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Abstract
Posttraumatic stress disorder (PTSD), a chronic disorder resulting from severe trauma, has been linked to immunologic
dysregulation. Gene expression profiling has emerged as a promising tool for understanding the pathophysiology of
PTSD. However, to date, all but one gene expression study was based on whole blood or unsorted peripheral blood
mononuclear cell (PBMC), a complex tissue consisting of several populations of cells. The objective of this study was to
utilize RNA sequencing to simultaneously profile the gene expression of four immune cell subpopulations (CD4T,
CD8T, B cells, and monocytes) in 39 World Trade Center responders (20 with and 19 without PTSD) to determine which
immune subsets play a role in the transcriptomic changes found in whole blood. Transcriptome-wide analyses
identified cell-specific and shared differentially expressed genes across the four cell types. FKBP5 and PI4KAP1 genes
were consistently upregulated across all cell types. Notably, REST and SEPT4, genes linked to neurodegeneration, were
among the top differentially expressed genes in monocytes. Pathway analyses identified differentially expressed gene
sets involved in mast cell activation and regulation in CD4T, interferon-beta production in CD8T, and neutrophil-
related gene sets in monocytes. These findings suggest that gene expression indicative of immune dysregulation is
common across several immune cell populations in PTSD. Furthermore, given notable differences between cell
subpopulations in gene expression associated with PTSD, the results also indicate that it may be valuable to analyze
different cell populations separately. Monocytes may constitute a key cell type to target in research on gene
expression profile of PTSD.

Introduction
Posttraumatic stress disorder (PTSD) is a complex dis-

order that affects ~7% of the US population1. PTSD
develops in response to exposure to traumatic events and
is characterized by emotional numbing, intrusive mem-
ories, avoidance, and hyperarousal2. PTSD can lead to
cognitive, social and occupational impairment, and is
associated with neurodegeneration3,4 thus causing sub-
stantial social and economic burden for individuals

affected by this condition5. The etiology of PTSD is not
well understood. However, genetic studies involving twin,
candidate gene, and genome-wide association analyses6

have revealed that heritability of PTSD is moderate in size
(ranging from 30 to 40%)7,8, and that genetic factors may
play an important role in the vulnerability to, and resi-
lience following, trauma exposure in PTSD9. PTSD is also
consistently associated with altered functioning of the
immune system, including increased levels of circulating
C-reactive protein and pro- and anti-inflammatory cyto-
kines10–12. To date, the link between genetic and immu-
nologic processes in PTSD remains unclear.
Gene expression analyses can identify critical down-

stream biological process associated with genetic and
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epigenetic variations and thus can potentially inform
efforts to identify biomarkers for PTSD13. Transcriptome-
wide gene expression profiling has emerged as the pre-
ferred approach for explicating gene regulation, because it
allows for an unbiased investigation of expression patterns
without a priori knowledge of genetic risk factors14.
Taking such hypothesis-free approach, previous studies,
including work from our group, identified differentially
expressed pathways related to immune functions and
inflammation to be most prominent in PTSD15–17.
As direct sampling of the brain is not feasible, most

prior studies were performed using whole blood or
unsorted peripheral blood mononuclear cell
(PBMC)13,15–22. To a large extent, gene expression
patterns in blood are consistent with patterns observed
in brain23,24, suggesting that the molecular signature of
PTSD may be obtained outside the brain. An additional
strength of focusing on blood tissue is its feasibility as a
potential clinical biomarker. However, blood is a com-
plex tissue that consists of several populations of cells,
and each has a distinct gene expression profile. Altera-
tions in immune regulatory networks are expected to
have functional consequences primarily in certain sub-
sets of immune cells. Thus, analyses of whole blood are
likely to weaken the signal. Indeed, in autoimmune
diseases, analyses of gene expression in specific cell
types reveal stronger links to target disease than ana-
lyses of whole blood25–27. As PTSD is implicated in
immune responses and suggestive evidence links it to
autoimmune diseases28–31, studying genetic alterations
in isolated immune cell subsets may provide a clearer
understanding of the link between PTSD and immune
function. Noting this, one previous case-control study
examined gene expression in isolated monocytes in 49
men with and without PTSD32, and identified three
significantly downregulated genes (PF4, SDPR, and
HIST1H2AC) despite finding no evidence of chronic
inflammation. The authors also found a large range of
genes with clinically meaningful effect sizes that were
predominantly under-expressed in PTSD, suggesting
decreased gene activation in immune cells.
To our knowledge, no study of PTSD to date has pro-

