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Simple Summary: Exosomes derived from various sources can deliver therapeutic agents such as
small molecule drugs, nucleic acids, and proteins to cancer cells by passive or active targeting. These
exosomes can encapsulate drugs inside the exosomes, extending drug half-life and increasing drug
release stability. In addition, exosomes are highly biocompatible due to their endogenous origin
and can be used as nanocarriers for tissue-specific targeted delivery. This review discusses recent
advances in exosome-based drug delivery for cancer therapy.

Abstract: Exosomes are a class of extracellular vesicles, with a size of about 100 nm, secreted by most
cells and carrying various bioactive molecules such as nucleic acids, proteins, and lipids, and reflect
the biological status of parent cells. Exosomes have natural advantages such as high biocompatibility
and low immunogenicity for efficient delivery of therapeutic agents such as chemotherapeutic drugs,
nucleic acids, and proteins. In this review, we introduce the latest explorations of exosome-based
drug delivery systems for cancer therapy, with particular focus on the targeted delivery of various
types of cargoes.

Keywords: exosome; drug delivery system; cancer therapy; exosome engineering

1. Introduction

Exosomes, which are membrane structures surrounded by a lipid bilayer with a di-
ameter of about 100 nm, have recently attracted much attention as novel drug delivery
nanoplatforms. Exosomes are known as transporters that carry cargos such as nucleic
acids, proteins, and lipids as part of the interaction between the parent cell and the dis-
tant or adjacent cells to respond to the external environment [1]. Exosomes are one of
the extracellular vesicles that originated from the endosomal compartment. However,
recent studies have reported that the small-size microvesicles (around 100 nm) can also be
included in the “exosome” category [2,3]. As there is no molecular marker to differentiate
multivesicular body-derived exosomes from other extracellular vesicles, in this review, the
term “exosome” is used to refer to small-size extracellular vesicles.

The composition of exosomes can represent the biological state of the cells from which
they are derived and has been implicated in the physiological and pathological processes
of various diseases. In particular, it is known to play an important role in the pathogenesis
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of cancer, including the communication between multiple cells such as cancer cells and
immune cells [4,5].

Despite their involvement in tumor progression and metastasis, exosomes obtained
from both healthy and diseased cells could be utilized as drug delivery vehicles, im-
munomodulators, etc. [6–8]. Exosomes have many advantages compared to synthetic
nanoparticles (Figure 1). Compared with conventional liposomes and artificial nanopar-
ticles, exosomes have high biocompatibility and cellular uptake due to membrane pro-
teins such as tetraspanin and fibronectin, and can be easily modified according to target
cells [9,10]. Exosomes are more stable in body fluids than liposomes with similar structures
and characteristics. For example, liposomes can be easily removed directly or indirectly
by macrophages or reticuloendothelial cells [11] but exosomes are known to be highly
biocompatible because of their endogenous origin. In addition, abundant studies have
suggested that exosomes could evade the immune system and prolong circulation time
in the body [12–14]. Moreover, due to their small size, it can overcome biological barriers,
such as the blood–brain barrier (BBB) and lung clearance, and drugs with low stability
such as curcumin can be loaded into the exosomes to increase their stability [15–17].

Figure 1. Advantages of exosomes in cancer treatment compared to other nanoparticles. Exosomes
with lipid bilayer membrane structures encapsulate the drug inside, thereby extending drug half-life
and increasing drug release stability. In addition, exosomes can easily communicate with target cell
membranes and cross biological barriers such as the BBB. Due to their endogenous origin, they are
highly biocompatible and can be used as nanocarriers for tissue-specific targeted delivery.

Exosomes show very high cell uptake efficiency via directly interacting with the
extracellular proteins or the direct membrane fusion or internalization [18]. Exosomes
derived from a variety of cellular sources also carry diverse membrane proteins [19].
Integrin, which are lipid raft-like domains on the surface of exosomes derived from each
specific source, mediate membrane fusion and endocytosis through interactions with target
cells [9,20]. Through these target cell-specific surface proteins, exosomes have superior
targeting ability compared to artificial nanoparticles [21].

Besides membrane proteins, exosomes inherit bioactive molecules that may have
therapeutic benefits from donor cells. For example, M2 macrophage-derived exosomes
accelerated wound healing by delivering anti-inflammatory cytokines derived from their
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parental cells to a mouse wound healing model [22]. Milk-derived exosomes that contained
immune-related miRNAs showed excellent therapeutic efficacy in an inflammatory bowel
disease mouse model by oral delivery [23]. MSC-derived exosomes could modulate
immunity and promote tissue regeneration but could also accelerate the growth of tumors
by stimulating factors related to angiogenesis [24]. Therefore, careful donor cell selection is
essential for drug delivery by exosomes for cancer therapy.

Sources of exosomes widely used as drug carriers include cells, blood (body fluids),
and food. Therapeutic cargos for cancer therapy such as anticancer drugs, nucleic acids,
and proteins are loaded into exosomes harvested from these sources through various
loading methods. In addition, for efficient drug delivery, exosomes are being optimized
through various exosome surface engineering. In this review, we discuss a state-of-the-art
exosome-based drug delivery system for cancer treatment depending on the exosome
source, types of cargoes, and exosomal surface engineering (Figure 2).

Figure 2. The overall process of exosome-based drug delivery in cancer therapy. Cell/blood/food-
derived exosomes can be sources for drug delivery carriers. Exosomes loaded with therapeutic agents
such as anticancer agents, nucleic acids, and proteins can be delivered to cancer cells by passive or
active targeting.

2. Main Types of Exosomes in Drug Delivery Systems

As the field of research on effective drug delivery systems (DDS) development
has been grown eagerly, the exosomes possessing low immunogenicity and a high bio-
absorption rate are being focused as potent drug carriers. The main purpose of the DDS is
to allow the drug to overcome biological barriers (e.g., cell membrane, efflux transporter,
and metabolic enzymes) to have high bioavailability in target regions [25–28].

The physicochemical properties affecting pharmacokinetics of exosomes may differ
depending on the type of source of exosomes [29,30]. Therefore, it is important to study the
ways in which different biochemical features of exosomes are derived from various sources.
In this section, we will focus on categorizing the different types of exosomes derived from
different origins (Table 1).
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Table 1. Different types of exosomes originated from various sources and their properties.

