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Polystyrene binding peptides (PSBPs) play a key role in the immobilization process.
The correct identification of PSBPs is the first step of all related works. In this paper,
we proposed a novel support vector machine-based bioinformatic identification model.
This model contains four machine learning steps, including feature extraction, feature
selection, model training and optimization. In a five-fold cross validation test, this model
achieves 90.38, 84.62, 87.50, and 0.90% SN, SP, ACC, and AUC, respectively. The
performance of this model outperforms the state-of-the-art identifier in terms of the
SN and ACC with a smaller feature set. Furthermore, we constructed a web server
that includes the proposed model, which is freely accessible at http://server.malab.cn/
PSBP-SVM/index.jsp.

Keywords: polystyrene binding peptides, support vector machine, bioinformatic, machine learning, identifier

INTRODUCTION

The immobilization of a biological functional molecule on a solid surface is one of the most
important topics in the field of biology. Immobilized enzymes are a typical application of this
technology and are commonly used in industrial reactors (Es̨ et al., 2015). The nature of the
biocompatibility on the implant surface is considered to be a protein absorption process (Yin
et al., 2020). The enzyme-linked immunosorbent assay (ELISA) (Engvall and Perlmann, 1971) is
a well-known method for identifying counterparts in biological interactions. This assay is derived
from the immobilization target antigen molecules (Li et al., 2018). There are two principles in
immobilization: one principle is orienting the target part in the preferred direction, and the other
principle is avoiding any unnecessary interaction between the target and the solid surface.

Polystyrene (PS) is used as a protein solid surface in ELISAs and animal cell cultures because
of its biological inertia (Kumada et al., 2010). Polystyrene with binding peptides can be used
to immobilize bioactive peptides, enzymes and antigens in water at room temperature. These
functional monolayer protein layers can be widely applied in the medicine, textile and automobile
industries (Yaman et al., 2009; Moritomi et al., 2010; Mrozek and Malysiak-Mrozek, 2011;
Modjarrad, 2013). Polystyrene binding peptides (PSBPs) can combine with target proteins or
peptides to determine their improper orientation in the immobilization process (Bakhshinejad
and Sadeghizadeh, 2016; Wang et al., 2020). The correct recognition of PSBPs is the first and
most important step of its related application. It is time-consuming and expensive to use a
wet experiment to verify these peptides. To identify PSBPs, we turn to machine learning-based
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computing strategies. To date, machine learning algorithms have
been widely used in biological sequence recognition (Wang et al.,
2008, 2010, 2018; Zhou et al., 2017, 2018, 2019; He et al., 2018;
Liao et al., 2018; Xu et al., 2018a,b; Bao et al., 2019; Cheng et al.,
2019; Ding et al., 2019; Fang et al., 2019; Jin et al., 2019; Liu
et al., 2019a; Meng et al., 2019; Shen et al., 2019; Zhu et al., 2019).
This process generally includes data collection, feature extraction,
feature selection and model training. The positive and negative
samples are collected to form a training dataset, and the sequence
recognition problem is transformed into a binary classification
problem. Discrete features are extracted from training datasets
via the feature extraction process. The pseudo amino acid
composition (PseAAC) is one of the most commonly used
feature extraction algorithms, and many improved algorithms
have been produced (Shen and Chou, 2008). The MRMD (Max-
Relevance-Max-Distance) (Zou et al., 2018), ANOVA (analysis of
variance) (Anderson, 2001) and mRMR (Minimal Redundancy
Maximal Relevance) (Ding and Peng, 2005) are commonly
used feature selection algorithms. The aim of these feature
selection algorithms is overcoming the data redundancy problem.
Choosing a good classification algorithm is another particularly
important step, and the SVM (support vector machine), random
forest, and Bayes classifiers have been widely used to address
sequence recognition problems (Li et al., 2019). Ning et al.
combined a SVM and the dipeptide composition (DPC) feature,
named PSBinder, to construct an identifier to recognize PSBPs
(Li N. et al., 2017)1. In this study, we used the same training
dataset as PSBinder.

In the “Materials and methods” section, we describe the data
collection process, the feature extraction method, the ANOVA
feature selection, the SVM and the evaluation metrics. We depict
the workflow of the proposed identifier and comprehensively
analyze the performance of the identifier in the “Results and
discussion” section. In the “Conclusion” section, we analyze
the shortcomings of the model and look forward to its
future improvement.

