2Treemix.py, which will output two sets of treemix
files, one with all sites and one with transversions polymorphisms
only (useful for aDNA). This procedure was completed in�30 s.

echo "San

MbutiPygmy

Yoruba

Mandenka

Papuan

Melanesian

Han

Dai

French

Italian

Sardinian

Orcadian

MalTa

Karitiana

Surui" > poi

frantk Freqs2Treemix \

freqpref¼HGDP_hg19_genotypes_f_WithBam \
tmpref¼hgdp_malta_tm popsofint¼poi

Finally, we run treemix following the parameters in Raghavan

et al. (2014).

#Compute the number of SNPs that should be included in

each autosomal 5Mb-block.

a=�zcat hgdp_malta_tm_ALL_tm.gz j wc -l�
nsnps=�echo "5000000/(2881033286/"$a")” j bc�

#Run treemix with 0 and 1 migrations

treemix -i hgdp_malta_tm_ALL_tm.gz -o tm_ALL_res_0mig -k

"$nsnps" -noss \

-global -root San -m 0 -seed 012345

treemix -i hgdp_malta_tm_ALL_tm.gz -o tm_ALL_res_1mig -k

"$nsnps" -noss \

-global -root San -m 1 -seed 112345

Treemix admixture graphs in Figure 2, D and E suggest that the

Mal’ta individual forms a clade with West Eurasians, but contrib-

utes to the ancestry of present-day Indigenous Americans.

Conclusion
FrAnTK is a toolkit that streamlines a set of common analyses

that rely on allele frequency-based statistics, and makes them

accessible to users that are less familiar with computer program-

ming. We reduce memory and computing times by precomputing

allele frequencies, thus allowing researchers to explore their own

datasets with reduced computational resource requirements.

Notably, the automated wrappers and plotting functionality in

FrAnTK allow the user to carry out complex exploratory analyses

and produce publication-ready visual representations with

single-line commands and minimal data manipulation. Thus, we

consider an appropriate protocol would comprise an initial explo-

ration using the tools in FrAnTK, followed by the application of

model-based strategies such as those implemented in qpWave

and qpGraph (Reich et al. 2012).

Data availability
FrAnTK and its documentation are freely available in

github.com/morenomayar/FrAnTK.
Supplementary material is available at G3 online.
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