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Abstract

Increasing air temperatures are expected to continue in the future. The relation between soil 

moisture and near surface air temperature is significant for climate change and climate extremes. 

Evaluation of the relations between soil moisture and temperature was performed by developing a 

quantile regression model, a wavelet coherency model, and a Mann-Kendall correlation model 

from 1950 to 2010 in the Mississippi River Basin. The results indicate that first, anomaly air 

temperature is negatively correlated to anomaly soil moisture in the upper and lower basin, and 

however, the correlation between them are mixed in the middle basin. The correlation is stronger 

at the higher quantile (90th) of the two variables. Second, anomaly soil moisture and air 

temperature show strong coherency in annual frequency, indicating that the two variables are 

interannually correlated. Third, annual air temperature is significant negatively related to soil 

moisture, indicating that dry (wet) soil leads to warm (cool) weather in the basin. These results 

have potential application to future climate change research and water resource management. 

Also, the strong relationship between soil moisture and air temperature at annual scale could result 

in improved temperature predictability.
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1. Introduction

Increase in temperature has been observed as a consequence of climate change over the last 

century. Air temperature (T) is anticipated to continue increasing in the future, while the 

mechanisms for the increase remain uncertain [1] [2]. Soil moisture (SM) has been shown to 

have influence on T by controlling the partitioning between sensible and latent heat, and 

interaction between SM and T accounts for about two-thirds of the climate change signal in 
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the future climate models [2]. A better understanding of the relationship between them 

might provide sharper insight into these mechanisms [3] [4] [5] [6]. With this concept in 

mind, in this study, we investigated the relation between SM and T and the results are 

essential for understanding the global temperature rises specifically and global warming 

more generally.

Several studies have pointed to the relation between SM and T to help explain projected 

global warming [3] [5] [7]-[12] and extreme climate events (e.g. drought and flood). Many 

studies show that interaction between SM and T plays a significant role in extreme climate 

condition by land atmosphere interactions [6] [8] [13] [14]. Two sets of apparently 

contradictory results have been presented, namely that a reduction in SM leads to an 

increased T [3] [9] [10] [11] [12] [15] [16], and while other studies indicate that a SM deficit 

leads to cold weather [3] [12] [16] [17] [18]. For example, positive feedbacks exist over 

some of Northeast Asia, even at a less significant level [3] [18] [19]. However, significant 

negative feedbacks between SM and T exist at wet transition zones in Northern China. SM 

deficit induces higher air T in the plains, well reduces the T over mountains in France from 

1989 to 2008 in [20].

However, due to a lack of sufficient long-term and high-resolution SM data, systematically 

synthesizing the relationship between SM and T remains a significant challenge. Here we 

propose the first exclusive analysis between SM and T, to study the relations by a number of 

factors, including Quantile Regression Model (QRM), Wavelet Transform Coherency 

(WTC) analysis, and Mann-Kendall trends in the Mississippi River Basin (MRB). Many 

studies [10] [17] [21] showed that SM is a drought indicator, so, the interaction between SM 

and T helps both understanding the climate change and the climate extremes. The MRB, as 

the largest basin of the United States, spans a wide range of climatic regions with snow-

dominated, transitional, and rain-dominated regions, the results of the research might 

provide an indication of the relation between SM and T for the whole nation.

2. Study Area and Model

2.1. Study Area

The study area is the MRB, which drains 41 percent (41%) of the water from all or part of 

the 31 states in the United States, and are home to over 100 globally important aquatic 

species such as walleye, sauger and perch. Furthermore, as the largest basin in nation, the 

MRB spans a wide range of climatic regions with snow-dominated, transitional, and rain-

dominated regions. Climate changes have occurred and are anticipated to continue in the 

future. Many changes indicate this region is also undergoing a system wide response to 

climate change. Given the importance of the MRB in terms of environmental processes, 

nature resources, and economics, this study provided significant meanings for the MRB.

2.2. Variable Infiltration Capacity (VIC) Model

In MRB, long-term observation SM data cannot be obtained, therefore, the VIC [22] model 

was utilized to simulate SM for a daily time step at 1/8° spatial (about 12 km) resolution for 
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the period of 1950 to 2010. The methods used to calibration of the simulation results are 

reported in more detail in [10] [23].