filed gene expression in isolated immune subsets other
than monocytes. The current study addressed this gap by
conducting a transcriptome-wide gene expression study
using the state-of-the-art RNA sequencing (RNA-Seq)
approach on RNA derived from the main subsets of iso-
lated immune cells retrieved from peripheral blood. To
this end, we analyzed blood from 39 male responders to
the WTC disaster with and without WTC-connected
PTSD whose whole-blood transcriptome had previously
been studied15. We compared gene expression profiles
within four isolated subsets of cells: CD3+CD4+ T cells
(CD4T), CD3+CD8+ T cells (CD8T), CD19+ B cells (B

cells) and CD14+ monocytes (monocytes) to determine
the immune subsets that were responsible for the changes
in the transcriptome found in our previous study15. Also,
we performed candidate gene analyses to test replicability
of the only previous study of PTSD gene expression in
monocytes, which identified downregulation of PF4,
SDPR, and HIST1H2AC in this cell type. To better
understand genetic predisposition to PTSD, biological
pathway analyses were performed on differentially
expressed genes. The results from isolated immune cells
were compared to results obtained from PBMC and whole
blood. This study tested the hypothesis that both common
and distinct gene expression patterns in PTSD would be
observed in immune cells relative to PBMC and whole
blood.

Methods
Setting
The World Trade Center (WTC) disaster was a cata-

strophic event that simultaneously exposed tens of
thousands of individuals, including WTC responders who
worked on the site during rescue and recovery operations,
to acute psychological and physical trauma33,34. Stony
Brook University manages the second largest program
and monitors responders residing on Long Island, NY35.
Most responders in the Stony Brook program are male,
worked as police, and were aged 39 in September 2001.
We previously found that 18% of the cohort developed
WTC-connected PTSD, and 10% had chronic WTC-
PTSD34.

Participants and clinical assessment
This study utilized blood samples from a subset of

participants (n= 39) based on their polygenic expression
scores from a previous study in which we had already
demonstrated significant gene dysregulation15. Details on
recruitment, clinical assessment, and biomarker sampling
were described previously15. The 39 participants in the
present study were non-smoking males (mean age= 51.4,
SD= 8.94); 20 had a history of DSM-IV WTC-PTSD
determined using the Structured Clinical Interview for
DSM-IV36 and had highest polygenic expression scores,
while 19 did not and had lowest polygenic expression
scores. Interviews were conducted concurrently to blood
draw by professional interviewers under supervision of
clinical psychologists.

Peripheral blood mononuclear cell (PBMC) isolation and
freezing
Whole-blood samples were collected in BD Vacutainer

CPT cell preparation tubes containing sodium heparin as
the anti-coagulant (BD, Franklin Lakes, NJ, USA). The
CPT tubes were processed within 2 h on at room tem-
perature according to the manufacturer’s instruction. The
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purified PBMC cells were aliquoted in 90% FBS+ 10%
dimethylsulphoxide (DMSO) with cell concentration at
>2 × 107 cells/ml per cryovial (0.75 ml per cryovial). To
ensure stepwise temperature decrease37, the cryovial were
placed in Mr Frosty’ containers (Nalgene/Thermo Fisher,
Rochester, NY, USA) with isopropyl alcohol medium in
−80 °C freezers for 24–48 h. The cryovials were trans-
ferred quickly into liquid nitrogen for long term storage.
The crypreserved PBMC samples were shipped with a
dry-ice package to the Roswell Park Cancer Center and
stored at −8 °C for flow sort sub-cell separation and RNA
extraction within 1–2 weeks.