Types Source Features Limitations References

Cell-secreted exosomes

Human embryonic kidney (HEK) cells
Membrane resemblances to various tissues in our body

Immunologically inert
High efficiency in transfection

Low yield compared to body fluid and food-derived exosomes [31,32]

Cancer cells Tropism toward their parent cells Less ideal pharmacokinetic profile
Lack of studies for metastatic role of cancer cell exosomes [33–35]

Immune cells
(e.g., dendritic cells)

Strictly defined molecular compositions
Expression of NK cell-stimulating ligand peptides

Surface modification using targeting moieties

Lack of understanding of DEX components (e.g., mRNAs, miRs,
and cytokines) and mechanisms regarding how these factors

interact with acceptor cells
[36–40]

Stem cells
(e.g., mesenchymal stem cell)

Easy availability from ethically acceptable tissues
Large capacity for ex vivo expansion

Similar to other types of exosomes
(e.g., lack of PK database and need to improve

production efficiency)
[41–43]

Blood-derived exosomes Blood
(red blood cells)

Relatively high yield from a single blood unit
Reduced unexpected mutations from cell culture

No occurring horizontal gene transfer
Non-toxic/immunogenic by matching blood types

High transfection efficiency

Not determined [43,44]

Food-derived exosomes

Milk-derived exosomes
Dosing through less-invasive oral cavity
Functionalized by simple post-insertion

Variation in shape, size, and cargo contents of exosomes
depending on the diet and condition of the source

Less understanding of the endogenous biological cargo of
milk exosomes

[45–48]

Edible plants-derived exosomes
(e.g., ginger, grapes, lemon, etc.) Limited knowledge of cellular molecular properties of PDEs [49–51]
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2.1. Cell-Secreted Exosomes

Basically, exosomes, which are a type of nano-sized extracellular vesicle (EV), are
released by almost any type of cell [2,52,53]. Considering EVs are heterogeneous in size,
content, and function, it is difficult to distinguish exosomes from other EVs such as mi-
crovesicles. In the current EV field, compared to exosomes isolated from complex biological
fluids such as plasma, methods for characterizing exosomes isolated from conditioned
cell culture media are relatively well established. The known “gold standard” isolation of
exosomes as a subset of EVs is differential centrifugation, which typically consists of low-
speed centrifugation to remove cells and large vesicles, and high-speed ultracentrifugation
to extract only exosomes [54]. In addition, ultrafiltration, density gradient purification,
polymer precipitation, size exclusion purification, and immunoaffinity chromatography
are widely used for various purposes in exosome applications [55]. Many research groups
have been extracting exosomes from human embryonic kidney (HEK) cells, cancer cells,
immune cells, and stem cells, and these exosomes have individual characteristics according
to their origin.

2.1.1. Human Embryonic Kidney Cell (HEK)-Derived Exosomes

The HEK cell line (HEK293T) is the most commonly applicated cell line in the field
of biopharmaceutical manufacturing due to its advantageous properties such as ease of
growth, non-demanding maintenance conditions, and high transfection efficiency [31].

According to some previous studies, exosomes isolated from HEK293T have mem-
brane resemblances to various tissues in our body (e.g., epithelium, skin, brain, liver, lung,
muscle, lymph, and hepatocytes) [32,56–58]. This suggests that HEK-derived exosomes
enable drug delivery to various target tissues. In addition, Zhu et al. reported that repeated
dosing of exosomes obtained from HEK293T for 3 weeks did not induce any noteworthy
adverse effects in terms of the immune response and toxicity in mice [31]. In addition to tar-
geting and safety-related properties, HEK-derived exosomes can also increase drug delivery
and therapeutic efficiencies by delivering fully functional natural forms of membrane pro-
teins to cancer cells. Kim et al. employed genetically modified HEK exosomes for tumor cell
“xenogenization”. The authors transfected plasmids encoding mutant vesicular stomatitis
virus glycoprotein (mVSVG) into HEK293T cells to harvest mVSVG-engineered exosomes
(mVSVG-Exo). mVSVG-Exo increased bone marrow-derived macrophages (BMDMs) and
dendritic cell (BMDC)-mediated phagocytosis of xenogenized cancer cells [59]. Moreover,
it was found that therapeutic membrane protein-expressing exosomes can also improve
tumor penetration and antitumor efficacy. As seen in experimental results by Hong et al.,
native PH20 hyaluronidase-expressing exosomes obtained from HEK293T cells inhibit
tumor growth by degrading hyaluronan in the tumor extracellular matrix (ECM), the
primary component of the tumor microenvironment. In addition, co-delivery of PH20 and
doxorubicin (Dox) showed markedly enhanced antitumor effects compared to Dox-only
delivery groups in the tumor-bearing mouse model [60].

2.1.2. Cancer Cell-Derived Exosomes

Since cancer cell lines overexpressed two subtypes of Rab proteins (Rab27a and
Rab27b) involved in the process of exosome release [61], cancer cells are also considered as
efficient exosome producers. One of the most representative characteristics of cancer cell-
derived exosomes is a tropism toward their parent cells [33,35]. Indeed, Qiao and colleagues
isolated exosomes from two different cancer cell lines (HT1080, a fibrosarcoma cell line,
and HeLa, a cervical cancer cell line) and confirmed that exosomes derived from HT1080
showed twice as much uptake in HT1080 cells compared to HeLa exosomes. Furthermore,
the authors conducted an in vivo efficacy test using anticancer drug-encapsulating HT1080
exosomes and found that drug-loading HT1080 exosomes showed significantly increased
accumulation at HT1080 tumor site versus HeLa exosomes [35]. Although cancer cell-
derived exosomes have shown promising ability as drug delivery vehicles, there are
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some limitations to be improved to utilize them for cancer treatment. First, cancer cell-
produced naive exosomes have a less ideal pharmacokinetic profile [34]. Second, based
on many studies regarding that cancer exosomes may be involved in tumor metastasis, it
is necessary to fully consider the possible adverse effects when using cancer exosomes as
drug carriers [35]. If the aforementioned shortcomings are improved, it is expected that
exosomes isolated from cancer patients can be used as a good weapon to treat them.