The VIC model is a macroscale, grid-based water and energy balance model, which has been 

successfully applied to many large river basins with good results [22]-[28]. Distinguishing 

features of the VIC model include the sub-grid variability in SM, land surface vegetation, 

precipitation, and topography in use of the elevation bands.

In this study, the VIC model is forced with parameter files and meteorological forcing. The 

parameter files include soil parameters, vegetation parameters, and elevation bands. The soil 

parameter files describe the unique soil properties for each grid cell, the main parameters 

include soil texture information, soil bulk densities, hydraulic conductivities, and thickness 

of each soil layer, infiltration capacities, and base flow parameters. The VIC model uses a 

complex and explicit conceptual framework in accounting for variations in SM. The soil was 

divided to three layers with depth of each layer specified for each grid cell as derived during 

model calibration in this study. The thin upper layer (~10 cm) simulates runoff processes in 

near surface soil layers, and thicker second layer (50 ~ 80 cm) and third layer (100 cm ~ 250 

cm) represent slower storage and drainage processes in this study. Deep layer SM has a 

longer memory than many other land surface variables (such as precipitation and 

temperature) because SM reservoir is a larger storage term (than evapotranspiration and 

snowpack) in the water balance [21]. SM of the third layer was used in details for the 

analysis because of its consistency and longer memory in the study. The daily simulated SM 

are aggregated to month SM then converted to anomalies by subtracting the mean monthly 

SM for each model grid cell from 1950 to 2010.

The vegetation parameters describe different land cover characterization, which has a total 

of 14 different land cover classes. The primary characteristic of the land cover that affects 

the model simulation is Leaf Area Index (LAI). The elevation band files define the 

properties of each elevation band to improve the performance of the model in changing 

topography, especially mountainous regions (upper MRB). Four elevation bands were used 

in this study.

The meteorological data include observed precipitation, maximum temperature, minimum 

temperature, and wind. Daily precipitation and temperature were obtained by interpolating 

daily observation data from National Weather Service Cooperative Observe with scaling for 

topographic effects using the Parameter-elevation Regressions on Independent Slope Model 

(PRISM) precipitation map [23]. Daily wind speed was obtained from National Centers for 

Environmental Prediction (NCEP) [23].

2.3. Model Calibration

The VIC model was calibrated at six United States Geological Survey (USGS) gaging 

stations for which stream flow observations were available from 1950 to 2010.

The VIC model calibration includes calibrating six parameters: a) the infiltration parameter 

which controls the partitioning of rainfall (or snowmelt) into infiltration and direct runoff; b) 

the second and third soil layer thicknesses, which affect the water available for transpiration 
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and baseflow respectively; c) Dsmax, Ds, and Ws, which are baseflow parameters and also 

are estimated. Dsmax is the maximum baseflow velocity, Ds is the fraction of maximum 

baseflow velocity, and Ws is the fraction of maximum soil moisture content of the third soil 

layer at which non-linear baseflow occurs. These three baseflow parameters determine how 

quickly the water stored in the third soil layer is evacuated as baseflow [22].

A 30-year period (1950–1979) of the 60-year record was utilized for the calibration process. 

This 30-year period encompassed a range of extreme climate conditions (e.g., flood and 

drought), and normal years for testing the two models’ performance. A separate 30-year 

period (1980–2009) was used for model validation. That period also encompassed a range of 

climatic conditions under which we evaluated the models’ performance. Two standard 

statistical techniques, the root meansquare error (RMSE) and the widely used coefficient of 

determination (R2) value, were used to test and evaluate the accuracy of the model 

simulations.

3. Methods

3.1. Quantile Regression Model (QRM)

QRM is a statistical technique intended to estimate, and conduct inference about conditional 

quantile functions. QRM is capable of providing a more complete statistical analysis of the 

stochastic relationships among random variables, which may best represent the true 

relationship between SM and air T.

The QRM can be expressed as:

yi = β0
(p) + β1

(p)xi + εi
(p)

where, 0 < p < 1 indicates the proportion of the population having scores below the quantile 

at p. where: xi and yi are pairs of the data, for based on the sample of the SM and air T. εi
(p)

is the error term, which is independent and identically distributed for i = 1, 2, ···, n. β0
(p) is 

the quantile-specific parameter.

QRM estimates multiple rates of change from the minimum to maximum and therefore can 

provide a more complete picture of the relationship between SM and air T. Previous studies 

have shown that SM is most strongly related to maximum temperature [5] [7]. In this study, 

the 5th, 10th, 25th, 50th, 75th, 90th and 95th quantiles with the 50th quantile representing the 

median response and 5th and 95th representing the extreme climate conditions were used.