Flow sorts on frozen PBMC, total RNA isolation, library
preparation, and sequencing
Frozen PBMC were thawed, restored, washed, and

counted. An aliquot of cells was resuspended in PBS con-
taining 0.1% BSA (PBS/BSA), blocked with mouse IgG, and
labeled at room temperature with the mouse anti-human
antibodies. The cells were then washed in PBS/BSA,
resuspended in 1ml PBS/BSA, filtered through a 35 micron
mesh, and diluted with 1ml sort buffer. Four-way sorting
was performed on a BD FACSAria II sorter, where mono-
cytes, B cells, CD4T, and CD8T cells were sorted simulta-
neously. The purification of total and small RNA was
prepared using the miRNeasy mini kit (Qiagen). Quantita-
tive assessment of the purified total RNA was accomplished
using a Qubit Broad Range RNA kit (Thermo Fisher), which
was then qualitatively evaluated by a 2100 Bioanalyzer
(Agilent technologies). The sequencing libraries were pre-
pared with the TruSeq Stranded Total RNA kit (Illumina
Inc) and sequenced on a HiSeq2500 sequencer using a 100
cycle single-read cluster kit. Additional details are provided
in Supplementary Materials.

RNA-Seq data preprocessing
Alignment was performed using the TopHat2 software38

which utilizes Bowtie239 (http://bowtie-bio.sourceforge.
net/bowtie2/index.shtml) on RefSeq (NCBI Reference
Sequence Database) annotation and human reference
genome (GrCh37-hg19 version)40. Spliced alignment of
the reads to the reference genome was done with the
TopHat2 software allowing a maximum of one mismatch
per read; quality control was done using RSeQC. Other
genomic related data were obtained using UCSC’s genome
repository.41 Quality control for raw reads was performed
with FastQC,42 and adapter trimming was done with
cutadapt43. The number of read counts mapping to each
gene was computed using htseq-count.44

Estimation of batch effects
The potential for batch effects was estimated from the

log-normalized gene counts data using surrogate variable
analysis approach for sequencing data (svaseq)45. The

estimated surrogate variables were included in differential
expression analyses as adjustment factors. Proportions of
CD4T, CD8T, monocytes and B cells estimated from cell
sorting were included in differential expression analysis
for PBMC and whole blood as adjustment factors. We also
compared the estimated cell subsets from two computa-
tional tools, namely CIBERSORT46 and xCell47 software.
CIBERSORT was developed based on deconvolution
method using microarray datasets, whereas xCell was
based on integration of gene set enrichment analysis and
deconvolution method on both RNA-Seq and microarray
datasets. The estimated cell type abundances between
PTSD and non-PTSD were compared using the two
sample t-tests.

Differential expression analysis
Differential expression analyses of RNA-Seq data gen-

erated from isolated CD4T, CD8T, B cells, and monocytes
was performed using DESeq248 software based on
multivariable-negative binomial generalized linear models
that adjusted for age, race, and estimated surrogate vari-
ables to account for potential batch effects. Genes with
low expression were filtered using the cpm (count-per-
million) function in edgeR49. A total of 15,947 genes were
included in the analysis after filtering. Statistical sig-
nificance was assessed via the Wald test using appropriate
contrasts to identify differentially expressed genes asso-
ciated with PTSD for each cell type. A false discovery rate
(FDR)50 control was used to account for multiple testing.
FDR < 0.05 was used to identify statistically significant
genes. Post hoc analysis comparing the number of dif-
ferentially expressed genes at a range of nominal p-value
thresholds was conducted to evaluate the signal strength
of differential expression associated with PTSD across cell
types. A joint analysis, adjusting for cell types and the
confounders described above was also conducted to
identify differentially expressed genes associated with
PTSD. Heatmaps and volcano plots were used to visualize
gene expression patterns. Principal component analysis
(PCA) was performed on the matrix of normalized gene
counts. The first three principal components (PC1, PC2,
and PC3) were used to visualize global gene expression
patterns. Pearson correlation coefficients were computed
on the estimated log2 fold change from DESeq2 in order
to conduct post hoc comparisons of similarities and dif-
ferences across cell types.