2.1.3. Immune Cell-Derived Exosomes

Dendritic cells (DCs) that present tumor antigens to naive T cells are widely used
for T cell-mediated immunotherapy but have the disadvantage of a short lifespan after
activation [62]. However, the DC-derived exosomes (DEX) are proposed as a key molecule
to complement the limitations of DC-based immunotherapy because DEX preserve the
immune stimulation-related abilities of their origin [40]. First, DEX has a strictly defined
molecular composition corresponding to each patient, which determines the molecular
parameters for quality control in biologics [37,40]. Second, the lipid composition of DEX
membranes facilitate long-term storage at −80 ◦C [40]. Considering that DC-based therapy
employs living cells, DEX show improved stability compared to DCs in the preparation
process of therapeutics. Third, DEX express the ligand peptides that activate NK cells
on their surface [36,38,39]. In addition, DEX has 10-to-100-fold more abundant MHCII
molecules compared to DC, allowing for DEX therapy up to 6 months with a single
leukapheresis [37,40]. In general, DEX isolated from immature DCs (imDCs) showed a lack
of immunostimulatory molecules’ expression (e.g., CD86 and CD40), which can prevent
unexpected immune responses induced by naive T cell stimulation [63].

2.1.4. Stem Cell-Derived Exosomes

Among various cell types known to secret exosomes, mesenchymal stem cells (MSCs)
are also considered an ideal source to prepare exosomes for clinical application in that
they can be isolated from a variety of human tissues and have a large capacity for ex
vivo expansion [64,65]. The kalluri group developed a scaled-up isolation process for the
production of good manufacturing practice (GMP)-grade exosomes from bone marrow-
derived MSCs for clinical use. Using this isolation method and MSCs, the authors obtained
a three-fold increase of quantities of exosomes compared to those from human foreskin
fibroblasts (BJ fibroblasts), which have a similar morphology and surface marker with
MSCs. In addition, the GMP-grade MSC exosomes can deliver therapeutic siRNA targeting
oncogenic Kras (MSCs siKras Exo). After administration of MSCs siKras Exo, tumor size
and metastatic level were significantly decreased in the tumor-bearing mouse model [66].

2.2. Blood (Red Blood Cell)-Derived Exosomes

Basically, exosomes contain many types of biological molecules characterized by their
parent cells, such as nucleic acids, proteins, and lipids [67,68]. Thus, exosomes isolated
from body fluids including blood plasma, urine, saliva, and amniotic fluids have been
applied to the diagnosis of several diseases [69–73]. Among these types of exosomes from
different body fluids, blood (red blood cell)-derived exosomes have been used for the
delivery of nucleic acid-based therapeutics [43].

According to the previous study from the Le group, red blood cell (RBC)-derived exo-
somes were suggested as a versatile delivery vehicle for therapeutic RNAs. RBC-derived
exosomes have several advantageous properties for clinical application. Briefly, (1) blood
units, the source of exosomes, can be readily obtained from blood banks and patients, them-
selves, as required. (2) Considering a relatively large amount of RBC (~1012 cells/L) exists
in each blood unit [74], the risk of unexpected in vitro mutations that may occur during
cell culture can be reduced. (3) Unlike other cells with a nucleus, RBCs are enucleated cell
types [75]. Therefore, this suggests that exosomes isolated from RBCs are free from gene-
related potential risks such as horizontal gene transfer. (4) Similar to blood transfusion,
RBC-derived exosomes can be prevented from inducing toxic and immunogenic responses
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by matching blood types between donors and recipients. (5) RBC exosomes provide
higher transfection efficiency. To evaluate the transfection efficiency of RBC exosome-based
RNA therapeutics delivery, researchers encapsulated 400 pmol of FAM-labeled antisense
oligonucleotides (ASOs) into RBC exosomes and incubated it with leukemia MOLM13 cells
for 24 h. By quantifying a percentage of FAM-positive cells using FACS analysis, it was
verified that RBC exosomes showed an approximately two-fold increase in transfection effi-
ciency (80.4%) compared to commercial transfection reagents such as LipofectamineTM3000
(41.0%) and INTERFERin® (31.3%) which have a lower toxicity [43].

2.3. Food-Derived Exosomes

In addition to the typical limitations of cell-derived exosomes such as small amounts
of yield and the possibility of inducing immunogenicity, the limited dosing route is also
suggested as an improvement point. To this end, food, such as milk and edible plants, are
proposed as an alternative source of exosomes due to its various beneficial features for
clinical application [76].

2.3.1. Milk-Derived Exosomes

Since milk, a type of body fluid, contains various supporting ingredients for growth,
it is consumed by not only newborns but also adults [77,78]. In particular, bovine-derived
milk is emerging as a promising substitute for an exosome source in that it can be mass-
produced (according to a report from the US Department of Agriculture (USDA), the
average annual milk production per cow in 2020 is approximately 24,000 pounds) [79].
The main advantage of milk-derived exosomes is that they enable the effective delivery of
encapsulated therapeutic molecules through the oral cavity due to its stability under low
pH-degrading gastric conditions [45,46,48]. Exosomes derived from bovine’s milk can elicit
cross-species transportation through conserved IgG-neonatal Fc receptor (FcRn), binding in
the upper gastrointestinal tract [76,80–83]. Agrawal et al. reported that orally administered
paclitaxel (PTX)-loaded exosomes (ExoPAC) markedly inhibited tumor growth in the
tumor-bearing mouse model without any adverse effects on systemic toxicity and immune
responses [80]. In addition to biocompatibility and safety perspectives, milk exosomes
can also be functionalized through post-isolation modification. A research group, led by
Bajpayee et al., has engineered milk exosomes using polyethylene glycol (PEG) to improve
their integrity in acidic gastric environments and mucus permeability. As expected, PEG-
modified milk exosomes showed an approximately 3.2-fold increase in mucus permeability
compared to unmodified milk exosomes [84].