3.2. Wavelet Transform Coherency (WTC)

To furtherer understand the correlation between SM and air T; the WTC [29] [30] [31] was 

utilized. The continues wavelet transforms a one-dimensional time series to a two-

dimensional time-frequency image simultaneously which shows both the amplitude of any 

periodic signals within the series and how this amplitude varies with time. The continuous 

wavelets transform Wn of a discrete sequence of observations xn is described as following:
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wn
x(s) = ∑

n′

N − 1
xn′ψ * (n′ − n)δt

s (1)

where n is the localized time index, s is the wavelet scale, δt is the sampling period, N is the 

number of points in the time series, and the asterisk indicates the complex conjugate.

The wavelet coherency was used to identify frequency bands and time intervals where two 

times series were related [29]. The wavelet coherency Rn is defined as:

Rn
2(s) =

s−1wn
XY(s) 2

s−1 wn
X(s) 2 s−1 wn

Y(s) 2 (2)

where,  indicates smoothing in both time (using Gaussian function) and scale (using 

Boxcar filter). The statistical significance level of the wavelet coherence is estimated using 

Monte Carlo methods [29].

3.3. Mann-Kendall Test

Trends in annual time series of SM and T were estimated and tested at the 5% significance 

level using the non-parametric Mann-Kendall test applied to MRB from 1950 to 2010, 

which is robust and distribution independent. It is a nonparametric trend test that has been 

widely used in studies dealing with hydro-climatic analysis [1] [32]. For the trends of the 

SM and air T, the null and alternative hypothesis was used, with the no trend in the null and 

a significant trend in the alternative hypothesis. We not only estimated the trends for SM and 

T, but also intensively quantified the Man-Kendall cross relation value between SM and T on 

a grid by grid basis for over 18,000 grids in the MRB.

4. Results

4.1. QRM Results

Figure 1 shows QRM scatter plots of monthly SM anomalies and monthly air T anomalies 

for the lower, middle, and upper MRB. Some interesting evidences which cannot be detected 

by mean regression are observed. The slopes of the regression lines are negative (drier soil 

results in higher T) for all the months and relationships are statistically significant in lower 

MRB. The slopes of the regression lines get steeper as the quantile increase from 10th 

quantile till 90th quantile, and the strongest negative slopes are associated with the 90th 

quantile slope which is nearly twice those of 50th quantile. The result is similar to the 

relation between SM and maximum air T in [7]. However, the most interesting result is that 

the slope of 90th is slightly steeper than 95th, which indicates that increases in SM lead to 

greater declines in air T along the 90th quantile than on the 95th quantile (extreme hot 

weather). During extreme climate condition, increased air T with more evapotranspiration 

(ET), more moisture in atmosphere and then more precipitation, and SM does not typically 

contribute greatly to air T on average in 95th quantile. Furthermore, the higher air T results 
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in higher ET, which lowers the wetness of soil as well. The slopes for 50th and 75th quantiles 

are almost parallel, suggesting that air T in these quantiles did not vary dramatically with 

SM.

The most interesting QRM results happened in the middle MRB, the slopes of the regression 

lines are mixed with positive slopes (drier soil results in lower T) for lower quantiles (10th 

and 25th quantiles) and higher quantiles (90th and 95th quantiles), and negative slopes (drier 

soil results in higher T) for middle quan tiles (50th and 75th quantiles). The overall relations 

are more difficult to interpret because different areas of the domain experience different 

seasonal mixed precipitation (snow-domain transition to rain-domain) in different time 

periods. Slopes of 10th and 95th quantiles are somewhat steeper than for the 25th and 90th 

quantiles, respectively. These results are comparable to those shown in studies of [33] and 

are broadly consistent in their results on SM is most strongly associated with the high end of 

the temperature distribution. Slopes are positive in the areas of the domain with higher and 

lower temperatures. Slopes are negative for 50th and 75th quantile and broadly similar.