MATERIALS AND METHODS

Data Collection
We use the same training dataset as PSBinder. This benchmark
dataset includes 104 positive samples (PSBPs) and 104 negative
samples (non-PSBPs). This dataset is collected from the BDB
database (released in January 2017) according to the following
criteria. The raw positive samples are selected from nine different
phage display libraries. Furthermore, in order to ensure the
difference between the positive and negative samples, we attempt
to select the same numbers of negative and positive samples
from each of the above-mentioned libraries. For those libraries
that do not have enough negative samples, we select the same
length sequences from the other libraries instead. Then, cysteine
amino acids are deleted because they found are at both ends of
the circular peptides (Fu et al., 2018). Peptides that contain two
specific kinds of characters are removed. One kind is ambiguous

1http://i.uestc.edu.cn/sarotup3/cgi-bin/PSBinder.pl

characters including “B,” “J,” “O,” “U,” “X,” and “Z.” The other kind
is non-alphabetic characters. Two measures are used to screen the
above data. Then, we compare each sequence in the positive and
negative sample sets, delete the same negative sample sequences
and positive sample sequences and replace them with other new
negative samples (Yang et al., 2019b). Moreover, the Generalized
Jaccard similarity is applied to keep the similarity between the
positive and negative samples below 90% (Pan et al., 2009).

Feature Extraction
The amino acid residue frequency is one of the most important
features of protein sequences (Małysiak-Mrozek et al., 2018a; Liu,
2019). The frequency feature can be calculated via the single
amino acid composition (AAC), the DPC, three or more peptides’
composition or peptides with a certain gap. There are several
proteins or peptide identifiers that have been proposed based on
these features. In this paper, we use the weighted frequency of the
single AAC and the DPC as the discrete extraction feature.

A peptide consists of 20 kinds of amino acid residues. Thus, a
peptide can be presented as follows:

p = A1A2A3 . . .Ai . . .AL−1AL (1)

where Ai is the ith amino acid residue of peptide p with
a length of L.

(i) 20-dimensional amino acid composition (AAC)

The weighted frequency of the single AAC is defined as
follows:

FeatureAAC = { (f1, f2, . . . , fi, . . . , f20)|fn = 20
/

420 ×

(count(Ai)
∑L

i=1
count(Ai) } (2)

where count(Ai) is the number of Ai in peptide p. FeatureAAC
consists of 20 vectors, and these vectors represent the weighted
frequency of “G,” “A,” “V,” “L,” “I,” “P,” “F,” “Y,” “W,” “S,” “T,” “C,”
“M,” “N,” “Q,” “D,” “E,” “K,” “R” and “H.”

(ii) 400-dimensional dipeptide composition (DPC)

The weighted frequency of the DPC is defined as follows:

FeatureDPC = { (f1, f2, . . . , fi, . . . , f400)|fn = 400
/

420 ×

(count(AiAj)
∑L

i=1
count(AiAj) } (3)

where count(AiAj) represents the number of amino acid residue
pairs that consist of Ai and Aj. FeatureDPC includes 400 vectors.
These vectors represent the weighted frequencies of {“GG,”
“GA,”. . ., “GH,” “AG,” “AA,”. . .,“HR” and “HH”}.

Feature Selection
Generally, the extracted discrete features cannot be directly used
in the training of the recognition model because there is noise
in them (Yan et al., 2019). Therefore, after feature extraction,
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we need to use feature selection algorithms to filter the optimal
features (Malysiak-Mrozek et al., 2018b). This process is also
often considered to be a feature dimensionality reduction process
in which noisy features are removed. In this paper, we use
ANOVA and the IFS (incremental feature selection) strategy to
rank and select the optimal feature set. First, all the extracted
features are ranked by their ANOVA scores, and then optimal
feature set is selected via incremental feature selection according
to a certain criterion (Tang et al., 2019a,b).