Candidate gene analysis
The association between PTSD and gene expression was

examined for previously implicated genes in monocytes
(PF4, SDPR, HIST1H2AC)32. The estimated log2 fold
change, nominal and Bonferroni adjusted p-values for
these three genes were reported.
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Pathway and gene ontology analyses
Pathway and gene ontology analyses were carried out

using the over-representation via the Bioconductor
package clusterProfiler51. Over-representation analysis
was performed on the top 100 genes ranked by p-values
from the differential expression analysis using the func-
tion enrichGO. In total, 5414 gene ontologies, including
biological processes, molecular functions, and cellular
components (the range of genes per gene set was 15–500)
were tested. Statistically significant gene sets were corre-
sponded to those with FDR < 0.05 from over-
representation analyses.

Discriminant analysis via elastic net regularized regression
To evaluate the synergistic effect of multiple genes in

discriminating PTSD status within each cell type, we
randomly divided the 39 samples into 29 training and 10
test samples. The objective of this analysis is to provide
another analytic framework to compare the signal-to-
noise ratio of the different cell types. Within the training
set, the elastic net52 algorithm with threefold cross-
validation was applied to the top 1000 genes identified
from the differential expression analyses of the current

training set to ensure unbiased selection of candidate
features. The area under receiver operating curve (AUC),
based on the model obtained from the training set, was
computed on the test set. The random partitioning of
training and test samples was repeated ten times, and the
average AUC of the test set was reported.
Additional statistical analyses including weighted gene

co-expression network analysis53 and differential expres-
sion analysis comparing each cell type pair stratified by
PTSD status are provided in Supplementary Materials. An
overview of the cell-specific RNA-Seq data analysis
pipeline was given in Supplementary Figure 1.

Code availability
Script for the main analysis is available at http://www.

ams.sunysb.edu/~pfkuan/CellGeneExp.

Results
Participant characteristics
We did not find significant group difference on the

exposure severity between cases and controls. Further-
more, we compared controls and PTSD cases on hallmark
WTC-related disorders: lower respiratory symptoms
(LRS) and gastroesophageal reflux disease (GERD)
symptoms, and did not find a group difference. Finally, the
two groups did not differ on BMI, and demographic
variables (Table 1).

Differentially expressed genes across different cell types
Principal component analysis (PCA) of transcriptome-

wide normalized gene expression counts (Fig. 1a–c)
showed significant cell type differences, with CD4T and
CD8T showing the largest degree of similarity. The PCA
plot also showed that most of the gene expression changes
observed were related to the specific cell types instead of
PTSD status. Similar patterns were also observed when we
restricted the comparison to the top 1000 most variable
genes across the different cell types (Supplementary Fig-
ure 4A) or within each cell type (Supplementary Figure
4B-E). As expected, gene expression of unsorted PBMC
fall in between that of the cell types. Transcriptome-wide
estimated log2 fold change from DESeq2 for the differ-
ential expression analysis comparing WTC-PTSD to
unaffected responders also showed that CD4T and CD8T
were most similar to each other (r= 0.37, p < 0.001) fol-
lowed by B cells, whereas monocytes and whole blood
were least similar (r= 0.061, p < 0.001) (Fig. 2a). Corre-
lations between differential gene expression profiles in
whole blood and in immune cell types ranged between
0.06 and 0.11. The top 100 genes identified within CD4T
showed correlations ranging from 0.35 to 0.72 with other
cell types. The top 100 genes identified from unsorted
PMBC correlations ranging from 0.49 to 0.74 with the
isolated immune subsets and 0.33 with whole blood. The

Table 1 Clinical characteristics of the 39 samples

All Case N= 20 Control N= 19 P-value

Age

Mean (SD) 53.35 (8.12) 49.37 (9.51) 0.169

Race N (%)

Caucasian 17 (85) 19 (100) 0.231

Other 3 (15) 0 (0)