The upper MRB is strongly winter dominant, particularly at higher elevations. The winter 

temperature regimes largely determine how much of the winter P is typically stored as snow, 

and also play a strong role in determining the T sensitivity. The slope of 90th quantile is 

steeper than that of 95th quantile as that in the lower MRB. The highest slope happens in 

90th quantiles not 95th, which highlights the relation between SM and air T is weaker during 

extreme climate (95th quantile). The slopes of the QRM quantiles are negative (drier soils 

result in higher T) for all the quantiles except for the 10th quantile, which might due to the 

frozen soil during lower T in the upper MRB. These impressions are strengthened by 

considering a sequence of density plots based on the QRM estimates.

4.2. WTC Results

The relationship between SM and T are further examined by decomposing the time series of 

SM and T in time-frequency space in order to determine both the dominant modes of 

variability and how those modes vary in time (Figure 2) by computing the WTC. WTC was 

also used to identify the phase difference (lag time) between variables of SM and T during 

periods of significant coherence by plotting arrows. Arrows point right for time series in-

phase and left for out-of-phase. Vertical arrows pointing up when SM leads T and down 

when T leads SM.

The WTC between SM and T in the upper, middle, and lower MRB were plotted in Figure 2. 

The contours represent statistically significant periods (95% significant), based on the Monte 

Carlo experiment. The most notable features are that SM and T are very well correlated at 

statistically significant level, with high coefficients in 1-yr period over the entire study 

period (1950–2010) for the middle and lower MRB, which means the two variables are 

strongly correlated on an interannual time scale. Consequently, regression techniques based 

on previous year’s SM and T can be used to predict the coming year T with considerable 

skill. The significant regions in 1-yr band are so extensive that it is very unlikely simply by 

chance. Arrows all point to left indicate a very distinct anti-phase relationship for a given 

wavelength between SM and T (e.g., drier soil is associated with higher air T). The average 

wavelet coherency between SM and T is greater than 0.85 and 0.9 for the 1-yr period for the 

Tang and Chen Page 6

. Author manuscript; available in PMC 2018 August 22.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



middle and lower MRB, respectively. There is higher coherency in the 2 – 4 yr band in the 

middle MRB, which h is similar to the frequency of the El Niño Southern Oscillation 

(ENSO) (every 3 – 7 yr). The next best correlation band stands out being significant between 

SM and T is the 7 – 10 yr in the lower MRB, which indicates that the SM is strongly 

correlated to T at the similar frequency patterns as the Atlantic Multi-Decadal Oscillation 

(AMO) (every 7 – 15 yr). In addition to local climate impacts, large scale climate patterns/

oceanic patterns also impact the land-surface interaction in MRB. Further investigation of 

the relationships between AMO, ENSO, and SM and T could be used in developing 

experimental air T forecasting applications.

Similar as the WTC for the middle and lower MRB, the WTC in the upper MRB also shows 

higher coherence in 1-yr band with rather lower coherency outside of this period throughout 

the study period in upper MRB. However, the coherency (averaged at 0.70) between SM and 

T in upper MRB in the 1-yr period is not as significant as it in the middle and lower MRB. 

These differences have to do with the air T that determine the precipitation regimes. The 

upper MRB is colder, the precipitation falls as snow and snow accumulation is the dominate 

driver of the overall SM. The sensitivity of air T to SM becomes relatively small and largely 

associated with snow water equivalent (SWE). The phase behavior out of 1-yr band for the 

SM and T does not show a strong coherency.

4.3. Mann-Kendall Test Results

For each 1/8th degree grid cell, we quantified trends in monthly series of SM and T (not 

shown here) and tested at the 5% significance level using the non-parametric Mann-Kendall 

test applied to MRB from 1950 to 2010. The T trends, although shown to be generally 

positive (warmer) cross the entire MRB, are larger in the upper than in the middle and lower 

MRB. These trends are comparable to those shown in study of [4]. These T trends seem to 

be more strongly controlled by precipitation regimes at the regional scale. Contrary to the 

trends in T, the trends of SM are more mixed and difficult to analyze over the study period 

because SM has longer memory and not only controlled by short term climate variability in 

regions, but also by long-term processes like global warming and oceanic patterns. The 

trends of SM toward positive (wet) in upper and negative (dry) in lower domain, with no 

significant trends in part of middle MRB.

Using the Mann-Kendall test, we quantified the correlation between SM and T at annual 

scale for each grid (18,000 grids) over the study period and shown the results in Figure 3. 