(i) ANOVA

The training dataset is composed of positive and negative
samples. Thus, each feature can naturally be divided into two
groups, that is, the positive group and the negative group. If the
difference between the positive and negative groups of a feature
is large, then the discriminative ability is good. In ANOVA, the
mean square between (MSB) groups and the mean square within
(MSW) groups are used to measure the discriminative ability of a
feature (Li B. et al., 2017). The MSB groups and the MSW groups
of the ξ th feature are calculated as follows:

MSB2 (ξ) =

2∑
i=1

mi(

∑mi
j=1 feaξ

(
i, j
)

mi
−

∑2
i=1
∑mi

j=1 feaξ
(
i, j
)∑2

i=1 mi
)2

(4)

MSW2 (ξ) =

2∑
i=1

mi∑
j=1

(feaξ
(
i, j
)
−

∑mi
j=1 feaξ

(
i, j
)

mi
)2 (5)

where mi is total number of samples in the ith group. feaξ
(
i, j
)

represents the value of the jth sample in the ith group of the ξ th
feature. MSB2 (ξ) and MSW2 (ξ) follow a chi-square distribution

with 1 and
k∑

i=1
mi − 2 degrees of freedom, respectively.

MSB2 (ξ) ∼ χ2(1) (6)

MSW2 (ξ) ∼ χ2(

k∑
i=1

mi − 2) (7)

From eqs 6 and 7, can deduce the following equation:

F(ξ) =
MSB2 (ξ)

/
1

MSW2 (ξ)
/∑2

i=1 mi − 2
∼ F(1,

∑2

i=1
mi − 2) (8)

F(ξ) follows an F-distribution with (1,
2∑

i=1
mi − 2) degrees of

freedom. The larger F(ξ) is, the greater the contribution of the
ξ th feature to the classification is.

(ii) Incremental feature selection

All the features are sorted in descending order after calculating
eq. 8. The feature sets are generated by adding one new feature at
a time as follows:[fea

′

1], [fea
′

1, fea
′

2] . . .
[
fea
′

1, fea
′

2 . . . , fea
′

n−1

]
and

[
fea
′

1, fea
′

2 . . . , fea
′

n−1, fea
′

n

]
. The classification models are

generated using the above new feature sets, and the best model
is selected according to some criteria, such as the accuracy, F1
score or another.

Support Vector Machine
A support vector machine (SVM) is a kind of generalized linear
classifier that classifies data via supervised learning. The SVM
maps labeled data to a high-dimensional space and then uses the
maximum-margin hyperplane to classify those data. In addition,
the SVM is also one of the common kernel learning methods
for non-linear classification (Yang et al., 2019a). In recent years,
SVMs have been successfully applied in bioinformatics fields
(Xiong et al., 2012, 2019; Zhang et al., 2015; Zhang J. et al.,
2019; Ding et al., 2016a,b; Wei et al., 2016; Zeng et al., 2017;
Zhao et al., 2017; Bu et al., 2018; Xu et al., 2018c; Hu et al.,
2019; Liu and Li, 2019; Liu et al., 2019b; Wang et al., 2019;
Dou et al., 2020). The LIBSVM is a widely used SVM tool. In
addition to the standard SVM algorithm, LIBSVM also includes
a support vector regression, multiple classifiers and probability
output functions. The source code of LIBSVM is written using C,
and it provides a call interface for the mainstream development
languages including Java, Python, R and MATLAB. In this paper,
the radial basis function (RBF) is used as the kernel function
of the SVM. In addition, the grid.py program is used to find
the kernel width parameter γ and the penalty constant C that
optimize the model. In this paper, the search range of logγ

2 is set
to [6, 20] and the step size is −0.5. Similarly, the search range of
logC2 is [−10, 20], and the step size is 0.5. We use LIBSVM version
3.24, and it can be downloaded from https://www.csie.ntu.edu.
tw/~cjlin/libsvm/.

Evaluation Measurement
K-fold cross validation, leave-one-out cross-validation (LOOCV)
and independent tests are three major validation methods. In this
paper, we use five-fold cross validation to evaluate and compare
the different identifiers (Jiang et al., 2013; Ding et al., 2017; Wei
et al., 2017a,b,c, 2019; Chu et al., 2019; Liu et al., 2019c,d; Shan
et al., 2019; Xu et al., 2019c; Zeng et al., 2019a,c; Zhang X. et al.,
2019). five-fold cross validation first divides the whole training
dataset into five parts. Then, this validation selects four parts to
train the model, and the remaining part is used for testing. The
above process iterates until all five subsets are used as test datasets.
Finally, the five groups of evaluation metric scores are averaged
to evaluate the trained model’s performance. To evaluate the
model’s performance, we employ the sensitivity (SN), specificity
(SP) and accuracy (ACC) to compare the different models. It is
worth mentioning that ACC is also used as the objective of model
optimization. These evaluation metrics are defined as follows:

SN =
TP

TP + FN
(9)

SP =
TN

TN + FP
(10)
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ACC =
TN + TP

TN + FP + FN + TP
(11)

where TN represents true negatives, and TP represents true
positives. FN and FP represent false negatives and false
positives, respectively.