2.3.2. Edible Plant-Derived EXOSOMES

Considering that exosomes isolated from plants can be administered orally and mod-
ified with functional moieties such as folate, plant-derived exosomes (PDEs) are also
considered as promising candidates of an exosome source. First, it has been reported that
PDEs per se have protective effects on inflammatory disease [50,85,86]. For instance, Ju and
colleagues found that exosomes isolated from grapes can modulate intestinal homeostasis
and have protective effects on dextran sulfate sodium (DSS)-induced colitis after oral ad-
ministration [50]. According to the previous study from Zhang et al., it was found that folic
acid-modified ginger-derived nanovectors (GDNVs), which are exosome-like nanoparticles
from edible ginger, have a significantly great biocompatibility compared to cationic lipo-
somes, as well as effective cancer targeting/therapeutics delivery efficiency [49]. Although
in vivo studies in this article were conducted via intravenous injection, it is anticipated
that the development of less invasive anticancer drug delivery strategies using PDE is also
possible considering PDE’s therapeutic effects after oral administration.

3. Exosome Cargo Loading for Cancer Therapy

Exosomes are broadly utilized as drug vehicles for various cancer therapeutic cargoes
with the advantages described above. As a delivery system, exosomes with lipid bilayer
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membranes can safely protect and deliver different cargoes, including anticancer small
molecule drugs, nucleic acids, and proteins, in a sustained release manner. In this section,
the unique advantages and several examples of exosomes for delivering each cancer
therapeutic cargo are presented (Table 2).

3.1. Anti-Cancer Drugs

Hydrophilic and hydrophobic chemotherapeutic drugs including Dox and PTX have
been reported to be loaded in exosomes. A number of accumulating studies have shown
that exosome-mediated chemotherapeutic delivery can enhance anti-cancer effects [87–91].

Dox, one of the most effective anti-cancer drugs, is used for the treatment of leukemia,
lymphoma, and many types of solid tumors. However, the clinical use of Dox is very
limited due to their poor biocompatibility and serious side effects such as bone marrow
suppression and cardiotoxicity. Although many efforts are being made to enhance the
biocompatibility and anti-cancer effects of Dox through various nanoparticle technology,
there have also been nanoparticle-associated side effects that must be overcome, such as
immune response and oxidative stress [92,93].

As Dox can be easily tracked by its intrinsic fluorescence, it has been well studied in
exosome-mediated anti-cancer therapy. Exosomes generated through serial extrusion from
doxorubicin-pretreated macrophages show superior anti-cancer effects than free Dox or
Dox-loaded liposome groups in the colon adenocarcinoma mouse model [94]. Compared
with liposomes, the ability of exosomes to target cancer cells is quite high due to the
optimized mechanism of endocytosis by cholesterol and the phospholipid composition
present on the exosomal membranes [95]. Dox-loaded exosomes prevent the delivery
of Dox to myocardial endothelial cells, thereby reducing cardiotoxicity, a representative
side effect of Dox [96]. More recently, it has been reported that exosomes derived from
mesenchymal stem cells could enhance the cellular uptake rate and anticancer effect of Dox
in osteosarcoma [97]. This may be due to the tropism of mesenchymal stem cells toward
tumor tissues, suggesting the importance of the selection of exosome sources.

PTX is another widely used anti-mitotic agent for malignant tumors such as glioblas-
toma multiforme and breast cancer [80,98]. PTX is often used to overcome drug resistance
in cisplatin-resistant patients. However, PTX has a dose-dependent toxic effect with low
bioavailability, which is a major obstacle for clinical application. Additionally, several
studies reported that PTX could not pass through BBB [99–101]. Mesenchymal stromal
cells pretreated with PTX could produce PTX-loaded exosomes, which showed strong
anti-cancer effects in human pancreatic adenocarcinoma [102]. Moreover, cancer-derived
exosomes encapsulating PTX could directly target drug-resistant cancer stem cells, improv-
ing cytotoxicity against autologous cancer cells [103]. Multiple drug resistance (MDR) is
one of the major obstacles for successful cancer treatment. Exosomes have been shown to
be effective in overcoming MDR in tumors. PTX-loaded macrophage-derived exosomes
could bypass the P-glycoprotein drug efflux transporter and showed high cell uptake in
MDCK MDR1 cells and lower IC50 than free PTX [104]. In addition to overcoming MDR,
exosomes derived from U-87 MG cells could pass through the BBB and deliver PTX, thereby
having an improved therapeutic effect in glioblastoma multiforme [98].
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Table 2. Exosome cargo loading for cancer therapy.

Cargo Origin of Exosomes Target Cancer Type Loading Method Administration Route Outcome References

Doxorubicin

Monocyte Colon carcinoma Incubation I.V. Suppression of tumor growth [94]

Breast cancer cell
Ovarian cancer cell

Breast cancer
Ovarian cancer Electroporation I.P. Suppression of tumor growth

Reducing toxicity of drug [96]

MSC Osteosarcoma myocardial Incubation N/A Reducing toxicity of drug
Enhanced the cellular uptake rate [97]

Paclitaxel

MSC Pancreatic adenocarcinoma Incubation N/A Improved anticancer effect [102]

Prostate cancer cell Prostate cancer Incubation N/A Overcame drug resistance
Enhanced cytotoxicity on cancer cells [103]

Macrophage Pulmonary metastasis
Incubation

Electroporation
Sonication

I.N. Overcame MDR in cancer cells
Enhanced the cellular uptake rate [104]

Bovine milk Lung cancer Incubation P.O. Suppression of tumor growth
Lower systemic toxicity [80]

Brain cancer cell Glioblastoma-astrocytoma
cancer

Incubation
Sonication N/A Enhanced cytotoxicity on cancer cells

Passed through the BBB [98,105]

Nucleic acid

miRNA-122 AMSC Hepatocellular carcinoma Transfection I.T. Improved the chemosensitivity
Improved anticancer effect [106]

miRNA-21 HEK293T cell Brain tumor Electroporation I.V. Suppression of tumor growth
Passed through the BBB [107]

siRNA

Breast cancer cell Breast adenocarcinoma Electroporation I.V. Suppression of tumor growth
Improved effect of tumor targeting [108]

Breast cancer cell Breast cancer
Lung metastasis Incubation I.V. Enhanced the cellular uptake rate

Reduced migration and metastasis of cancer cells [109]

Circular RNA Hepatocellular cancer cell Hepatocellular cancer Pre-overexpression I.T. Suppression of tumor growth
Promoted tumor cell apoptosis [110]

mRNA Red blood cell Breast cancer
Leukemia Electroporation I.T. Suppression of tumor growth