Negative results between SM and T were pervasive the entire MRB, in simple terms, 

increasing in T (warmer condition) is associated with decreasing SM (drier condition). The 

negative relations have a larger expanse and magnitude in the lower MRB, this makes sense, 

because this part of domain get relatively less impacts of snowmelt on SM.

The highest negative relation is found at −0.38 in lower MRB, which is due to the warmer 

weather in lower domain compared to the upper area because SM has a strong impact on 

higher air T than lower air T [34]. The values of the negative relation mainly are relatively 

small in absolute value over much of the domain (in comparison with negative values), well 

they are generally negatively consistent, which is consistence with the results in QRM 

section. The grids with positive correlations are spotted in the upper and mainly in the 
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middle MRB with statistically insignificant, which is also agreed with the results in QRM 

section (Section 4.1). SM only positively related to T in small region (7% of the MRB) of 

the study area.

5. Conclusions and Discussion

To our knowledge, no similar analysis was performed in the MRB, it is possible the first 

explicit investigation of the correlation between SM and T over an extended period (1950 to 

2010) in the MRB. The results have significant implications for future water availability and 

temperature predictability. The major findings are:

1) QRM results show that SM negatively correlated to air T for the low and upper 

MRB, with the higher correlation at 90th quantile. QRM slopes are mixed 

(negative and positive) for the middle MRB, because the middle MRB is the 

transient area with snow dominant to rain dominant.

2) The T and SM are strongly correlated in 1-yr period over the entire study period, 

indicating that the two variables are interannually correlated. The WTC 

correlations between SM and T in the 2 – 4 yr, 3 – 7 yr, and 7 – 10 yr bands are 

associated with ENSO and AMO, respectively.

3) The annual T and SM are significantly negatively related in the MRB from 1950 

to 2010, indicating that the dry (wet) soil leads to warm (cool) weather in the 

MRB.

The QRM results indicated that the T is strongly correlate with SM in the study area, 

especially the high end of SM at 90th quantile, however, the correlation decrease at the 

extreme climate condition (above 95th quantile). The relationships between SM and T are 

also impacted by the regional climate which makes quartile slopes mixed in the climate 

transition zone, e.g., the middle of MRB.

To clearly demonstrate the relationship between SM and T, we muted the impacts of other 

variables (such as ET and P) by calculating the WTC between them. WTC between SM and 

T yielded values as high as 0.70, 0.85, and 0.9 in 1-yr band in upper, middle, and lower 

MRB, respectively, which indicate that a correlation between SM and T exists independent 

of other climate and hydrologic variability in the 1-yr band. In general, the WTC results are 

less convincing over the upper MRB than they are over the middle and lower MRB. Reasons 

for this may be due to impacts of snow on SM in the upper MRB.

We mapped grid cells with statistically significant Mann-Kendall relations between SM and 

T at annual scale in the MRB. It is likely the first time to quantify the value of the trends 

relation between SM and T in the MRB. One can infer from the map that the negative 

relation is the much more promising result. T is mostly negatively associated with SM. The 

T trends have been increased (warmer) over much of the domain during the study period.

The most likely and obvious application from the results is that the results provide insight 

for the land and atmosphere models fully coupling for climate change. Secondly, SM can 

sever as a potential predictor for T with a long land memory and strong land-atmosphere 
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coupling, which is important for the future climate changes, especially global warming. 

Thirdly, the results help understanding the extreme climate because of SM’s drought index 

function.

Following this research, we have started land-atmosphere model coupling based on the 

relation between SM and T for historic, current, and climate change conditions.
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Figure 1. 
Relationships between monthly anomaly soil moisture and anomaly air temperature for the 

lower, middle, and upper MRB. The X-Axis represents the anomaly soil moisture (the 3rd 

layer) in the lower (SM3L), middle (SM3M), and upper (SM3U); the Y-Axis represents the 

anomaly air T in the lower (TL), middle (TM), and upper (TU). Solid lines denote regression 

for selected quantiles; dashed lines represent the means.
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Figure 2. 
Wavelet coherence between the SM and T in the upper, middle, and lower MRB. The scales 

of the x-axis are seasons, and y-axis are months. The 95% significance level is shown as a 

thick contour. The thin solid line indicates the cone of influence. The relative phase 

relationship is shown as arrows (with in-phase pointing right, anti-phase pointing left). All 

significant sections show anti-phase behavior.
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Figure 3. 
Mann-Kendall correlation coefficients between SM and T in the upper, middle, and lower 

MRB.
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