PCL

Mean (SD) 56.00 (8.43) 18.01 (1.54) <0.01

Polygenic score

Mean (SD) 0.46 (0.18) 0.30 (0.12) <0.01

BMI

Mean (SD) 31.90 (5.31) 32.06 (7.32) 0.937

LRS N (%)

Yes 14 (70) 8 (42) 0.111

No 6 (30) 11 (58)

Exposure

Mean (SD) 2.06 (0.97) 1.60 (0.98) 0.195

GERD N (%)

Yes 17 (85) 11 (58) 0.082

No 3 (15) 8 (42)

The p-values were computed from t-test (for continuous variables) and Fisher’s
exact test (for categorical variables). The polygenic scores were computed based
on our previous paper on whole blood3
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top 100 genes identified from whole blood showed cor-
relations ranging from 0.036 to 0.2 with other cell types
(Fig. 2b). These results suggested that the transcriptome-
wide differential gene expression observed in whole blood
was partially attributed to differential gene expression in
granulocytes that were removed during the separation of
PBMC from whole blood.
The proportion of CD4T estimated from cell sorting

was different between case and control (p-value 0.019,
Supplementary Figure 3A). Similar pattern of elevated
CD4T abundances in PTSD was also observed using the
cell subtypes estimates from CIBERSORT and xCell,
although they did not meet statistical significance (Sup-
plementary Figure 3B, 3C). The correlations between the
cell subtype estimates from CIBERSORT and cell sorting
were >0.75 for all cell types except CD8T (Supplementary
Figure 3D); whereas, the correlations between xCell and
cell sorting were lower in these cell types, except for B

cells. In addition, the estimated log2 fold change and the
negative log p-values from the differential expression
analysis comparing PTSD to control, adjusting for cell
heterogeneity using cell sorting proportions exhibit a
higher correlation with CIBERSORT for both the unsor-
ted PBMC and whole-blood analysis, compared to the
adjustment using xCell (Supplementary Figure 8).
CIBERSORT outputs the estimated proportions, which
were directly comparable to the output of cell sorting. On
the other hand, xCell outputs enrichment scores for the
cell types, which may not be interpreted as proportions.
Volcano plots (Supplementary Figure 5A-D) depicting

global differential gene expression patterns indicated an
approximately equal amount of over- and under-
expression comparing WTC-PTSD to non-PTSD across
the four cell types. At FDR < 0.05, 3, 5, 6, 12, and 3 genes
were identified to be differentially expressed in CD4T,
CD8T, monocytes, B cells, and unsorted PBMC,

Fig. 1 Principal component analysis (PCA) of transcriptome-wide normalized gene expression counts assessing the difference in immune
cell types. Each dot represented a sample, color coded by cell type (Red: B cells, Sage: CD4T, Green: CD8T, Turquoise: monocytes, Sky blue: PBMC,
purple: whole blood, plotting symbol+: control, solid circle: PTSD). a x-axis denotes the value of PC1, y-axis denotes the value of PC2. b x-axis denoted
the value of PC1, y-axis denotes the value of PC3. c x-axis denoted the value of PC2, y-axis denotes the value of PC3
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respectively (Fig. 3). Across different nominal p-value
thresholds, monocytes identified the largest number of
differentially expressed genes among the immune cell
subsets (Fig. 2c), suggesting that monocytes contained the
strongest gene expression differences in PTSD compared
to CD4T, CD8T, and B cells.
Most of the genes identified to be statistically significant

at FDR < 0.05 were specific to each cell type (Fig. 3),
except for PI4KAP1 which was upregulated in CD4T
(FDR < 0.05) and the rest of the cell types with nominal p-
values < 0.05. In our previous study15, FKBP5 was found
to be upregulated in whole blood in a sample of 282
responders. This gene remained consistently upregulated
in this subset of 39 responders across all cell types
(nominal p-values <0.05 in CD4T, CD8T, B cells, unsor-
ted PBMC and whole blood, and nominal p-value <0.1 in
monocytes). On the other hand, NDUFA1 and CCDC85B
were previously found to be downregulated in whole
blood. NDUFA1 exhibited weak downregulation effect
sizes in all cell types (nominal p-values >0.05), whereas
CCDC85B did not reach statistical significance in this
subset of 39 responders. The proportion of downregulated
genes in monocytes vary between 40 and50% across dif-
ferent nominal p-value thresholds (Supplementary Figure
6).
The joint differential expression analysis across the four