Reduced drug cytotoxicity [43]

Protein

Surviving-
T34A Melanoma cell Pancreatic adenocarcinoma Transfection N/A Induced apoptosis in adenocarcinoma cells

Enhanced drug sensitivity [111]

TRP2 Serum Any type of cancer Saponin/electroporation S.C. Accumulation in lymph nodes for immunotherapy [112]

SIRPα HEK293T cell Colon carcinoma Transfection I.V. Enhanced phagocytosis of tumor cells
Suppression of tumor growth [113]

hMUC1 Colon cancer cell
Breast cancer cell Colon carcinoma Transfection I.D. Proliferation and activation of immune cells

Suppression of tumor growth [114]
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Besides PTX, hydrophobic natural compounds such as curcumin are also being studied
clinically. Among hydrophobic anti-cancer drugs, curcumin is readily incorporated into
the exosomal membranes. According to a recent study, loading curcumin into exosomes
derived from intestinal epithelial cells showed potential as an oral drug with improved
cellular uptake and intestinal permeability [115].

3.2. Nucleic Acids

Gene therapy using nucleic acids such as DNA and RNA is an attractive and promis-
ing strategy for cancer treatment. In particular, small RNAs such as siRNA or miRNA
generally bind to mRNAs and increase or decrease their activity to regulate gene expres-
sion [116,117]. Nano-based delivery systems such as liposomes, cationic polymers, and
inorganic nanoparticles have been developed to protect these nucleic acids from degra-
dation by endonuclease and deliver them to tumors [118,119]. However, to apply these
gene delivery systems to actual clinical practice, barriers regarding safety, stability, and
delivery efficiency need to be overcome. In general, these nanocomplexes are induced
by electrostatic interactions between positively charged carriers and the strong negative
charge due to the phosphate backbone of RNA. The stability of the complex by charge
interaction increases the protection for RNA but makes the release of small RNAs for gene
regulation difficult. Moreover, these cationic surface charges of nanocarriers may induce
cytotoxicity. Therefore, the balance between the protection and release of small RNAs is a
critical factor for efficient delivery of small RNAs [120].

Recently, exosomes are attracting attention as vehicles for gene delivery due to their
unique characteristics that can overcome these difficulties. Abundant miRNAs involved
in intercellular communication were detected in exosomes [121], some of which exhibit
anti-cancer properties. A method of loading desired RNAs into exosomes through pre-
overexpression of candidate RNAs in parental cells has been proposed. The miR-122
expression plasmid was transfected into adipose tissue-derived mesenchymal stem cells to
obtain miR-122-encapsulated exosomes [106]. The miR-122-loaded exosomes improved
the chemosensitivity of hepatocellular carcinoma cells by altering genes such as cyclin G1
and metalloproteinase domain-containing protein 10. In addition, intra-tumoral injection
of these miR-122-loaded exosomes showed improved anticancer effects in the xenograft
mouse model.

In addition to the pre-overexpression method, as nucleic acids are highly hydrophilic
and membrane impermeable, the electroporation method can be used to form pores in the
exosomal membranes to facilitate nucleic acids’ entry into exosomes. In particular, 293T
cells were transfected with a plasmid expressing the transferrin receptor-binding peptide,
T7, to decorate exosomes and antisense miR-21 was loaded by electroporation [107]. The
oncogenic miRNA, miR-21, is one of the most highly upregulated miRNAs in solid tumors,
including glioblastoma. Therefore, exosomes expressing T7 peptides on their surface
passed through the BBB and encapsulating the miR-21 inhibitor were efficiently delivered
to transferrin receptor-overexpressed glioblastoma cells. These engineered exosomes
showed excellent cancer growth inhibition by suppressing the expression of miR-21.

Similar to natural exosomes, exosome-mimicking technology for nucleic acid delivery
has been developed. Nano-sized exosome-mimics were generated by extruding MCF-10A
cells through filters of various pore sizes [108]. The yield of exosomes was increased
by about 150-folds as aforementioned in the previous section and CDK4 siRNA was
loaded by the electroporation method. Exosome-mimics by serial extrusion showed similar
efficiencies and safety features to natural exosomes in siRNA delivery, providing another
solution for exosome-related barriers in a drug delivery field.

The membrane surface composition of exosomes contributes to their high cellular
uptake [122–124]. The lipid composition of the exosomal membranes may support cellular
internalizations and the proteins on the exosomal surface acting as targeting ligands
may play an important leading role for targeted cancer therapies. Based on this concept,
biomimetic nanoparticles were developed in which a complex composed of cationic bovine
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serum albumin and siRNA was coated with an exosomal membrane extracted from breast
cancer cells [109]. These biomimetic nanoparticles were superior to the liposome-coated
group in in vivo experiments, showing excellent gene silencing effects and inhibition of
breast cancer growth.

Besides delivering small RNAs (miRNAs and siRNAs), exosomes could also carry long
non-coding RNAs, mRNAs, and circular RNAs. Long non-coding RNAs have attracted
much attention due to their high stability and role as miRNA sponges for regulating
gene expression. For example, long non-coding circular RNAs, which exhibit a relatively
low expression rate in hepatocellular carcinoma patients, were loaded into exosomes
derived from HL 7702 cells via a pre-overexpression method [110]. The circular RNAs
acted as a sponge for miRNA-331 and inhibited the expression of the BAK1 gene, one
of the regulators of apoptosis. Exosomes carrying circular RNAs promoted apoptosis of
hepatocellular carcinoma cells and reduced both the weight and size of tumors in xenograft
mouse models.

Note that the yield of exosomes is one of the major obstacles in the development of
therapeutic exosomes. Most exosome studies are conducted with exosomes derived from
primary mesenchymal stem cells or immortalized cells. In contrast, RBCs, which make
up about 84% of our body cells, feature high exosome yield. The RBC-derived exosomes
have the advantage of avoiding immune responses. Usma et al. have recently reported that
anti-miR-125 and Cas9 mRNAs were loaded into exosomes derived from RBCs obtained
from a type O donor [43]. Engineered erythrocyte-derived exosomes successfully delivered
miRNA and mRNA, demonstrating the efficient miRNA-125 knockdown and gene knock-
out with CRISPR–Cas9 genome editing in breast cancer mouse models and acute myeloid
leukemia models.