In addition, the area under the curve (AUC) is also used to
evaluate the overall performance of the model. The AUC is the
value of the area enclosed by the X, Y coordinates and the receiver
operating characteristic curve (ROC curve). The AUC reflects the
performance stability of the model. The greater the AUC is, the
better the stability of the model.

RESULTS AND DISCUSSION

The Framework of the Proposed
PSBP-SVM Identifier
There are four steps in the process of constructing our
proposed identifier. As illustrated in Figure 1, these steps
are data collection, feature extraction, feature selection and
model generation and optimization. In the data collection step,
the positive and negative samples are collected as described
in the “data collection” section. The 420-dimensional AAC
and DPC feature is generated from the above benchmark
dataset in the feature extraction step. Then, the resulting
feature vectors are ranked via their ANOVA scores and
a 123-dimensional optimal feature set (123D optimal set)
is selected via the IFS process using the ACC as the
criterion. This optimal feature set is input into the SVM
classifier to train and optimize the model. Finally, the
proposed identifier is obtained and called the PSBP-SVM.
“PSBP” refers to PSBPs, and the SVM is applied as the
classification algorithm.

The identification of a peptide is as follows. ÀThe 420-
dimensional (AAC + DPC) feature is extracted from this
peptide. Á Then, we select the feature vectors from the above
feature according to the optimal feature set. Â ÃFinally,
the selected feature vectors are put into the proposed
model (PSBP-SVM) to identify whether a peptide is a PSBP
or not.

Comparison With Other Identifiers
To comprehensively investigate the performance of the PSBP-
SVM, we compare it with other identifiers including the state-of-
the-art identifier. All models presented in this section have been
optimized. The optimization conditions of SVM related models
are the same as PSBP-SVM.

The 188-bit (Wei et al., 2018) and Izlti (Diener et al.,
2016) feature extraction algorithms are combined with the SVM
classifier to generate the 188D_SVM and Iztli_SVM, respectively.
The comparison of the PSBP-SVM with the 188D_SVM and
Iztli_SVM is illustrated in Figure 2A. In the five-fold cross
validation test, the PSBP-SVM achieves 90.38, 84.62, 87.50, and
0.90% SN, SP, ACC, and AUC, respectively. It is observed
that the PSBP-SVM is better than the other two identifiers by

approximately 20% in terms of the SN, SP, ACC and AUC.
This finding demonstrates that the 188-bit and Iztli extraction
features might not include important discriminative features
of PSBPs and non-PSBPs compared with the 123-dimensional
optimal feature set.

To investigate the effectiveness of the SVM classifier, the
naive Bayes, random forest and J48 are used to train the
identifiers on the 123D optimal set. The generated identifiers of
these algorithms are named 123D_NB, 123D_RF and 123D_J48,
respectively. From Figure 2B, it is observed that the PSBP-SVM
still outperforms the other three identifiers. The performance
of 123D_NB follows. The SN, SP, ACC and AUC of 123D_NB
are 84.6, 83.7, 84.13, and 0.897%, respectively, which are
5.78, 0.92, 3.37 and 0.003% lower than those of the PSBP-
SVM, respectively. 123D_J48 is the worst of all. 123D_J48
only exhibits 47.1, 70.2, 58.65, and 0.641% SN, SP, ACC
and AUC, respectively. In particular, the SN of 123D_J48
is below that of random classification. The performance of
123D_RF is worse than that of 123D_NB and better than
that of 123D_J48. Thus, it can be concluded that the SVM
classifier performs better than other classifier on the 123D
optimal feature set.

Different feature selection algorithms lead to different
classification effects. Figure 2C represents the influence of
two different feature selection algorithms on the model. The
MRMD-SVM is generated by replacing part C of Figure 1
with MRMD, that is, MRMD is used as the feature selection
algorithm. Finally, a 178-dimensional new optimal feature set
is selected by MRMD. From the comparison result, we observe
that the MRMD-SVM only achieves 66.3, 68.3, 67.31, and
0.673% in terms of the SN, SP, ACC, and AUC, respectively.
The performance of MRMD-SVM is much worse than that
of the PSBP-SVM. This result indicates that MRMD may not
select important features from the 420-dimensional feature set
(Hong et al., 2019).