cell subsets for PTSD status identified 34 genes at FDR <
0.05 (Supplementary Figure 7). Among these 34 genes,
only PI4KAP1 was in common with the cell-specific gene
expression analysis of CD4T. FKBP5 was among these 34
genes and was upregulated in the joint analysis, consistent
with our previous findings.

Candidate gene analysis
As noted above, PF4, SDPR, HIST1H2AC were pre-

viously identified to be downregulated in monocytes in
male subjects with PTSD using microarrays32. Among
these three genes, PF4 (p= 0.01, Bonferroni p= 0.029)
was also found to be at least marginally downregulated in
monocytes in this study. Results also extended to other
cell types and whole blood (Fig. 3). PF4 was also sig-
nificantly downregulated (FDR < 0.05) in the joint differ-
ential expression analysis of the four cell types for PTSD
status (Supplementary Figure 7).

Pathway and gene ontology analyses
Pathway and gene ontology analyses identified 18, 11,

and 9 gene sets to be enriched at FDR < 0.05 among the
top 100 genes associated with PTSD in CD4T, CD8T, and
monocytes, respectively (Fig. 4). No gene set was sig-
nificant at FDR < 0.05 for B cells. Most of the enriched
gene sets were related to immune responses and inflam-
mation. Gene sets related to mast cell activation and
regulation emerged as the top ontology for CD4T. Gene
sets related to interferon-beta production were identified
as the top ontology for CD8T, whereas neutrophil-related
gene sets were the top ontology for monocytes.

Cell-specific discriminant analysis for PTSD
The average AUC values over the 10 random splits for

CD4T and monocytes were 0.666 and 0.735, respectively;
whereas, the average AUC values for CD8T and B cells
were ~0.5 (equivalent to random guess). Despite the small
sample size, monocytes showed promising discriminant
power in differentiating PTSD from healthy controls. This

Fig. 2 Differential expression analysis. a Pairwise correlation coefficients between cell types comparing the estimated log2 fold change across all
genes from DESeq2 for the differential expression analysis in PTSD. b Pairwise correlation coefficients of the estimated log2 fold change for the top
100 genes from DESeq2 for the differential expression analysis in PTSD for each cell type (row). The matrix is asymmetric because each row
corresponds to different gene list, e.g., rows 1 is based on the top 100 differentially expressed (DE) genes in whole blood, whereas row 2 is based on
top 100 DE genes in unsorted PBMC. c Number of differentially expressed genes in PTSD (y-axis) at different nominal p-value thresholds (x-axis) for
each cell type
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result was also consistent with the earlier finding that at a
fixed p-value threshold, a higher proportion of differen-
tially expressed gene in PTSD was detected in monocytes
compared to other immune cell types.

Discussion
In order to enhance our understanding of gene regula-

tion in PTSD, the current study was the first to char-
acterize the gene expression profiles of four immune cell
subsets (CD4T, CD8T, B cells, and monocytes) simulta-
neously using transcriptome-wide RNA-Seq. The objec-
tive of this study was to determine which immune cell
subsets contributed most prominently to the tran-
scriptomic changes in whole blood from our previous
study15. This study is the first to demonstrate an overlap
as well as meaningful distinctions between different
immune cell types implicated in differential gene
expression in PTSD. Results revealed moderate correla-
tions across the cell types for the 100 differentially
expressed genes, with CD4T and CD8T being most
similar to one another. Candidate gene analyses replicated
earlier work identifying under-expression of PF4 in
monocytes as linked to PTSD. Gene expression differ-
ences in PTSD were largest and most distinct in mono-
cytes. Monocytes are the most common type of leukocyte,
and play a role in adaptive immunity54. Circulating blood
monocytes are also precursors of macrophages. Activated
macrophages and monocytes have been proposed to play
a major role in pathogenesis of several central nervous
system conditions and neurological disorders as well as
PTSD55,56. Practically, these results suggest that future
PTSD studies that wish to focus on gene expression in an
isolated cell type might benefit from focusing on
monocytes.
While our results replicated the upregulation in the