3.3. Proteins

One of the most promising ways to deliver macromolecular proteins is to utilize
exosomes. Proteins can be encapsulated into exosomes via the genetic engineering of donor
cells or by direct physical loading such as electroporation.

Donor cells are transfected with a gene encoding the protein of interest. As a result,
the cell synthesizes proteins encoded by the inserted genes, which are subsequently se-
creted into exosomes. The anti-apoptotic protein survivin plays an important role in the
viability in multiple cancer cells. The inactive mutant survivin-T34A acts as an inhibitor
of this survivin, initiating the mitochondrial apoptotic pathway in cancer cells. It was
demonstrated that exosomes derived from melanoma cells overexpressing survivin-T34A
by plasmid transfection induce apoptosis and enhance gemcitabine sensitivity in various
pancreatic adenocarcinoma cell lines [111]. Exosomes have great potential as vectors for
vaccination due to their physiological role played in the immune system and advantage in
delivering bioactive molecules. Among the exosomes derived from the immune system,
DEX have been demonstrated to have the ability to stimulate immune responses compara-
ble to parental DCs. Recently, attempts have been made to load tumor-specific antigens,
peptides, and immune stimulants capable of activating host immune responses against
tumor cells into DEX. To use the fetal liver protein α-fetoprotein (AFP) as a hepatocellular
carcinoma antigen, a mouse DC cell line was infected with a lentivirus encoding the AFP
gene [125]. DEX derived from AFP-expressing DCs induced a robust antigen-specific
immune response in a mouse model and resulted in both tumor growth inhibition and
prolonged survival.

Proteins could also be loaded directly into exosomes. To increase membrane per-
meability, tyrosinase-related protein-2 (TRP2) was loaded into serum-derived exosomes
through a detergent such as saponin or by the electroporation method [112]. Exosomes
containing TRP2 were effectively internalized into macrophages and dendritic cells, and
fluorescently-labeled exosomes showed strong signals in lymph nodes, which can be
utilized for anticancer treatment through immunotherapy.
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Besides loading proteins into the hydrophilic inner space, exosomes could also trans-
port therapeutic membrane proteins in the form of their native structures [126]. CD47, a
"don’t eat me" signal, is overexpressed on the surface of most cancer cells. CD47 inter-
acts with the signal-regulatory protein alpha (SIRPα) on the surface of phagocytic cells,
weakening the ability of macrophages to engulf cancer cells [127]. Therefore, SIRPα or
CD47-binding proteins can be competitive inhibitors to enhance the phagocytosis of phago-
cytic cells. Based on this mechanism, exosomes expressing SIRPα on their surface to
inhibit CD47 functions of tumor cells were developed [113]. SIRPα on the exosome surface
enhanced the phagocytic ability of bone-marrow-derived macrophages and effectively
inhibited cancer growth in a tumor xenograft model. Another study has shown that exo-
somes isolated from two mouse tumor cell lines, namely CT26 and TA3HA, transfected
with plasmids capable of expressing the exogenous human antigen hMUC1. Results re-
vealed that exosomes expressing the target MUC1 antigen, as well as Hsc70 and MHC
class I molecules on their surfaces, induced an effective immune response and inhibited
the growth of hMUC1-expressing tumor cells in mice [114]. These studies provide new
insights that exosomal membrane scaffolds may be an attractive delivery system for cancer
therapy via membrane proteins.

4. Exosome Membrane Modifications for Specific Targeting

Considering that exosomes are secreted by cells, they contain cell adhesion molecules,
ligands, and lipids that are endogenously expressed in parent cells. Several studies suggest
that exosomes have the ability to target their parent cells [103,128]. However, most tumor-
targeting studies with in vivo experiments show unexpected results probably due to the
heterogeneity of exosomes [129]. These unexpected results are attributed to the change in
the composition of solids such as fluids and membrane proteins within exosomes through
size heterogeneity caused by uneven invagination. Therefore, to achieve effective tumor
targeting, exosomes need to be further optimized with surface engineering. This section
focuses on strategies for improving the tumor-targeting of exosome-based drug delivery
using two methods: passive and active targeting (Table 3).

Table 3. Exosome modification strategies to improve exosome tumor targeting efficiency.

Targeting
Type Examples Target Effect Exosome Source Delivery

Molecule Reference

Passive

CD47 surface decoration SIRPα Increased exosome
circulation time

Mouse embryonic
fibroblasts (MEFs) mRNA [130]

Surface PEGylation N/A
Reduced exosome

clearance Enhanced
tumor penetration

4T1 murine breast cancer cells N/A [131]

iRGD peptide fusion with
Lamp2b N/A Inhibited tumor growth

without overt toxicity Mouse immature dendritic cells Doxorubicin [132]

Active

IL3-Lamp2b expressing
exosome production IL3 receptors Increased intratumoral

accumulation HEK293T cells Imatinib,
BCR-ABL siRNA [133]

Exosome azide integration,
DBCO-PEG4-biotin
avidin conjugation

Biotin receptors,
glycan biosynthesis

process
Higher uptake levels B16F10 cells Streptavidin-HRP [134]

Neuraminidase
Terminal sialic acid

residues from
glycoproteins

Rapid accumulation of EVs
in the liver MLP29 cells N/A [135]

3-(diethylamino)
propyl-amine (DEAP) N/A pH sensitive uptake RAW 264.7 cells N/A [136]

αCD3 and αHER2
antibodies’ surface

expression

CD3, HER2
receptors Increased T cell activation Expi293 cells N/A [137]

anti-SSTR2 mAb Somatostatin
receptor 2 (SSTR2)

High toxicity of
cancer cells HEK 293 cells Romidepsin [138]

DSPE-PEG biotin and
avidin conjugation Biotin receptors Increased stability and

encapsulation efficiency HUVECs N/A [139]

Diacyllipid–aptamer(sgc8)
PEG conjugation PTK7 Increased cellular uptake ImDC cells Doxorubicin [140]
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4.1. Passive Tumor Targeting

Passive tumor targeting is the result of the enhanced permeability and retention (EPR)
effect due to increased permeability of the tumor vasculature and ineffective lymphatic
drainage. However, EPR effects are a controversial concept, with drug delivery efficiencies
of less than 1% even in xenograft tumor models [141]. The heterogeneous size of endothe-
lial gaps, inadequate blood perfusion, and dense interstitial tumor matrix reduce tumor
targeting efficiency [142].