As shown in Figure 2D, the SN, SP, ACC and AUC values
of PSBinder are 88.46, 85.58, 87.02 and 0.91%, respectively,
according to the five-fold cross validation test. The SN and
ACC of the PSBP-SVM are higher than those of PSBinder by
1.92 and 0.48%, respectively, although the other two metrics
are slightly lower. It is worth mentioning that the number
of features for the PSBP-SVM is 123, which is smaller than
the 146 of PSBinder. Therefore, the PSBP-SVM can effectively
avoid overfitting problems compared with PSBinder. For the
computing model, the SN value is more significant because
it can improve the positive sample identification accuracy by
reducing its scope.

Feature Contribution and Importance
Analysis
Figure 3A shows that the ACC values vary with the incremental
feature selection process. When the top 123 features are selected,
the ACC reaches the highest value of 87.5%. This is also
the reason why 123 features are chosen as training features.
The analysis of the composition of these optimal features is
represented in Figure 3B. It is found that there are 8 AAC
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FIGURE 1 | The framework and identification process of the PSBP-SVM. (A) Data collection. The benchmark dataset consists of 104 positive samples and 104
negative samples. (B) Feature extraction. A 420-dimensional feature is extracted from the benchmark dataset. (C) Feature selection. The optimal feature set is
generated by the ANOVA ranking algorithm and the IFS process. (D) Model training and optimization. The optimal feature set is used to train and optimize the model.
The PSBP identification process is based on the four parts in yellow boxes. These parts are À feature extraction, Á feature selection, Â PSBP identification, and Ã

the result.

FIGURE 2 | Comparison of the PSBP-SVM and other identifiers. (A) Comparison with other feature extraction identifiers. (B) Comparison with other classification
algorithm identifiers. (C) Comparison with other feature selection identifiers. (D) Comparison with the state-of-the-art identifier.

features and 115 DPC features, respectively accounting for 40
and 28.75% of the original features. This finding indicates that
the AAC features have higher participation rates. Furthermore,

the appearance frequencies of 20 amino acids are calculated
using the AAC and DPC separately. From the result shown
in Figure 3C, we can observe that the top six amino acids
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FIGURE 3 | Analysis of the 123D optimal feature set. (A) Plot of the accuracy of incremental feature selection. (B) Composition of the optimal feature set. (C) DPC
and AAC occurrences. (D) Number of dipeptide types in the DPC.

both in the AAC and DPC are tryptophan (W), phenylalanine
(F), leucine (L), tyrosine (Y), cysteine (C) and glutamine (Q).
The counts of the dipeptide types are presented in Figure 3D.
The dipeptides that begin with glycine (G), tryptophan (W),
phenylalanine (F) and tyrosine (Y) are the top four dipeptide
types in the 123D optimal feature set. From the above analysis,
we can conclude that tryptophan (W), phenylalanine (F) and
tyrosine (Y) play important roles in identifying PSBPs from
non-PSBPs.

Web Server Guidelines
For the convenience of other researchers, we have constructed
a web server including the PSBP-SVM, and free access is
provided at http://server.malab.cn/PSBP-SVM/index.jsp. This
web server includes “Home,” “Dataset,” “About” and “Contact
us” pages. One can enter a sequence into the input box of
the “Home” page and click the “submit” button to identify
whether it is a PSBP or not. Note that only the FASTA format
is supported. The “Dataset” page provides a link to download
positive and negative samples. The “About” and “Contact us”
pages give related information about our proposed model and the
authors, respectively.

CONCLUSION

In this study, we proposed a novel SVM-based polystyrene
binding peptide identification model and incorporated it
in an identifier called the PSBP-SVM. The construction
process of this model includes feature extraction, feature
selection, model training and optimization. The performance

comparison shows that the PSBP-SVM outperforms other
identifiers, including the state-of-the-art identifier. Furthermore,
in order to investigate the contribution of features, we
comprehensively analyzed the composition and importance
of the optimal feature set used in model training. However,
there is still room for improvement in the future. With the
help of multiview learning, ensemble learning strategies (Liu
and Zhu, 2019; Ru et al., 2019; Zeng et al., 2019b) and
evolutionary optimization (Xu et al., 2019a,b), the accuracy can
be improved, and the range of the effective features can be
further reduced.
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