candidate gene PF4 reported by Neylan et al.32, the find-
ings did not replicate the predominant downregulation of
gene expression in monocytes in PTSD. The difference
could be attributed to the specific threshold used in
Neylan et al.32 for selecting candidate genes and the
technical differences in assay systems. That is, we used
RNA-Seq to establish the transcriptome profile, whereas
Neylan et al. used microarrays. Furthermore, we con-
sidered a sequence of nominal p-value thresholds to
ensure robustness of the results.
FKBP5, a gene that plays a role in the regulation of the

glucocorticoid receptor and immunological responses to

Fig. 3 Heatmap of the differentially expressed genes at FDR <
0.05. The gene names were color coded according to the cell type in
which they were found to differentially expressed (Red: B cells, Sage:
CD4T, Green: CD8T, Turquoise: monocytes, Sky blue: PBMC, purple:
whole blood). The last three genes in dark blue color corresponded to
the differentially expressed genes identified by Neylan et al.32. The
number printed in each heatmap cell corresponded to the estimated
unadjusted p-value from DESeq2, and the color corresponded to the
magnitude of the estimated log2 fold change (blue: downregulated in
PTSD, red: upregulated in PTSD)
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stress, was previously found to be upregulated in whole
blood15. This study extended these results to show that
the gene remained consistently upregulated in CD4T,
CD8T, B cells, and monocytes, indicating that the effect of
PTSD on FKBP5 may not be cell specific. This study also
identified another gene (PI4KAP1) that was consistently
upregulated in CD4T (FDR < 0.05) and showed consistent
trends across other cell types (nominal p < 0.05). Both
PI4KAP1 and PI4KAP2 are two non-processed pseudo-
gene partial copies of PI4KA, a lipid kinase and protein-
coding gene. PI4KAP2 was also consistently upregulated
in all immune cell types, unsorted PBMC and whole blood
(p < 0.05 in B cells and CD4T), whereas PI4KA was
marginally upregulated in all cell types except monocytes
in this study. These results suggest that the upregulations
of FKBP5 and PI4KAP1 appear to be important targets for
future study.
Prior studies have found a significant association

between PTSD and onset of neurodegenerative dis-
eases3,4. Several genes that were identified to be differ-
entially expressed in the immune cell subsets have been
implicated in neurodegenerative disorders. Despite the
limited evidence regarding PI4KAP1, its parent gene,
PI4KA, was implicated in late onset Alzheimer’s disease
via its role in the synthesis of phosphatidylinositol phos-
phate57–59, which plays a diverse role in cell growth, dif-
ferentiation and the nervous system60,61; whereas, the
pseudogene PI4KAP2 was found to be dysregulated in
Huntington’s disease62. Both PI4KAP1 and PI4KAP2 are
two non-processed pseudogene partial copy of PI4KA,
and the presence of pseudogenes have been shown to
complicate molecular genetic studies63,64. Pi4KAP2 and
PI4KA were also upregulated in all cell types (except
PI4KA in monocytes), although it did not reach statistical
significance. REST gene was significantly downregulated

in monocytes comparing PTSD to control. REST gene is
associated with neurodegeneration and has been identi-
fied as a master regulator of genes involved in neuro-
genesis and neuronal differentiation65,66. This gene was
also found to be substantially reduced in individuals with
mild cognitive impairment and almost absent in those
with Alzheimer’s disease67. Another gene SEPT4 identi-
fied to be significantly downregulated in monocytes,
played a role in synaptic plasticity and neurodegenera-
tion68, and has been found to be downregulated in the
amygdala and the substantia nigra of patients with Par-
kinson’s disease69. This is particularly significant in our
population where we recently demonstrated that our
patients with PTSD have an increased risk of cognitive
impairment70, worse cognitive dysfunction across
domains linked with neurodegenerative diseases71, and
reduced functioning in neurologically associated mobility
conditions72.
The differentially expressed genes in PTSD identified