Therefore, efficient passive tumor targeting may be an important prerequisite for
tumor cell-targeting systems via systemic administration. Strategies to enhance the EPR
effect include prolonging the circulation time of exosomes and promoting their extrava-
sation [143]. As in the example presented in the previous section, when CD47, which is
a “don’t eat me” signal, was decorated on the exosomal membrane, the circulation time
of exosomes was increased by three-folds, resulting in the avoidance of the phagocytosis
of macrophages [130,144]. Immune evasion through PEGylation of the exosomal surface
also reduced exosome clearance [131]. Copper-64 labeled PEGylated exosomes showed
better tumor accumulation and reduced the hepatic clearance of exosomes than native
exosomes. Although tumorigenic vessels are leaky and compatible with exosome extrava-
sation, targeting endothelial cell surface molecules may enhance tumor penetration. The αv
integrin-specific iRGD (CRGDKGPDC) peptide, which is highly expressed in endothelial
cells, was designed to be expressed with the exosomal membrane protein (Lamp2b) on exo-
somes [132]. These Dox-loaded and iRGD-modified exosomes were injected intravenously
and inhibited tumor growth without overt toxicity.

4.2. Active Tumor Targeting

Modification of the exosomal membrane affects their biodistribution and specific
targeting ability in vivo. Exosomes can be modified to express various extrinsic targeting
ligands and stimuli-responsive components, as well as intrinsic targeting ligands such as
glycans and integrins.

A fusion protein-based exosome engineering strategy for the treatment of chronic
myelogenous leukemia expressing extrinsic targeting ligands has been developed [133].
Although the 5-year survival rate of patients with chronic myelogenous leukemia has been
greatly improved with imatinib, a tyrosine kinase inhibitor, drug resistance and long-term
side effects still occur due to the non-specific localized accumulation of the drug. Therefore,
the interleukin-3 receptor (IL3-R) that overexpressed on the surface of chronic myelogenous
leukemia blasts is a good candidate molecule for tumor targeting. HEK cells with high
transfection efficiency and high exosome production capacity were transfected with a
plasmid encoding the Lamp2b-IL3 fusion protein. Exosomes modified with IL3-targeting
ligands were further loaded with imatinib or breakpoint cluster region-Abelson (BCR-ABL)
siRNA. Compared with native exosomes, modified exosomes overcame drug resistance and
showed enhanced cytotoxicity. Furthermore, engineered exosomes exhibited significantly
greater intratumoral accumulation compared to native exosomes in immunodeficient mice
bearing subcutaneous chronic myeloid leukemia tumors.

Another engineering strategy to incorporate targeting ligands into exosome mem-
branes is to use click chemistry such as copper-catalyzed azide-alkyne cycloaddition. The
specific ligands of interest can be attached to the exosomal surfaces without the use of
solutions which can damage the biological features of exosomes by click chemistry that can
attach ligands [145,146]. Moreover, click chemistry-based exosome engineering is more ef-
ficient than conventional cross-linking methods [147]. The intracellular delivery of proteins
could be enhanced by exosome engineering via click chemistry. L-azidohomoalanine-
treated B16F10-derived exosomes were conjugated to biotin using a dibenzobicyclooctine
(DBCO) polyethylene glycol (PEG)4 construct [134]. These exosomes were passively loaded
by incubation with horseradish peroxidase conjugated to streptavidin, a natural biotin
ligand. The engineered exosomes were able to deliver functional streptavidin-HRP into
B16F10 cells with a six-fold higher uptake level compared to free-protein incubation.
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Besides adding targeting ligands to the exosome surface, it is also possible to alter
the targeting ability of exosomes by removing endogenous surface molecules. Glycosyl-
transferases, which control the composition of glycome, are strongly associated with cancer
progression [148,149]. Glycosylation of lipids and proteins on cellular surfaces plays an
important role in cancer metastasis and glycan sialic acid, which is deeply involved in
cancer metastasis, was found on the surface of exosomes [150,151]. Another study showed
that exosomes derived from liver progenitor cells treated with neuraminidase, an enzyme
that removes terminal sialic acid residues, were rapidly accumulated in the lung when
intravenously injected into a mouse model compared with the intact EVs that accumulated
in the liver [135]. The authors suggested that the modification of glycosylation on the EV
surfaces could be used to control their interaction with other cells as well as could induce
changes in the distribution of EVs in the body. In addition, after subcutaneous injection of
the enzyme-treated exosomes, exosomes were highly accumulated in the axillary lymph
nodes. These results suggest that the method of removing the intrinsic surface ligand of
exosomes could also be another means for drug delivery.

Environmentally sensitive functional peptides as stimuli-responsive components
could also be added to the exosome surface to confer targeting functions. The tumor
microenvironment is mildly acidic (pH 5.6 to 6.8) due to glycolysis, hypoxia, and insufficient
blood perfusion [152,153]. Therefore, tumor targeting that exploits these features of the
tumor microenvironment could be a promising option for designing exosome engineering
strategies. 3-(diethylamino) propylamine (DEAP), which binds to the lipid membranes
at pH 7.4 but disrupts the membrane below pH 7.0, has been applied to exosomes to
allow for the drug release in tumor microenvironments [136]. Indeed, DEAP-engineered
exosomes showed enhanced drug release at pH 6.5 compared to the pH 7.4 environment
and resulted in increased tumor accumulation. A significant reduction of tumor volume
was also observed in HCT-116 human colorectal carcinoma tumor-bearing mice. In addition
to exploiting specific intrinsic features of the tumor microenvironment, exosomes can also
be engineered for external stimulus-guided targeting, such as magnetism. An exosome in
which superparamagnetic nanoparticles are conjugated to reticulocyte-derived exosomes
overexpressing transferrin receptors has been developed [154]. The engineered exosomes
showed strong responses to external magnetic fields and excellent targeting ability, and
inhibited tumor growth in a mouse model by efficiently delivering loaded Dox to cancer
cells. This pilot study explored the potential of magnetic field-driven targeting of exosomes,
laying a theoretical and experimental basis for future applications in cancer therapy.