within each cell type were enriched in gene sets related to
immune response and inflammation. For example, gene
sets in CD4T were involved in regulation of mast cells.
Mast cells are the master regulators in immune response,
and previous studies found that they may play an
important role in innate and adaptive immune responses
to inflammation and autoimmune diseases73–76. Mast cell
activation in PTSD has been proposed to accelerate the
pathogenesis of neurodegenerative diseases, including
Alzheimer’s disease77. Furthermore, regulation of
interferon-beta production emerged as the top gene sets
in CD8T cells. Interferon-beta is involved in a wide range
of biological activities in human immune system, includ-
ing activating cytotoxic effector cells78, acting as anti-
microbial agent79, and promoting maturation of
leukocytes80. Our finding is in line with emerging

Fig. 4 Statistically significant gene ontologies at FDR < 0.05 among the top 100 genes identified to be differentially expressed in PTSD for
each cell type. x-axis denoted the number of differentially expressed genes overlapping with each gene ontology. No gene set was significant at
FDR < 0.05 for B cells
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evidence that interferon-beta is also implicated in several
autoimmune diseases, including multiple sclerosis and
Alzheimer’s disease81–83, whereas interferon signaling,
particularly interferon-gamma has been shown to be
associated with PTSD84,85. It is important to note that the
pathway analyses were conducted on the top 100 genes
ranked by the nominal p-values from differential expres-
sion analysis, where most of the genes did not reach
statistical significance at FDR < 0.05. Thus, pending
replication in independent samples, one should interpret
the results from the pathway analyses with caution.

Strengths and limitations
The current study had several strengths, including the

first to profile gene expression in isolated immune cell
types in PTSD using the cutting-edge RNA-Seq. None-
theless, our findings must be considered in the context of
several limitations. First, these data represent information
from a cross-sectional study with a relatively small sample
size selected based on our previous polygenic gene
expression scores from whole-blood transcriptome
study15, and thus we were not able to conclude whether
immune cell subsets profiling is superior over whole
blood. However, despite the small sample size, we were
able to detect differentially expressed genes after adjusting
for multiple comparisons for each cell type. The average
percentage purity of the isolated immune cell subsets was
>93% (Supplementary Materials), suggesting that the
identified genes were likely not artefact of mixed signals
arising from contamination of other cell types during
sorting. Nevertheless, further work is needed that seeks to
replicate these analyses in a larger sample. Second, this
study only profiled gene expression in four types of
immune cells, namely CD4T, CD8T, B cells, and mono-
cytes, and identified distinct differential gene expression
patterns comparing WTC-PTSD to non-PTSD. Future
studies should investigate other blood cell type subsets
including natural killer cells, neutrophils, and eosinophils.
Furthermore, it is unclear to what extent results gen-
eralize to other traumatized samples and to females.
Finally, some of the cell subsets exist in very small frac-
tions, which may not yield sufficient number of cells for
the bulk RNA-Seq technology. Future studies should
examine these cell subsets using the single cell sequencing
technology.

Conclusion
The current study identified common and distinct gene

signatures associated with PTSD in four subsets of leu-
kocytes, indicating that the cell subpopulations may pro-
vide a valuable and to some degree independent source of
information to refine the biomarker signature obtained
from whole blood. In particular, monocytes showed the
most differential gene expression in PTSD, suggesting

that future work in isolated blood cells could focus on this
subpopulation. Together with the results from pathway
analysis, the gene expression profiles from cell sub-
populations tentatively point to neurodegenerative
mechanisms and to dysregulation in immune response. If
independently replicated, these results add to a growing
evidence suggesting that intervention strategies that target
inflammatory responses may help to alleviate PTSD
symptoms and related diseases.

Data availability
The RNA-Seq data of the 39 samples will be available at the Gene Expression
Omnibus (accession number GSE114407) upon publication.
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