5. Challenges and Perspectives

Exosomes offer promising aspects to enhance the delivery of therapeutics due to their
unique properties such as their endogenous origin and tissue tropism. Moreover, exosomes
could be easily engineered to improve drug loading efficiency and targeting capabilities.
Despite these advantages of exosomes, detailed understanding related to the exosome
biology is still in its infancy and there is much work to be done in the future.

For the therapeutic applications, the choice of exosome source must be made very
carefully. Tumor-derived exosomes show remarkable targeting ability against cancer cells
and they are loaded with bioactive cargoes that have potential to directly or indirectly
promote cancer growth [155,156]. In this regard, techniques to identify and remove or
add exosomal components are critical for exosome-based drug delivery for cancer treat-
ment, which might enable us to address barriers arising from heterogeneous exosome
subpopulations in the future.

Recently, various strategies such as incubation, transfection, sonication, and electro-
poration have been developed for loading therapeutic cargoes into exosomes. However,
current exosome-cargo-loading strategies are not sufficient to satisfy the loading efficiency
required for clinical applications. In particular, the simple incubation method is very
limited in the type of cargo to be loaded and the efficiency is too low to be utilized in
clinical applications. Transfection methods should further simplify the process and reduce
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the cost of mass production. The current physical treatment, such as electroporation, is the
best method for loading nucleic acids such as siRNA or miRNA into exosomes. However,
as this process could induce the aggregation and degradation of charged nucleic acids, as
well as could change the properties of exosomes, new approaches are needed [157].

Another major obstacle for the clinical application of exosomes is their low yields.
In most preclinical experimental studies, exosomes are obtained through cell culture. Al-
though there are some differences depending on the type of donor cells, less than 1 µg of
exosomal protein is produced per ml of culture, which is a level that requires the culturing
of huge amounts of cells for clinical trials [29,158]. To overcome this limitation, produc-
ing exosomes-mimetic nanovesicles (EMNVs) can be an alternative strategy [94,159–161].
EMNVs are produced by extruding cells through sequential micrometer-sized filtration.
With these serial extrusion methods, the yield of EMNVs is increased by approximately
100-folds [161,162] and anticancer drugs can be encapsulated simultaneously in this pro-
cess [94]. However, it is necessary to clarify the changes of in vivo pharmacokinetics/
pharmacodynamics (PK/PD) because the composition of the vesicle membrane can be
mixed during the cell extrusion process [33]. In addition, research groups have also devel-
oped exosome-liposome hybrid nanoparticles (hybrid EMNVs) in which exosomes and
synthetic liposomes are mixed. The representative methods for formulating hybrid EMNVs
are, briefly, (1) freeze-thaw [163], (2) simple incubation [164,165], and (3) extrusion [166].
According to study from Lin et al., the authors loaded Cas9 encoding plasmid vectors
to liposomes and then incubated it with sgRNA-loaded exosomes isolated from HET293
cells to make hybrid EMNVs. This hybrid form of exosome-like vesicles delivers the
CRISPR/Cas9 system to MSCs and induces successful cleavage of target genes [164]. In
addition, to overcome the barrier of low yield, some studies using exosomes extracted from
various foods are being attempted [85,167,168]. Naturally, these food-derived exosomes
are attracting attention because they are generally safe and have excellent cellular uptake
efficiency. In particular, milk-derived exosomes showed a 1000-fold higher yield as com-
pared to those derived from animal cell cultures. In addition, oral administration of milk
exosomes exhibited improved intestinal absorption [169,170].

In addition to their potential as drug carriers, exosomes have unlimited potential
as biomarkers for cancer diagnosis and prognosis. Indeed, numerous studies have been
attempted to explore the various profiles and functions of exosomes and to facilitate their
clinical applications [171–175]. The potential of exosomes isolated from various body
fluids such as blood, saliva, and urine as cancer biomarkers is based on the capture of
abnormal cell physiology, but can be expressed differently depending on the source and
how to accurately capture unique signals is a major challenge. In addition to this, recent
advances in mass spectrometry, next-generation sequencing, and bioinformatics tools have
led to a movement to treat cancer with a systems biological approach through detailed
proteomic, transcriptomic, glycomic, lipidomic, metabolomic, and genomic analysis of
exosomes [176,177]. Identifying correlations between genes involved in exosome biogenesis
and tumorigenesis through a systems biology approach and applying them to cancer
treatment could be a promising strategy.

Recently, numerous studies have demonstrated that exosomes could be utilized in
cancer immunotherapy. Tumor-derived exosomes are considered as a double-edged sword
considering they contain both antigens to induce anticancer immunity and factors that
can induce cancer progression. Recently, to overcome the risk of such tumor-derived exo-
somes, exosomes extracted from antigen-presenting DCs have also been utilized. [178,179].
For example, researchers found that peptide-pulsed DC-derived exosomes containing
MHC-peptide complexes and co-stimulatory molecules on their membranes could prolong
antigen presentation and enhance immunity compared to antigen-presenting DCs [180]. In
addition, exosomes are promising candidates for evoking anticancer responses as immuno-
genic cell death inducers [132]. Recently, DNA-containing exosomes have reported to pro-
mote T cell priming and infiltration to trigger a tumor-specific immune response [181,182].
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As exosomes are more stable and easier to engineer than activated antigen presenting cells,
their clinical potential in cancer immunotherapy is attracting attention.

6. Conclusions

With their low immunogenicity and strong biocompatibility, exosomes have heralded
a new chapter in drug delivery. Conventional delivery methods of anticancer agents,
nucleic acids, and proteins for cancer treatment often fail to achieve desired effects due
to in vivo degradation of the therapeutic agent and the lack of targeting ability. Taking
advantage of the intrinsic advantageous properties of exosomes, numerous studies have
demonstrated that exosomes can be used as carriers for drugs or engineered for anticancer
therapy. Although several challenges and obstacles in building a commercial exosome-
based drug delivery system remain to be elucidated, an understanding of the detailed
biological mechanisms of exosomes and further clinical studies will allow them to emerge
as a next-generation nanoplatform for cancer therapy.
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